首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
H2(18)O isotope exchange into specifically 13C-labeled substrate was used to obtain information on the rate-limiting step in the action of the phospholipase A2 from the venom of the Indian cobra (Naja naja naja). Incorporation of 18O was detected by the effect of 18O on 13C chemical shifts in 13C NMR. The enzymatic hydrolysis of a micellar phosphatidylcholine analogue of platelet-activating factor 1-alkyl-2-[1-13C]lauroyl-sn-glycero-3-phosphorylcholine proceeds by an O-acyl cleavage of the sn-2 ester bond. The reaction was examined for simultaneous 18O incorporation into the substrate. No exchange was found, suggesting that the hydrolytic step is not followed by a higher energy transition state and that it or a step before it appears to be rate-limiting. Previous experiments on phosphatidylethanolamine activation indicate that kcat is altered but that the km remains the same upon activation, suggesting that the binding steps occurring before the hydrolytic step are not affected. This strongly suggests that the hydrolytic step is in fact the rate-limiting step under these conditions. The 13C, 18O NMR technique should be generally applicable to mechanistic questions of this type.  相似文献   

2.
The 4-hydroxybenzoyl-CoA (4-HB-CoA) thioesterase from Pseudomonas sp. strain CBS3 catalyzes the final step of the 4-chlorobenzoate degradation pathway, which is the hydrolysis of 4-HB-CoA to coenzyme A (CoA) and 4-hydroxybenzoate (4-HB). In previous work, X-ray structural analysis of the substrate-bound thioesterase provided evidence of the role of an active site Asp17 in nucleophilic catalysis [Thoden, J. B., Holden, H. M., Zhuang, Z., and Dunaway-Mariano, D. (2002) X-ray crystallographic analyses of inhibitor and substrate complexes of wild-type and mutant 4-hydroxybenzoyl-CoA thioesterase. J. Biol. Chem. 277, 27468-27476]. In the study presented here, kinetic techniques were used to test the catalytic mechanism that was suggested by the X-ray structural data. The time course for the multiple-turnover reaction of 50 μM [(14)C]-4-HB-CoA catalyzed by 10 μM thioesterase supported a two-step pathway in which the second step is rate-limiting. Steady-state product inhibition studies revealed that binding of CoA (K(is) = 250 ± 70 μM; K(ii) = 900 ± 300 μM) and 4-HB (K(is) = 1.2 ± 0.2 mM) is weak, suggesting that product release is not rate-limiting. A substantial D(2)O solvent kinetic isotope effect (3.8) on the steady-state k(cat) value (18 s(-1)) provided evidence that a chemical step involving proton transfer is the rate-limiting step. Taken together, the kinetic results support a two-chemical pathway. The microscopic rate constants governing the formation and consumption of the putative aspartyl 17-(4-hydroxybenzoyl)anhydride intermediate were determined by simulation-based fitting of a kinetic model to time courses for the substrate binding reaction (5.0 μM 4-HB-CoA and 0.54 μM thioesterase), single-turnover reaction (5 μM [(14)C]-4-HB-CoA catalyzed by 50 μM thioesterase), steady-state reaction (5.2 μM 4-HB-CoA catalyzed by 0.003 μM thioesterase), and transient-state multiple-turnover reaction (50 μM [(14)C]-4-HB-CoA catalyzed by 10 μM thioesterase). Together with the results obtained from solvent (18)O labeling experiments, the findings are interpreted as evidence of the formation of an aspartyl 17-(4-hydroxybenzoyl)anhydride intermediate that undergoes rate-limiting hydrolytic cleavage at the hydroxybenzoyl carbonyl carbon atom.  相似文献   

