首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The accessibility of fluorescein-5-maleimide to sulfhydryl groups in the molecular chaperone GroEL was used to follow structural rearrangements in the protein triggered by binding Mg2+ and/or adenine nucleotides. Three peptides, each containing one of the cysteines of GroEL (C138, C458 and C519) were identified. GroEL labeled in 50mM TrisHCl, pH 7.8, incorporated ~0.3 labels each on C138 and C458. With 10mM MgCl2, the labeling increased to ~0.8 labels each on C138 and C458. The increase was partially due to a conformational change which occurred upon Mg2+ binding as well as to an increase in ionic strength. When ADP, ATP, or AMP-PNP were added to a solution of GroEL and Mg2+, C138 incorporated ~0.8 labels, while C458 incorporated ~0.1 labels. These results suggest that the binding of adenine nucleotides changed the conformation of GroEL and made a previously highly exposed sulfhydryl group inaccessible. GroEL slowly dissociated into monomers when it was extensively labeled at C458. GroEL labeled with fluorescein-5-maleimide, under any of the conditions examined, was able to bind but not release active rhodanese. The observed variations in sulfhydryl accessibility are consistent with mechanisms that suggest binding of GroES to GroEL differs from the binding of substrate protein to GroEL, and that the binding of Mg2+ or Mg-adenine nucleotides results in conformational changes in GroEL.  相似文献   

2.
The accessibility of fluorescein-5-maleimide to sulfhydryl groups in the molecular chaperone GroEL was used to follow structural rearrangements in the protein triggered by binding Mg2+ and/or adenine nucleotides. Three peptides, each containing one of the cysteines of GroEL (C138, C458 and C519) were identified. GroEL labeled in 50mM TrisHCl, pH 7.8, incorporated ~0.3 labels each on C138 and C458. With 10mM MgCl2, the labeling increased to ~0.8 labels each on C138 and C458. The increase was partially due to a conformational change which occurred upon Mg2+ binding as well as to an increase in ionic strength. When ADP, ATP, or AMP-PNP were added to a solution of GroEL and Mg2+, C138 incorporated ~0.8 labels, while C458 incorporated ~0.1 labels. These results suggest that the binding of adenine nucleotides changed the conformation of GroEL and made a previously highly exposed sulfhydryl group inaccessible. GroEL slowly dissociated into monomers when it was extensively labeled at C458. GroEL labeled with fluorescein-5-maleimide, under any of the conditions examined, was able to bind but not release active rhodanese. The observed variations in sulfhydryl accessibility are consistent with mechanisms that suggest binding of GroES to GroEL differs from the binding of substrate protein to GroEL, and that the binding of Mg2+ or Mg-adenine nucleotides results in conformational changes in GroEL.  相似文献   

3.
Advances in understanding how GroEL binds to non-native proteins are reported. Conformational flexibility in the GroEL apical domain, which could account for the variety of substrates that GroEL binds, is illustrated by comparison of several independent crystallographic structures of apical domain constructs that show conformational plasticity in helices H and I. Additionally, ESI-MS indicates that apical domain constructs have co-populated conformations at neutral pH. To assess the ability of different apical domain conformers to bind co-chaperone and substrate, model peptides corresponding to the mobile loop of GroES and to helix D from rhodanese were studied. Analysis of apical domain-peptide complexes by ESI-MS indicates that only the folded or partially folded apical domain conformations form complexes that survive gas phase conditions. Fluorescence binding studies show that the apical domain can fully bind both peptides independently. No competition for binding was observed, suggesting the peptides have distinct apical domain-binding sites. Blocking the GroES-apical domain-binding site in GroEL rendered the chaperonin inactive in binding GroES and in assisting the folding of denatured rhodanese, but still capable of binding non-native proteins, supporting the conclusion that GroES and substrate proteins have, at least partially, distinct binding sites even in the intact GroEL tetradecamer.  相似文献   

