首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
In fungi, horizontal transmission of deleterious cytoplasmic elements is reduced by the vegetative incompatibility system. This self/non-self recognition system may select for greater diversity of fungal incompatibility phenotypes in a frequency-dependent manner but the link between the diversity of fungal phenotypes and the virulence of cytoplasmic parasites has been poorly studied. We used an epidemiological model to show that even when transmission between incompatibility types is permitted, parasite pressure can lead to high levels of polymorphism for vegetative incompatibility systems. Moreover, high levels of polymorphism in host populations can select for less virulent cytoplasmic parasites. This feedback mechanism between parasite virulence and vegetative incompatibility system polymorphism of host populations may account for the general avirulence of most known mycoviruses. Furthermore, this mechanism provides a new perspective on the particular ecology and evolution of the host/parasite interactions acting between fungi and their cytoplasmic parasites.  相似文献   

2.
Interactions involving several parasite species (multi-parasitized hosts) or several host species (multi-host parasites) are the rule in nature. Only a few studies have investigated these realistic, but complex, situations from an evolutionary perspective. Consequently, their impact on the evolution of parasite virulence and transmission remains poorly understood. The mechanisms by which multiple infections may influence virulence and transmission include the dynamics of intrahost competition, mediation by the host immune system and an increase in parasite genetic recombination. Theoretical investigations have yet to be conducted to determine which of these mechanisms are likely to be key factors in the evolution of virulence and transmission. In contrast, the relationship between multi-host parasites and parasite virulence and transmission has seen some theoretical investigation. The key factors in these models are the trade-off between virulence across different host species, variation in host species quality and patterns of transmission. The empirical studies on multi-host parasites suggest that interspecies transmission plays a central role in the evolution of virulence, but as yet no complete picture of the phenomena involved is available. Ultimately, determining how complex host–parasite interactions impact the evolution of host–parasite relationships will require the development of cross-disciplinary studies linking the ecology of quantitative networks with the evolution of virulence.  相似文献   

3.
Models of the within-host dynamics of parasites have been used to consider the evolution of microparasites causing acute infections in vertebrate hosts. In this paper, we use these models to examine how the level of virulence to which a parasite evolves, depends on factors such as the relationship between parasite density and its rate of transmission from infected hosts, and the mechanism of parasite-induced pathogenesis. We show that changes in the terms describing transmissibility and pathogenesis may lead to dramatic differences in the level of virulence to which a parasite evolves. This suggests that no single factor is likely to be responsible for the differences in virulence of different parasites, and that understanding of the evolution of virulence of parasites will require a detailed quantitative understanding of the interaction between the parasite and its host.  相似文献   

4.
Parasite virulence is a leading theme in evolutionary biology. Modeling the course of virulence evolution holds the promise of providing practical insights into the management of infectious diseases and the implementation of vaccination strategies. A key element of virulence modeling is a tradeoff between parasite transmission rate and host lifespan. This assumption is crucial for predicting the level of optimal virulence. Here, I test this assumption using the water flea Daphnia magna and its castrating and obligate‐killing bacterium Pasteuria ramosa. I found that the virulence–transmission relationship holds under diverse epidemiological and ecological conditions. In particular, parasite genotype, absolute and relative parasite dose, and within‐host competition in multiple infections did not significantly affect the observed trend. Interestingly, the relationship between virulence and parasite transmission in this system is best explained by a model that includes a cubic term. Under this relationship, parasite transmission initially peaks and saturates at an intermediate level of virulence, but then it further increases as virulence decreases, surpassing the previous peak. My findings also highlight the problem of using parasite‐induced host mortality as a “one‐size‐fits‐all” measure of virulence for horizontally transmitted parasites, without considering the onset and duration of parasite transmission as well as other equally virulent effects of parasites (e.g., host castration). Therefore, mathematical models may be required to predict whether these particular characteristics of horizontally transmitted parasites can direct virulence evolution into directions not envisaged by existing models.  相似文献   