3.
A K Mishra  M H Klapper 《Biochemistry》1986,25(23):7328-7336
We have measured, by permeable membrane/mass spectrometry, the 16O/18O, 12C/13C, and solvent H2O/D2O kinetic isotope effects (kie) associated with acyl-alpha-chymotrypsin hydrolysis and transesterification. The hydrolysis of alpha-chymotrypsinyl 2-furoate has a 12C/13C kie of approximately 1.06. Transesterification of the same acyl enzyme shows 16O/18O, 12C/13C, and solvent H2O/D2O kinetic isotope effects of 1.015 (0.003), 1.01-1.02, and 2.226 (0.007), respectively. From the temperature independence of the 16O/18O transesterification kinetic isotope effect and kinetic data reported elsewhere [Wang, C.-L. A., Calvo, K. C., & Klapper, M. H. (1981) Biochemistry 20, 1401-1408], we conclude that there are two active forms of acylchymotrypsin. We also propose that formation of the tetrahedral intermediate is the rate-limiting step in both hydrolysis and transesterification and that the position of the transition state in the transesterification is closer to the starting enzyme ester while that for the hydrolytic reaction is closer to the tetrahedral intermediate. These results are discussed in terms of reaction mechanism plasticity.  相似文献   

4.
Rate-limiting steps in the DNA polymerase I reaction pathway   总被引:10,自引:0,他引:10  
The initial rates of incorporation of dTTP and thymidine 5'-O-(3-thiotriphosphate) (dTTP alpha S) into poly(dA) X oligo(dT) during template-directed synthesis by the large fragment of DNA polymerase I have been measured by using a rapid-quench technique. The rates were initially equal, indicating a nonrate-limiting chemical step. However, the rate of thionucleotide incorporation steadily diminished to 10% of its initial value as the number of consecutive dTMP alpha S residues in the primer strand increased. This anomalous behavior can be attributed to the helix instability inherent in phosphorothioate-containing duplexes. Positional isotope exchange experiments employing the labeled substrate [alpha-18O2]dATP have revealed negligible alpha, beta-bridging----beta-nonbridging isotope exchange in template-directed reactions of Escherichia coli DNA polymerase I (Pol I) both in the presence and in the absence of added inorganic pyrophosphate (PPi), suggesting rapid PPi release following the chemical step. These observations are consistent with a rate-limiting step that is tentatively assigned to a conformational change of the E X DNA X dNTP complex immediately preceding the chemical step. In addition, the substrate analogue (Sp)-dATP alpha S has been employed to examine the mechanism of the PPi exchange reaction catalyzed by Pol I. The net retention of configuration at the alpha-P is interpreted in terms of two consecutive inversion reactions, namely, 3'-hydroxyl attack, followed by PPi attack on the newly formed primer terminus. Kinetic analysis has revealed that while alpha-phosphorothioate substitution has no effect upon the initial rate of polymerization, it does attenuate the PPi exchange reaction by a factor of 15-18 fold.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Guengerich FP  Krauser JA  Johnson WW 《Biochemistry》2004,43(33):10775-10788
Several issues regarding the rate-limiting nature of individual reaction steps in catalysis by rabbit liver cytochrome P450 (P450) 1A2 were addressed using anisoles and other substrates. Substrate binding is very fast (k > 10(6) M(-1) s(-1)). Product release is not rate-limiting, as shown by the absence of bursts, placing rate-limiting steps at or before product formation. We had previously shown that the first 1-electron reduction step is fast (k > 700 min(-1)), even in the absence of ligand [Guengerich, F. P., and Johnson, W. W. (1997) Biochemistry 36, 14741-147500]. O(2) binding to ferrous P450 is fast (k >/= 10(6) M(-1) s(-1)). The decay of the P450 Fe(2+)-substrate-O(2) complex was slow in the absence of NADPH-P450 reductase, with a first-order rate constant of 14 min(-1) at 25 degrees C. During the decay, product was formed (from the substrate methacetin) in 61% theoretical yield, although this reaction requires electron transfer among P450 molecules and may not be related to normal turnover. Steady-state spectra suggest that one or more iron-oxygen complexes accumulate, representing entities between the Fe(2+)-O(2) complex and putative FeO(3+) entity. Kinetic isotope effect experiments were done with several substrates, mainly anisoles. Apparent intrinsic deuterium isotope effects as high as 15 were measured. In all cases, the C-H bond-breaking step is at least partially rate-limiting. The isotope effects were not strongly attenuated in noncompetitive or competitive experiments, consistent with relatively rapid P450-substrate exchange, except with the active enzyme Fe-O complex. Kinetic simulations with the available data (i) are consistent with the view that C-H bond breaking is a major rate-limiting step, (ii) demonstrate that increasing the rate of this step will affect k(cat), K(m), and kinetic hydrogen isotope effects but will only increase catalytic efficiency to a certain degree, (iii) indicate that increasing ground-state binding can increase catalytic efficiency but not k(cat), and (iv) suggest that nonproductive binding modes and abortive reduction of O(2) are factors that attenuate catalytic efficiency.  相似文献   