4.
The Escherichia coli GroEL subunit consists of three domains with distinct functional roles. To understand the role of each of the three domains, the effects of mutating a single residue in each domain (Y203C at the apical, T89W at the equatorial, and C138W at the intermediate domain) were studied in detail, using three different enzymes (enolase, lactate dehydrogenase, and rhodanese) as refolding substrates. By analyzing the effects of each mutation, a transfer of signals was detected between the apical domain and the equatorial domain. A signal initiated by the equatorial domain triggers the release of polypeptide from the apical domain. This trigger was independent of nucleotide hydrolysis, as demonstrated using an ATPase-deficient mutant, and, also, the conditions for successful release of polypeptide could be modified by a mutation in the apical domain, suggesting that the polypeptide release mechanism of GroEL is governed by chaperonin-target affinities. Interestingly, a reciprocal signal from the apical domain was suggested to occur, which triggered nucleotide hydrolysis in the equatorial domain. This signal was disrupted by a mutation in the intermediate domain to create a novel ternary complex in which GroES and refolding protein are simultaneously bound in a stable ternary complex devoid of ATPase activity. These results point to a multitude of signals which govern the overall chaperonin mechanism.  相似文献   

5.
M K Hayer-Hartl  F Weber    F U Hartl 《The EMBO journal》1996,15(22):6111-6121
As a basic principle, assisted protein folding by GroEL has been proposed to involve the disruption of misfolded protein structures through ATP hydrolysis and interaction with the cofactor GroES. Here, we describe chaperonin subreactions that prompt a re-examination of this view. We find that GroEL-bound substrate polypeptide can induce GroES cycling on and off GroEL in the presence of ADP. This mechanism promotes efficient folding of the model protein rhodanese, although at a slower rate than in the presence of ATP. Folding occurs when GroES displaces the bound protein into the sequestered volume of the GroEL cavity. Resulting native protein leaves GroEL upon GroES release. A single-ring variant of GroEL is also fully functional in supporting this reaction cycle. We conclude that neither the energy of ATP hydrolysis nor the allosteric coupling of the two GroEL rings is directly required for GroEL/GroES-mediated protein folding. The minimal mechanism of the reaction is the binding and release of GroES to a polypeptide-containing ring of GroEL, thereby closing and opening the GroEL folding cage. The role of ATP hydrolysis is mainly to induce conformational changes in GroEL that result in GroES cycling at a physiologically relevant rate.  相似文献   

6.
The molecular chaperone GroEL is a protein complex consisting of two rings each of seven identical subunits. It is thought to act by providing a cavity in which a protein substrate can fold into a form that has no propensity to aggregate. Substrate proteins are sequestered in the cavity while they fold, and prevented from diffusion out of the cavity by the action of the GroES complex, that caps the open end of the cavity. A key step in the mechanism of action of GroEL is the transmission of a conformational change between the two rings, induced by the binding of nucleotides to the GroEL ring opposite to the one containing the polypeptide substrate. This conformational change then leads to the discharge of GroES from GroEL, enabling polypeptide release. Single ring forms of GroEL are thus predicted to be unable to chaperone the folding of GroES-dependent substrates efficiently, since they are unable to discharge the bound GroES and unable to release folded protein. We describe here a detailed functional analysis of a chimeric GroEL protein, which we show to exist in solution in equilibrium between single and double ring forms. We demonstrate that whereas the double ring form of the GroEL chimera functions effectively in refolding of a GroES-dependent substrate, the single ring form does not. The single ring form of the chimera, however, is able to chaperone the folding of a substrate that does not require GroES for its efficient folding. We further demonstrate that the double ring structure of GroEL is likely to be required for its activity in vivo.  相似文献   