5.
The majority of organisms host multiple parasite species, each of which can interact with hosts and competitors through a diverse range of direct and indirect mechanisms. These within‐host interactions can directly alter the mortality rate of coinfected hosts and alter the evolution of virulence (parasite‐induced host mortality). Yet we still know little about how within‐host interactions affect the evolution of parasite virulence in multi‐parasite communities. Here, we modeled the virulence evolution of two coinfecting parasites in a host population in which parasites interacted through cross immunity, immune suppression, immunopathology, or spite. We show (1) that these within‐host interactions have different effects on virulence evolution when all parasites interact with each other in the same way versus when coinfecting parasites have unique interaction strategies, (2) that these interactions cause the evolution of lower virulence in some hosts, and higher virulence in other hosts, depending on the hosts infection status, and (3) that for cross immunity and spite, whether parasites increase or decrease the evolutionarily stable virulence in coinfected hosts depended on interaction strength. These results improve our understanding of virulence evolution in complex parasite communities, and show that virulence evolution must be understood at the community scale.  相似文献   

6.
Parasite strategies of host exploitation may be affected by host defence strategies and multiple infections. In particular, within‐host competition between multiple parasite strains has been shown to select for higher virulence. However, little is known on how multiple infections could affect the coevolution between host recovery and parasite virulence. Here, we extend a coevolutionary model introduced by van Baalen (Proc. R. Soc. B, 265, 1998, 317) to account for superinfection. When the susceptibility to superinfection is low, we recover van Baalen's results and show that there are two potential evolutionary endpoints: one with avirulent parasites and poorly defended hosts, and another one with high virulence and high recovery. However, when the susceptibility to superinfection is above a threshold, the only possible evolutionary outcome is one with high virulence and high investment into defence. We also show that within‐host competition may select for lower host recovery, as a consequence of selection for more virulent strains. We discuss how different parasite and host strategies (superinfection facilitation, competitive exclusion) as well as demographic and environmental parameters, such as host fecundity or various costs of defence, may affect the interplay between multiple infections and host–parasite coevolution. Our model shows the interplay between coevolutionary dynamics and multiple infections may be affected by crucial mechanistic or ecological details.  相似文献   

7.
Evolutionary models predict that parasite virulence (parasite-induced host mortality) can evolve as a consequence of natural selection operating on between-host parasite transmission. Two major assumptions are that virulence and transmission are genetically related and that the relative virulence and transmission of parasite genotypes remain similar across host genotypes. We conducted a cross-infection experiment using monarch butterflies and their protozoan parasites from two populations in eastern and western North America. We tested each of 10 host family lines against each of 18 parasite genotypes and measured virulence (host life span) and parasite transmission potential (spore load). Consistent with virulence evolution theory, we found a positive relationship between virulence and transmission across parasite genotypes. However, the absolute values of virulence and transmission differed among host family lines, as did the rank order of parasite clones along the virulence-transmission relationship. Population-level analyses showed that parasites from western North America caused higher infection levels and virulence, but there was no evidence of local adaptation of parasites on sympatric hosts. Collectively, our results suggest that host genotypes can affect the strength and direction of selection on virulence in natural populations, and that predicting virulence evolution may require building genotype-specific interactions into simpler trade-off models.  相似文献   

8.
Within-host competition between parasite genotypes can play an important role in the evolution of parasite virulence. For example, competition can increase virulence by imposing selection for parasites that replicate at a faster absolute rate within the host, but may also decrease virulence by selecting for faster relative growth rates through social exploitation of conspecifics. For many parasites, both outcomes are possible. We investigated how competition affected the evolution of virulence of the opportunistic pathogen Pseudomonas aeruginosa in caterpillar hosts, over the course of an approximately 60 generation selection experiment. We initiated infections with clonal populations of either wild-type bacteria or an isogenic mutant with an approximately 100-fold higher mutation rate, resulting in low and high between-genotype competition, respectively. We observed the evolution of increased virulence, growth rate, and public goods cheating (exploitation of extracellular iron scavenging siderophores produced by ancestral populations) in mutator but not wild-type, populations. We conclude increases in absolute within-host growth rates appear to be more important than social cheating in driving virulence evolution in this experimental context.  相似文献   