6.
Penicillopepsin acting on Nph-Ala2-amide (where Nph = p-nitrophenylalanyl) catalyzes a transpeptidation reaction which leads to the formation of Nph2-Ala2-amide, which arises from condensation of the substrate with enzyme-bound Nph, as the first product released from the enzyme. This is followed by a stage during which Nph3 and Ala2-amide are the major products. A small amount of Nph4 is also formed during this time. Nph and Nph2, formed during the reactions, are tightly, but probably not covalently, bound to the enzyme. They appear as free products only as a result of the cleavage of Nph3 and Nph4 and after most of the substrate Nph-Ala2-amide has been used up. They act as acceptors for the substrate and for Nph2-Ala2-amide. Nph3-Ala2-amide, formed by condensation of Nph-Ala2-amide or of Nph2-Ala2-amide with enzyme-bound Nph2 or Nph, respectively, is also released but is cleaved rapidly to give Nph3 and Ala2-amide. Incorporation of 18O from [18O]water into the carbonyl oxygens of the products is extensive and shows that release of the intermediates is slower than peptide bond cleavage and peptide bond formation. Hence the rate-limiting step in these reactions is product release. No 18O is incorporated into the initial substrate. We propose that Nph and Nph2 as intermediates are held in the active site by hydrogen bonds and by two strong electrostatic interactions.  相似文献   

7.
Rockwell NC  Fuller RS 《Biochemistry》2001,40(12):3657-3665
Saccharomyces cerevisiae Kex2 protease is the prototype for the family of eukaryotic proprotein convertases that includes furin, PC1/3, and PC2. These enzymes belong to the subtilase superfamily of serine proteases and are distinguished from degradative subtilisins by structural features and by their much more stringent substrate specificity. Pre-steady-state studies have shown that both Kex2 and furin exhibit an initial burst of 7-amino-4-methylcoumarin release in cleavage of peptidyl methylcoumarinamide substrates that are based on physiological cleavage sites. Thus, in cleavage of such substrates, formation of the acylenzyme intermediate is fast relative to some later step (deacylation or N-terminal product release). This behavior is significant, because Kex2 also exhibits burst kinetics in cleavage of peptide bonds. k(cat) for cleavage of a tetrapeptidyl methylcoumarinamide substrate based on the physiological yeast substrate pro-alpha-factor exhibits a weak solvent isotope effect, but neither this isotope effect nor temperature dependence studies with this substrate conclusively identify the rate-limiting step for Kex2 cleavage of this substrate. We therefore developed an assay to measure deacylation directly by pulse-chase incorporation of H(2)(18)O in a rapid-quenched-flow mixer followed by mass spectrometric quantitation. The results given by this assay rule out rate-limiting product release for cleavage of this substrate by Kex2. These experiments demonstrate that cleavage of the acylenzyme ester bond, as opposed to either the initial attack on the amide bond or product release, is rate-limiting for the action of Kex2 at physiological sequences. This work demonstrates a fundamental difference in the catalytic strategy of proprotein processing enzymes and degradative subtilisins.  相似文献   