7.
In this study we attempted to determine the specific roles of the numerous conformational changes that are observed in the bacterial chaperonin GroEL, by performing stopped-flow experiments on GroEL R231W in the presence of a refolding substrate protein. The apparent rate of one kinetic phase was decreased by approximately 25% in the presence of prebound unfolded malate dehydrogenase while another phase was suppressed completely under the same conditions, reflecting different effects of the unfolded protein on multiple structural transitions within GroEL. The addition of cochaperonin GroES counteracts the effect of the bound substrate protein in the former case, but had no effect on the latter, more extensive suppression. Using a chemically modified form of GroEL R231W which is incapable of releasing substrate proteins at low temperatures, we identified a conformational transition that is implicated in the release of substrate proteins. Parts of the actual process of substrate protein release were also observed through fluorescence resonance energy transfer experiments involving GroEL and labeled substrate protein. Analysis of the energy transfer data revealed an interesting relationship between substrate protein displacement and a specific structural transition in the GroEL apical domain.  相似文献   

8.
The mechanism of GroEL (chaperonin)-mediated protein folding is only partially understood. We have analysed structural and functional properties of the interaction between GroEL and the co-chaperonin GroES. The stoichiometry of the GroEL 14mer and the GroES 7mer in the functional holo-chaperonin is 1:1. GroES protects half of the GroEL subunits from proteolytic truncation of the approximately 50 C-terminal residues. Removal of this region results in an inhibition of the GroEL ATPase, mimicking the effect of GroES on full-length GroEL. Image analysis of electron micrographs revealed that GroES binding triggers conspicuous conformational changes both in the GroES adjacent end and at the opposite end of the GroEL cylinder. This apparently prohibits the association of a second GroES oligomer. Addition of denatured polypeptide leads to the appearance of irregularly shaped, stain-excluding masses within the GroEL double-ring, which are larger with bound alcohol oxidase (75 kDa) than with rhodanese (35 kDa). We conclude that the functional complex of GroEL and GroES is characterized by asymmetrical binding of GroES to one end of the GroEL cylinder and suggest that binding of the substrate protein occurs within the central cavity of GroEL.  相似文献   

9.
The studies of GroEL, almost exclusively, have been concerned with the function of the chaperonin under non-stress conditions, and little is known about the role of GroEL during heat shock. Being a heat shock protein, GroEL deserves to be studied under heat shock temperature. As a model for heat shock in vitro, we have investigated the interaction of GroEL with the enzyme rhodanese undergoing thermal unfolding at 43 degrees C. GroEL interacted strongly with the unfolding enzyme forming a binary complex. Active rhodanese (82%) could be recovered by releasing the enzyme from GroEL after the addition of several components, e.g. ATP and the co-chaperonin GroES. After evaluating the stability of the GroEL-rhodanese complex, as a function of the percentage of active rhodanese that could be released from GroEL with time, we found that the complex had a half-life of only one and half-hours at 43 degrees C; while, it remained stable at 25 degrees C for more than 2 weeks. Interestingly, the GroEL-rhodanese complex remained intact and only 13% of its ATPase activity was lost during its incubation at 43 degrees C. Further, rhodanese underwent a conformational change over time while it was bound to GroEL at 43 degrees C. Overall, our results indicated that the inability to recover active enzyme at 43 degrees C from the GroEL-rhodanese complex was not due to the disruption of the complex or aggregation of rhodanese, but rather to the partial loss of its ATPase activity and/or to the inability of rhodanese to be released from GroEL due to a conformational change.  相似文献   

10.
R.John Ellis   《Current biology : CB》2001,11(24):R1038-R1040
The GroEL/GroES chaperonin system acts as a passive anti-aggregation cage for refolding rubisco and rhodanese, and not as an active unfolding device. Refolding aconitase is too large to enter the cage but reversible binding to GroEL reduces its aggregration. Unexpectedly, confinement in the cage increases the rate of refolding of rubisco, but not rhodanese.  相似文献   