9.
Infections by multiple genotypes are common in nature and are known to select for higher levels of virulence for some parasites. When parasites produce public goods (PGs) within the host, such co-infections have been predicted to select for lower levels of virulence. However, this prediction is based on simplifying assumptions regarding epidemiological feedbacks on the multiplicity of infections (MOI). Here, we analyse the case of parasites producing a PG (for example, siderophore-producing bacteria) using a nested model that ties together within-host and epidemiological processes. We find that the prediction that co-infection should select for less virulent strains for PG-producing parasites is only valid if both parasite transmission and virulence are linear functions of parasite density. If there is a trade-off relationship such that virulence increases more rapidly than transmission, or if virulence also depends on the total amount of PGs produced, then more complex relationships between virulence and the MOI are predicted. Our results reveal that explicitly taking into account the distribution of parasite strains among hosts could help better understand the selective pressures faced by parasites at the population level.  相似文献   

10.
Tolerance to parasites reduces the harm that infection causes the host (virulence). Here we investigate the evolution of parasites in response to host tolerance. We show that parasites may evolve either higher or lower within-host growth rates depending on the nature of the tolerance mechanism. If tolerance reduces virulence by a constant factor, the parasite is always selected to increase its growth rate. Alternatively, if tolerance reduces virulence in a nonlinear manner such that it is less effective at reducing the damage caused by higher growth rates, this may select for faster or slower replicating parasites. If the host is able to completely tolerate pathogen damage up to a certain replication rate, this may result in apparent commensalism, whereby infection causes no apparent virulence but the original evolution of tolerance has been costly. Tolerance tends to increase disease prevalence and may therefore lead to more, rather than less, disease-induced mortality. If the parasite is selected, even a highly efficient tolerance mechanism may result in more individuals in total dying from disease. However, the evolution of tolerance often, although not always, reduces the individual risk of dying from infection.  相似文献   

11.
Understanding the processes that shape the evolution of parasites is a key challenge for evolutionary biology. It is well understood that different parasites may often infect the same host and that this may have important implications to the evolutionary behavior. Here we examine the evolutionary implications of the conflict that arises when two parasite species, one vertically transmitted and the other horizontally transmitted, infect the same host. We show that the presence of a vertically transmitted parasite (VTP) often leads to the evolution of higher virulence in horizontally transmitted parasites (HTPs), particularly if the VTPs are feminizing. The high virulence in some HTPs may therefore result from coinfection with cryptic VTPs. The impact of an HTP on a VTP evolution depends crucially on the nature of the life‐history trade‐offs. Fast virulent HTPs select for intermediate feminization and virulence in VTPs. Coevolutionary models show similar insights, but emphasize the importance of host life span to the outcome, with higher virulence in both types of parasite in short‐lived hosts. Overall, our models emphasize the interplay of host and parasite characteristics in the evolutionary outcome and point the way for further empirical study.  相似文献   

12.
Natural, agricultural and human populations are structured, with a proportion of interactions occurring locally or within social groups rather than at random. This within-population spatial and social structure is important to the evolution of parasites but little attention has been paid to how spatial structure affects the evolution of host resistance, and as a consequence the coevolutionary outcome. We examine the evolution of resistance across a range of mixing patterns using an approximate mathematical model and stochastic simulations. As reproduction becomes increasingly local, hosts are always selected to increase resistance. More localized transmission also selects for higher resistance, but only if reproduction is also predominantly local. If the hosts disperse, lower resistance evolves as transmission becomes more local. These effects can be understood as a combination of genetic (kin) and ecological structuring on individual fitness. When hosts and parasites coevolve, local interactions select for hosts with high defence and parasites with low transmissibility and virulence. Crucially, this means that more population mixing may lead to the evolution of both fast-transmitting highly virulent parasites and reduced resistance in the host.  相似文献   