8.
The kinetics of nucleotide incorporation into 24/36-mer primer/template DNA by purified fetal calf thymus DNA polymerase (pol) delta was examined using steady-state and pre-steady-state kinetics. The role of the pol delta accessory protein, proliferating cell nuclear antigen (PCNA), on DNA replication by pol delta was also examined by kinetic analysis. The steady-state parameter k(cat) was similar for pol delta in the presence and absence of PCNA (0.36 and 0.30 min(-1), respectively); however, the K(m) for dNTP was 20-fold higher in the absence of PCNA (0.067 versus 1.2 microm), decreasing the efficiency of nucleotide insertion. Pre-steady-state bursts of nucleotide incorporation were observed for pol delta in the presence and absence of PCNA (rates of polymerization (k(pol)) of 1260 and 400 min(-1), respectively). The reduction in polymerization rate in the absence of PCNA was also accompanied by a 2-fold decrease in burst amplitude. The steady-state exonuclease rate of pol delta was 0.56 min(-1) (no burst, 10(3)-fold lower than the rate of polymerization). The small phosphorothioate effect of 2 for correct nucleotide incorporation into DNA by pol delta.PCNA indicated that the rate-limiting step in the polymerization cycle occurs prior to phosphodiester bond formation. A K(d)(dNTP) value of 0.93 microm for poldelta.dNTP binding was determined by pre-steady-state kinetics. A 5-fold increase in K(d)(DNA) for the pol delta.DNA complex was measured in the absence of PCNA. We conclude that the major replicative mammalian polymerase, pol delta, exhibits kinetic behavior generally similar to that observed for several prokaryotic model polymerases, particularly a rate-limiting step following product formation in the steady state (dissociation of oligonucleotides) and a rate-limiting step (probably conformational change) preceding phosphodiester bond formation. PCNA appears to affect pol delta replication in this model mainly by decreasing the dissociation of the polymerase from the DNA.  相似文献   

9.
Bicarbonate is a recycling substrate for cyanase   总被引:1,自引:0,他引:1  
Cyanase is an inducible enzyme in Escherichia coli that catalyzes bicarbonate-dependent decomposition of cyanate to ammonia and bicarbonate. Previous studies provided evidence that carbamate is an initial product and that the kinetic mechanism is rapid equilibrium random (bicarbonate serving as substrate as opposed to activator); the following mechanism was proposed (Anderson, P. M. (1980) Biochemistry 19, 2282-2888; Anderson, P. M., and Little, R. M. (1986) Biochemistry 25, 1621-1626). (formula; see text) Direct evidence for this mechanism was obtained in this study by 1) determining whether CO2 or HCO3- serves as substrate and is formed as product, 2) identifying the products formed from [14C]HCO3- and [14C] OCN-, 3) identifying the products formed from [13C] HCO3- and [12C]OCN- in the presence of [18O]H2O, and 4) determining whether 18O from [18O]HCO3- is incorporated into CO2 derived from OCN-. Bicarbonate (not CO2) is the substrate. Carbon dioxide (not HCO3-) is produced in stoichiometric amounts from both HCO3- and OCN-. 18O from [18O]H2O is not incorporated into CO2 formed from either HCO3- or OCN-. Oxygen-18 from [18O]HCO3- is incorporated into CO2 derived from OCN-. These results support the above mechanism, indicating that decomposition of cyanate catalyzed by cyanase is not a hydrolysis reaction and that bicarbonate functions as a recycling substrate.  相似文献   

10.
A simplified model system composed of a NADPH-dependent flavoprotein hydroxylase PgaE and a short-chain alcohol dehydrogenase/reductase (SDR) CabV was used to dissect a multistep angucycline modification redox cascade into several subreactions in vitro. We demonstrate that the two enzymes are sufficient for the conversion of angucycline substrate 2,3-dehydro-UWM6 to gaudimycin C. The flavoenzyme PgaE is shown to be responsible for two consecutive NADPH- and O(2)-dependent reactions, consistent with the enzyme-catalyzed incorporation of oxygen atoms at C-12 and C-12b in gaudimycin C. The two reactions do not significantly overlap, and the second catalytic cycle is initiated only after the original substrate 2,3-dehydro-UWM6 is nearly depleted. This allowed us to isolate the product of the first reaction at limiting NADPH concentrations and allowed the study of the qualitative and kinetic properties of the separated reactions. Dissection of the reaction cascade also allowed us to establish that the SDR reductase CabV catalyzes the final biosynthetic step, which is closely coupled to the second PgaE reaction. In the absence of CabV, the complete PgaE reaction leads invariably to product degradation, whereas in its presence, the reaction yields the final product, gaudimycin C. The result implies that the C-6 ketoreduction step catalyzed by CabV is required for stabilization of a reactive intermediate. The close relationship between PgaE and CabV would explain previous in vivo observations: why the absence of a reductase gene may result in the lack of C-12b-oxygenated species and, vice versa, why all C-12b-oxygenated angucyclines appear to have undergone reduction at position C-6.  相似文献   