11.
Mendoza JA  Dulin P  Warren T 《Cryobiology》2000,41(4):319-323
The chaperonins GroEL and GroES were shown to facilitate the refolding of urea-unfolded rhodanese in an ATP-dependent process at 25 or 37 degrees C. A diminished chaperonin activity was observed at 10 degrees C, however. At low temperature, GroEL retains its ability to form a complex with urea-unfolded rhodanese or with GroES. GroEL is also able to bind ATP at 10 degrees C. Interestingly, the ATPase activity of GroEL was highly decreased at low temperatures. Hydrolysis of ATP by GroEL was 60% less at 10 degrees C than at 25 degrees C. We conclude that the reduced hydrolysis of ATP by GroEL is a major but perhaps not the only factor responsible for the diminished chaperonin activity at 10 degrees C. GroEL may function primarily at higher temperatures in which the ability of GroEL to hydrolyze ATP is not compromised.  相似文献   

12.
One of the most interesting facets of GroEL-facilitated protein folding lies in the fact that the requirement for a successful folding reaction of a given protein target depends upon the refolding conditions used. In this report, we utilize a mutant of GroEL (GroEL T89W) whose domain movements have been drastically restricted, producing a chaperonin that is incapable of utilizing the conventional cyclic mechanism of chaperonin action. This mutant was, however, still capable of improving the refolding yield of lactate dehydrogenase in the absence of both GroES and ATP hydrolysis. A very rapid interconversion of conformations was detected in the mutant immediately after ATP binding, and this interconversion was inferred to form part of the target release mechanism in this mutant. The possibility exists that some target proteins, although dependent on GroEL for improved refolding yields, are capable of refolding successfully by utilizing only portions of the entire mechanism provided by the chaperonins.  相似文献   

13.
The cylindrical chaperonin GroEL of E. coli and its ring-shaped cofactor GroES cooperate in mediating the ATP-dependent folding of a wide range of polypeptides in vivo and in vitro. By binding to the ends of the GroEL cylinder, GroES displaces GroEL-bound polypeptide into an enclosed folding cage, thereby preventing protein aggregation during folding. The dynamic interaction of GroEL and GroES is regulated by the GroEL ATPase and involves the formation of asymmetrical GroEL:GroES1 and symmetrical GroEL: GroES2 complexes. The proposed role of the symmetrical complex as a catalytic intermediate of the chaperonin mechanism has been controversial. It has also been suggested that the formation of GroEL:GroES2 complexes allows the folding of two polypeptide molecules per GroEL reaction cycle, one in each ring of GroEL. By making use of a procedure to stabilize chaperonin complexes by rapid crosslinking for subsequent analysis by native PAGE, we have quantified the occurrence of GroEL:GroES1 and GroEL:GroES2 complexes in active refolding reactions under a variety of conditions using mitochondrial malate dehydrogenase (mMDH) as a substrate. Our results show that the symmetrical complexes are neither required for chaperonin function nor does their presence significantly increase the rate of mMDH refolding. In contrast, chaperonin-assisted folding is strictly dependent on the formation of asymmetrical GroEL:GroES1 complexes. These findings support the view that GroEL:GroES2 complexes have no essential role in the chaperonin mechanism.  相似文献   

14.
Despite a vast amount information on the interplay of GroEL, GroES, and ATP in chaperone-assisted folding, the molecular details on the conformational dynamics of folding polypeptide during its GroEL/GroES-assisted folding cycle is quite limited. Practically no such studies have been reported to date on large proteins, which often have difficulty folding in vitro. The effect of the GroEL/GroES chaperonin system on the folding pathway of an 82-kDa slow folding protein, malate synthase G (MSG), was investigated. GroEL bound to the burst phase intermediate of MSG and accelerated the slowest kinetic phase associated with the formation of native topology in the spontaneous folding pathway. GroEL slowly induced conformational changes on the bound burst phase intermediate, which was then transformed into a more folding-compatible form. Subsequent addition of ATP or GroES/ATP to the GroEL-MSG complex led to the formation of the native state via a compact intermediate with the rate several times faster than that of spontaneous refolding. The presence of GroES doubled the ATP-dependent reactivation rate of bound MSG by preventing multiple cycles of its GroEL binding and release. Because GroES bound to the trans side of GroEL-MSG complex, it may be anticipated that confinement of the substrate underneath the co-chaperone is not required for accelerating the rate in the assisted folding pathway. The potential role of GroEL/GroES in assisted folding is most likely to modulate the conformation of MSG intermediates that can fold faster and thereby eliminate the possibility of partial aggregation caused by the slow folding intermediates during its spontaneous refolding pathway.  相似文献   