13.
Intraspecific competition between co-infecting parasites can influence the amount of virulence, or damage, they do to their host. Kin selection theory dictates that infections with related parasite individuals should have lower virulence than infections with unrelated individuals, because they benefit from inclusive fitness and increased host longevity. These predictions have been tested in a variety of microparasite systems, and in larval stage macroparasites within intermediate hosts, but the influence of adult macroparasite relatedness on virulence has not been investigated in definitive hosts. This study used the human parasite Schistosoma mansoni to determine whether definitive hosts infected with related parasites experience lower virulence than hosts infected with unrelated parasites, and to compare the results from intermediate host studies in this system. The presence of unrelated parasites in an infection decreased parasite infectivity, the ability of a parasite to infect a definitive host, and total worm establishment in hosts, impacting the less virulent parasite strain more severely. Unrelated parasite co-infections had similar virulence to the more virulent of the two parasite strains. We combine these findings with complementary studies of the intermediate snail host and describe trade-offs in virulence and selection within the life cycle. Damage to the host by the dominant strain was muted by the presence of a competitor in the intermediate host, but was largely unaffected in the definitive host. Our results in this host–parasite system suggest that unrelated infections may select for higher virulence in definitive hosts while selecting for lower virulence in intermediate hosts.  相似文献   

14.
Hosts are often infected by a variety of different parasites, leading to competition for hosts and coevolution between parasite species. There is increasing evidence that some vertically transmitted parasitic symbionts may protect their hosts from further infection and that this protection may be an important reason for their persistence in nature. Here, we examine theoretically when protection is likely to evolve and its selective effects on other parasites. Our key result is that protection is most likely to evolve in response to horizontally transmitted parasites that cause a significant reduction in host fecundity. The preponderance of sterilizing horizontally transmitted parasites found in arthropods may therefore explain the evolution of protection seen by their symbionts. We also find that protection is more likely to evolve in response to highly transmissible parasites that cause intermediate, rather than high, virulence (increased death rate when infected). Furthermore, intermediate levels of protection select for faster, more virulent horizontally transmitted parasites, suggesting that protective symbionts may lead to the evolution of more virulent parasites in nature. When we allow for coevolution between the symbiont and the parasite, more protection is likely to evolve in the vertically transmitted symbionts of longer lived hosts. Therefore, if protection is found to be common in nature, it has the potential to be a major selective force on host–parasite interactions.  相似文献   

15.
In parasites with mixed modes of transmission, ecological conditions may determine the relative importance of vertical and horizontal transmission for parasite fitness. This may lead to differential selection pressure on the efficiency of the two modes of transmission and on parasite virulence. In populations with high birth rates, increased opportunities for vertical transmission may select for higher vertical transmissibility and possibly lower virulence. We tested this idea in experimental populations of the protozoan Paramecium caudatum and its bacterial parasite Holospora undulata. Serial dilution produced constant host population growth and frequent vertical transmission. Consistent with predictions, evolved parasites from this “high‐growth” treatment had higher fidelity of vertical transmission and lower virulence than parasites from host populations constantly kept near their carrying capacity (“low‐growth treatment”). High‐growth parasites also produced fewer, but more infectious horizontal transmission stages, suggesting the compensation of trade‐offs between vertical and horizontal transmission components in this treatment. These results illustrate how environmentally driven changes in host demography can promote evolutionary divergence of parasite life history and transmission strategies.  相似文献   

16.
An increasing number of scientists have recently raised concerns about the threat posed by human intervention on the evolution of parasites and disease agents. New parasites (including pathogens) keep emerging and parasites which previously were considered to be 'under control' are re-emerging, sometimes in highly virulent forms. This re-emergence may be parasite evolution, driven by human activity, including ecological changes related to modern agricultural practices. Intensive farming creates conditions for parasite growth and transmission drastically different from what parasites experience in wild host populations and may therefore alter selection on various traits, such as life-history traits and virulence. Although recent epidemic outbreaks highlight the risks associated with intensive farming practices, most work has focused on reducing the short-term economic losses imposed by parasites, such as application of chemotherapy. Most of the research on parasite evolution has been conducted using laboratory model systems, often unrelated to economically important systems. Here, we review the possible evolutionary consequences of intensive farming by relating current knowledge of the evolution of parasite life-history and virulence with specific conditions experienced by parasites on farms. We show that intensive farming practices are likely to select for fast-growing, early-transmitted, and hence probably more virulent parasites. As an illustration, we consider the case of the fish farming industry, a branch of intensive farming which has dramatically expanded recently and present evidence that supports the idea that intensive farming conditions increase parasite virulence. We suggest that more studies should focus on the impact of intensive farming on parasite evolution in order to build currently lacking, but necessary bridges between academia and decision-makers.  相似文献   