11.
2-Hydroxy-6-keto-nona-2,4-diene 1,9-dioic acid 5,6-hydrolase (MhpC) from Escherichia coli catalyses the hydrolytic cleavage of the extradiol ring fission product on the phenylpropionate catabolic pathway and is a member of the alpha/beta hydrolase family. The catalytic mechanism of this enzyme has previously been shown to proceed via initial ketonization of the dienol substrate (Henderson, I. M. J., and Bugg, T. D. H. (1997) Biochemistry 36, 12252-12258), followed by stereospecific fragmentation. Despite the implication of an active site serine residue in the alpha/beta hydrolase family, attempts to verify a putative acyl enzyme intermediate by radiochemical trapping methods using a (14)C-labeled substrate yielded a stoichiometry of <1% covalent intermediate, which could be accounted for by nonenzymatic processes. In contrast, incorporation of 5-6% of two atoms of (18)O from H(2)(18)O into succinic acid was observed using the natural substrate, consistent with the reversible formation of a gem-diol intermediate. Furthermore, time-dependent incorporation of (18)O from H(2)(18)O into the carbonyl group of a nonhydrolysable analogue 4-keto-nona-1,9-dioic acid was observed in the presence of MhpC, consistent with enzyme-catalyzed attack of water at the ketone carbonyl. These results favor a catalytic mechanism involving base-catalyzed attack of water, rather than nucleophilic attack of an active site serine. The implication of this work is that the putative active site serine in this enzyme may have an alternative function, for example, as a base.  相似文献   

12.
Formyl phosphate, a putative enzyme-bound intermediate in the reaction catalyzed by formyltetrahydrofolate synthetase (EC 6.3.4.3), was synthesized from formyl fluoride and inorganic phosphate [Jaenicke, L. v., & Koch, J. (1963) Justus Liebigs Ann. Chem. 663, 50-58], and the product was characterized by 31P, 1H, and 13C nuclear magnetic resonance (NMR). Measurement of hydrolysis rates by 31P NMR indicates that formyl phosphate is particularly labile, with a half-life of 48 min in a buffered neutral solution at 20 degrees C. At pH 7, hydrolysis occurs with P-O bond cleavage, as demonstrated by 18O incorporation from H2(18)O into Pi, while at pH 1 and pH 13 hydrolysis occurs with C-O bond cleavage. The substrate activity of formyl phosphate was tested in the reaction catalyzed by formyltetrahydrofolate synthetase isolated from Clostridium cylindrosporum. Formyl phosphate supports the reaction in both the forward and reverse directions. Thus, N10-formyltetrahydrofolate is produced from tetrahydrofolate and formyl phosphate in a reaction mixture that contains enzyme, Mg(II), and ADP, and ATP is produced from formyl phosphate and ADP with enzyme, Mg(II), and tetrahydrofolate present. The requirements for ADP and for tetrahydrofolate as cofactors in these reactions are consistent with previous steady-state kinetic and isotope exchange studies, which demonstrated that all substrate subsites must be occupied prior to catalysis. The k cat values for both the forward and reverse directions, with formyl phosphate as the substrate, are much lower than those for the normal forward and reverse reactions. Kinetic analysis of the formyl phosphate supported reactions indicates that the low steady-state rates observed for the synthetic intermediate are most likely due to the sequential nature of the normal reaction.  相似文献   

13.
A P Gupta  S J Benkovic 《Biochemistry》1984,23(24):5874-5881
(Sp)-2'-Deoxyadenosine 5'-O-[1-17O,1-18O,1,2-18O]triphosphate has been synthesized by desulfurization of (Sp)-2'-deoxyadenosine 5'-O-(1-thio[1,1-18O2]diphosphate) with N-bromosuccinimide in [17O]water, followed by phosphorylation with phosphoenolpyruvate-pyruvate kinase. A careful characterization of the product using high-resolution 31P NMR revealed that the desulfurization reaction proceeded with approximately 88% direct in-line attack at the alpha-phosphorus and 12% participation by the beta-phosphate to form a cyclic alpha,beta-diphosphate. The latter intermediate underwent hydrolysis by a predominant nucleophilic attack on the beta-phosphate. This complexity of the desulfurization reaction, however, does not affect the stereochemical integrity of the product but rather causes a minor dilution with nonchiral species. The usefulness of the (Sp)-2'-deoxyadenosine 5'-O-[1-17O,1-18O,1,2-18O]triphosphate in determining the stereochemical course of deoxyribonucleotidyl-transfer enzymes is demonstrated by using it to delineate the stereochemical course of the 3'----5'-exonuclease activity of DNA polymerase I. Upon incubation of this oxygen-chiral substrate with Klenow fragment of DNA polymerase I in the presence of poly[d(A-T)] and Mg2+, a quantitative conversion into 2'-deoxyadenosine 5'-O-[16O,17O,18O]monophosphate was observed. The stereochemistry of this product was determined to be Rp. Since the overall template-primer-dependent conversion of a deoxynucleoside triphosphate into the deoxynucleoside monophosphate involves incorporation into the polymer followed by excision by the 3'----5'-exonuclease activity and since the stereochemical course of the incorporation reaction is known to be inversion, it can be concluded that the stereochemical course of the 3'----5'-exonuclease is also inversion.  相似文献   

14.
The mechanism of organosulfur oxygenation by peroxidases [lactoperoxidase (LPX), chloroperoxidase, thyroid peroxidase, and horseradish peroxidase] and hydrogen peroxide was investigated by use of para-substituted thiobenzamides and thioanisoles. The rate constants for thiobenzamide oxygenation by LPX/H2O2 were found to correlate with calculated vertical ionization potentials, suggesting rate-limiting single-electron transfer between LPX compound I and the organosulfur substrate. The incorporation of oxygen from 18O-labeled hydrogen peroxide, water, and molecular oxygen into sulfoxides during peroxidase-catalyzed S-oxygenation reactions was determined by LC- and GC-MS. All peroxidases tested catalyzed essentially quantitative oxygen transfer from 18O-labeled hydrogen peroxide into thiobenzamide S-oxide, suggesting that oxygen rebound from the oxoferryl heme is tightly coupled with the initial electron transfer in the active site. Experiments using H2(18)O2, 18O2, and H2(18)O showed that LPX catalyzed approximately 85, 22, and 0% 18O-incorporation into thioanisole sulfoxide oxygen, respectively. These results are consistent with a active site controlled mechanism in which the protein radical form of LPX compound I is an intermediate in LPX-mediated sulfoxidation reactions.  相似文献   

15.
Initial velocity studies of rat liver cytosolic P-enolpyruvate carboxykinase in the direction of P-enolpyruvate formation gave intersecting double reciprocal plots indicating that the reaction conforms to a sequential reaction pathway. A complete product inhibition study with MnGDP-, P-enolpyruvate, and HCO3- as product inhibitors indicated that all patterns were noncompetitive. Isotope exchange at equilibrium with exchange between the substrate/product pairs GTP/GDP oxalacetate/HCO3-, and oxalacetate/P-enolpyruvate while varying the concentration of substrate/product pairs in fixed constant ratio gave no complete inhibitory patterns as the concentration of the constant ratio pairs approached saturation. The exchange rates between the substrate/product pairs differed by a factor of 40 when compared under the same assay conditions. These results were interpreted in terms of a random reaction mechanism in which true dead-end complexes do not form and in which the rate-limiting step is not the interconversion of the ternary quarternary central complexes. In addition to the formation of P-enolpyruvate from oxalacetate and MnGTP2-, the enzyme catalyzes the decarboxylation of oxalacetate to pyruvate in the absence of MnGTP2-. This reaction occurs only slowly in the absence of GDP and most rapidly in the presence of MnGDP-. When only MnGTP2- and oxalacetate are present, no pyruvate is formed, and oxalacetate is converted stoichiometrically to P-enolpyruvate. The enzyme also catalyzes the exchange of [14C]GDP into GTP in the absence of P-enolpyruvate. This exchange is stimulated by the presence of HCO3-. When enzyme is incubated with MnGTP2- in the presence or absence of HCO3-, there is no hydrolysis to form GDP and P1. The two partial reactions, namely the exchange of [14C]GDP with the E.HCO3.MnGTP or E.MnGTP complex and the formation of pyruvate from the E.oxalacetate.MnGDP complex provide pathways by which the expected dead-end complexes can be converted to enzyme forms which can return to the catalytic or exchange sequence.  相似文献   