17.
Is the virulence of parasites an outcome of optimized infection? Virulence has often been considered an inevitable consequence of parasite reproduction when the cost incurred by the parasite in reducing the fitness of its current host is offset by increased infection of new hosts. More recent models have focused on how competition occurring between parasites during co-infection might effect selection of virulence. For example, if co-infection was common, parasites with higher intrinsic growth rates might be selected, even at the expense of being optimally adapted to infect new hosts. If growth rate is positively correlated with virulence, then competition would select increased virulence. We tested these models using a plasmid-encoded virulence determinant. The virulence determinant did not contribute to the plasmid's reproduction within or between hosts. Despite this, virulent plasmids were more successful than avirulent derivatives during selection in an environment allowing within-host competition. To explain these findings we propose and test a model in which virulent parasites are selected by reducing the reproduction of competitors.  相似文献   

18.
Animal behaviour and the ecology and evolution of parasites are inextricably linked. For this reason, animal behaviourists and disease ecologists have been interested in the intersection of their respective fields for decades. Despite this interest, most research at the behaviour–disease interface focuses either on how host behaviour affects parasites or how parasites affect behaviour, with little overlap between the two. Yet, the majority of interactions between hosts and parasites are probably reciprocal, such that host behaviour feeds back on parasites and vice versa. Explicitly considering these feedbacks is essential for understanding the complex connections between animal behaviour and parasite ecology and evolution. To illustrate this point, we discuss how host behaviour–parasite feedbacks might operate and explore the consequences of feedback for studies of animal behaviour and parasites. For example, ignoring the feedback of host social structure on parasite dynamics can limit the accuracy of predictions about parasite spread. Likewise, considering feedback in studies of parasites and animal personalities may provide unique insight about the maintenance of variation in personality types. Finally, applying the feedback concept to links between host behaviour and beneficial, rather than pathogenic, microbes may shed new light on transitions between mutualism and parasitism. More generally, accounting for host behaviour–parasite feedbacks can help identify critical gaps in our understanding of how key host behaviours and parasite traits evolve and are maintained.  相似文献   

19.
The study of parasite virulence has generally focused on the conditions under which virulence is expected to increase or decrease over time and how the interactions between hosts and their environments may mediate the outcome of infection. Recently, parasite traits such as transmission, offspring production, and development have also been shown to be influenced by environmental variation. What is unclear is how variation in the parasite's environment may impact virulence. Recent theory demonstrates that plasticity can promote the evolution of decreased virulence; thus, understanding whether the parasite's environment can mediate virulence can improve predictions regarding the outcome of parasite infection. Here, an obligate mosquito parasite was reared in hosts fed high or low levels of food. Parasite oocysts (offspring) produced in these two host environments were subsequently fed to uninfected hosts. Parasites originating from well-fed hosts were found to be more virulent to these subsequent hosts compared to parasites originating from poorly fed hosts. Additionally, this effect was apparent only when current hosts were food deprived. These results demonstrate that parasite virulence was mediated by a cross-generational effect of the environment and that the overall outcome of infection was modified by variation in both the parasite's and host's environments.  相似文献   

20.
The costs and benefits of parasite virulence are analysed in an evolutionarily stable strategy (ESS) model. Increased host mortality caused by disease (virulence) reduces a parasite's fitness by damaging its food supply. The fitness costs of high virulence may be offset by the benefits of increased transmission or ability to withstand the host's defences. It has been suggested that multiple infections lead to higher virulence because of competition among parasite strains within a host. A quantitative prediction is given for the ESS virulence rate as a function of the coefficient of relatedness among co-infecting strains. The prediction depends on the quantitative relation between the costs of virulence and the benefits of transmission or avoidance of host defences. The particular mechanisms by which parasites can increase their transmission or avoid host defences also have a key role in the evolution of virulence when there are multiple infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号