16.
Hillier W  Wydrzynski T 《Biochemistry》2000,39(15):4399-4405
The first determinations of substrate water binding to the O(2) evolving complex in photosystem II as a complete function of the S states have been made. H(2)(18)O was rapidly injected into spinach thylakoid samples preset in either the S(0), S(1), S(2), or S(3) states, and the rate of (18)O incorporation into the O(2) produced was determined by time-resolved mass spectrometry. For measurements at m/e = 34 (i.e., for the (16)O(18)O product), the rate of (18)O incorporation in all S states shows biphasic kinetics, reflecting the binding of the two substrate water molecules to the catalytic site. The slow phase kinetics yield rate constants at 10 degrees C of 8 +/- 2, 0.021 +/- 0.002, 2.2 +/- 0.3, and 1.9 +/- 0.2 s(-1) for the S(0), S(1), S(2), and S(3) states, respectively, while the fast phase kinetics yield a rate constant of 36.8 +/- 1.9 s(-1) for the S(3) state but remain unresolvable (>100 (s-1)) for the S(0), S(1), and S(2) states. Comparisons of the (18)O exchange rates reveal that the binding affinity for one of the substrate water molecules first increases during the S(0) to S(1) transition, then decreases during the S(1) to S(2) transition, but stays the same during the S(2) to S(3) transition, while the binding affinity for the second substrate water molecule undergoes at least a 5-fold increase on the S(2) to S(3) transition. These findings are discussed in terms of two independent Mn(III) substrate binding sites within the O(2) evolving complex which are separate from the component that accumulates the oxidizing equivalents. One of the Mn(III) sites may only first bind a substrate water molecule during the S(2) to S(3) transition.  相似文献   

17.
The role of protein kinase C in the stimulation of phosphatidylcholine (PC) synthesis by phospholipase C was investigated. Phospholipase C treatment of Chinese hamster ovary cells (CHO) generates diacylglycerol, which is an activator of protein kinase C. The protein kinase C activator, 12-O-tetradecanoyl-phorbol-13-acetate (TPA) stimulated choline incorporation into two CHO cell lines, a wild-type cell line, WTB, and a mutant cell line, DTG 1-5-4. DTG 1-5-4 is a mutant defective in receptor-mediated endocytosis. A 3-h phospholipase C treatment resulted in the activation and translocation of CTP:phosphocholine cytidylyltransferase in both cell lines. TPA treatment, however, resulted in only a slight (20%) translocation of cytidylyltransferase in WTB; no detectable translocation of cytidylyltransferase was observed in DTG 1-5-4. A decrease in the phosphocholine pools was observed in response to TPA treatment in both cell lines, which indicated that the cytidylyltransferase step was being activated. Phospholipase C stimulated choline incorporation into PC even when protein kinase C had been down-regulated in both cell lines. It was concluded that phospholipase C does not activate PC synthesis by activating protein kinase C.  相似文献   

18.
A new approach to study phospholipase A2 mediated hydrolysis of phospholipid vesicles, using 13C NMR spectroscopy, is described. [13C]Carbonyl-enriched dipalmitoylphosphatidylcholine (DPPC) incorporated into nonhydrolyzable ether-linked phospholipid bilayers was hydrolyzed by phospholipase A2 (Crotalus adamanteus). The 13C-labeled carboxyl/carbonyl peaks from the products [lyso-1-palmitoylphosphatidylcholine (LPPC) and palmitic acid (PA)] were well separated from the substrate carbonyl peaks. The progress of the reaction was monitored from decreases in the DPPC carbonyl peak intensities and increases in the product peak intensities. DPPC peak intensity changes showed that only the sn-2 ester bond of DPPC on the outer monolayer of the vesicle was hydrolyzed. Most, but not all, of the DPPC in the outer monolayer was hydrolyzed after 18-24 h. There was no movement of phospholipid from the inner to the outer monolayer over the long time periods (18-24 h) examined. On the basis of chemical shift measurements of the product carbonyl peaks, it was determined that, at all times during the hydrolysis reaction, the LPPC was present only in the outer monolayer of the bilayer and the PA was bound to the bilayer and was approximately 50% ionized at pH approximately 7.2. Bovine serum albumin extracted most of the LPPC and PA from the product vesicles, as revealed by chemical shift changes after addition of the protein. The capability of 13C NMR spectroscopy to elucidate key structural features without the use of either shift reagents or separation procedures which may alter the reaction equilibrium makes it an attractive method to study this enzymatic process.  相似文献   

19.
Martin SF  Hergenrother PJ 《Biochemistry》1999,38(14):4403-4408
The phosphatidylcholine-preferring phospholipase C from Bacillus cereus (PLCBc) is a 28.5 kDa enzyme with three zinc ions in its active site. Although much is known about the roles that various PLCBc active site amino acids play in binding and catalysis, there is little information about the rate-determining step of the PLCBc-catalyzed hydrolysis of phospholipids and the catalytic cycle of the enzyme. To gain insight into these aspects of the hydrolysis, solvent viscosity variation experiments were conducted to determine whether an external step (substrate binding or product release) or an internal step (hydrolysis) is rate-limiting. The data indicate that the PLCBc-catalyzed reaction is unaffected by changes in solvent viscosity. This observation is inconsistent with the notion of substrate binding or product release being rate-determining and supports the hypothesis that a chemical step is rate-limiting. Furthermore, a deuterium isotope effect of 1.9 and a linear proton inventory plot indicate one proton is transferred in the rate-determining step. These data may be used to formulate a comprehensive catalytic cycle that is for the first time based on experimental evidence. In this mechanism, Asp55 of PLCBc activates an active site water molecule for attack on the phosphodiester bond, the hydrolysis of which is rate-limiting. The phosphorylcholine product is the first to leave the active site, followed by diacylglycerol.  相似文献   

20.
The peptidolytic reaction of HIV-1 protease has been investigated by using four oligopeptide substrates, Ac-Ser-Gln-Asn-Tyr-Pro-Val-Val-NH2, Ac-Arg-Ala-Ser-Gln-Asn-Tyr-Pro-Val-Val-NH2, Ac-Ser-Gln-Ser-Tyr-Pro-Val-Val-NH2, and Ac-Arg-Lys-Ile-Leu-Phe-Leu-Asp-Gly-NH2, that resemble two cleavage sites found within the naturally occurring polyprotein substrates Pr55gag and Pr160gag-pol. The values for the kinetic parameters V/KEt and V/Et were 0.16-7.5 mM-1 s-1 and 0.24-29 s-1, respectively, at pH 6.0, 0.2 M NaCl, and 37 degrees C. By use of a variety of inorganic salts, it was concluded that the peptidolytic reaction is nonspecifically activated by increasing ionic strength. V/K increased in an apparently parabolic fashion with increasing ionic strength, while V was either increased or decreased slightly. From product inhibition studies, the kinetic mechanism of the protease is either random or ordered uni-bi, depending on the substrate studied. The reverse reaction or a partial reverse reaction (as measured by isotope exchange of the carboxylic product into substrate) was negligible for most of the oligopeptide substrates, but the enzyme catalyzed the formation of Ac-Ser-Gln-Asn-Tyr-Phe-Leu-Asp-Gly-NH2 from the products Ac-Ser-Gln-Asn-Tyr and Phe-Leu-Asp-Gly-NH2. The protease-catalyzed exchange of an atom of 18O from H2 18O into the re-formed substrates occurred at a rate which was 0.01-0.12 times that of the forward peptidolytic reaction. The results of these studies are in accord with the formation of a kinetically competent enzyme-bound amide hydrate intermediate, the collapse of which is the rate-limiting chemical step in the reaction pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号