15.
We have identified five structural rearrangements in GroEL induced by the ordered binding of ATP and GroES. The first discernable rearrangement (designated T --> R(1)) is a rapid, cooperative transition that appears not to be functionally communicated to the apical domain. In the second (R(1) --> R(2)) step, a state is formed that binds GroES weakly in a rapid, diffusion-limited process. However, a second optical signal, carried by a protein substrate bound to GroEL, responds neither to formation of the R(2) state nor to the binding of GroES. This result strongly implies that the substrate protein remains bound to the inner walls of the initially formed GroEL.GroES cavity, and is not yet displaced from its sites of interaction with GroEL. In the next rearrangement (R(2).GroES --> R(3).GroES) the strength of interaction between GroEL and GroES is greatly enhanced, and there is a large and coincident loss of fluorescence-signal intensity in the labeled protein substrate, indicating that there is either a displacement from its binding sites on GroEL or at least a significant change of environment. These results are consistent with a mechanism in which the shift in orientation of GroEL apical domains between that seen in the apo-protein and stable GroEL.GroES complexes is highly ordered, and transient conformational intermediates permit the association of GroES before the displacement of bound polypeptide. This ensures efficient encapsulation of the polypeptide within the GroEL central cavity underneath GroES.  相似文献   

16.
The folding of many proteins depends on the assistance of chaperonins like GroEL and GroES and involves the enclosure of substrate proteins inside an internal cavity that is formed when GroES binds to GroEL in the presence of ATP. Precisely how assembly of the GroEL-GroES complex leads to substrate protein encapsulation and folding remains poorly understood. Here we use a chemically modified mutant of GroEL (EL43Py) to uncouple substrate protein encapsulation from release and folding. Although EL43Py correctly initiates a substrate protein encapsulation reaction, this mutant stalls in an intermediate allosteric state of the GroEL ring, which is essential for both GroES binding and the forced unfolding of the substrate protein. This intermediate conformation of the GroEL ring possesses simultaneously high affinity for both GroES and non-native substrate protein, thus preventing escape of the substrate protein while GroES binding and substrate protein compaction takes place. Strikingly, assembly of the folding-active GroEL-GroES complex appears to involve a strategic delay in ATP hydrolysis that is coupled to disassembly of the old, ADP-bound GroEL-GroES complex on the opposite ring.  相似文献   

17.
The bacterial chaperonin GroEL/GroES assists folding of a broad spectrum of denatured and misfolded proteins. Here, we explore the limits of this remarkable promiscuity by mapping two denatured proteins with very different conformational properties, rhodanese and cyclophilin A, during binding and encapsulation by GroEL/GroES with single-molecule spectroscopy, microfluidic mixing, and ensemble kinetics. We find that both proteins bind to GroEL with high affinity in a reaction involving substantial conformational adaptation. However, whereas the compact denatured state of rhodanese is encapsulated efficiently upon addition of GroES and ATP, the more expanded and unstructured denatured cyclophilin A is not encapsulated but is expelled into solution. The origin of this surprising disparity is the weaker interactions of cyclophilin A with a transiently formed GroEL-GroES complex, which may serve as a crucial checkpoint for substrate discrimination.  相似文献   

18.
Escherichia coli molecular chaperone GroEL and co-chaperone GroES are well known to assist the folding/refolding of a diverse range of substrate proteins. Despite this, there have been relatively few reports of the GroEL/GroES molecular chaperone system being used as a biotechnology tool for protein folding/refolding. In this paper, a solution-phase protein folding bioreactor is described that involves the complete GroEL/GroES system. The main features of this bioreactor are the use of a stirred-cell concentrator fitted with a 100 kDa molecular weight cutoff membrane and an attached buffer reservoir. This bioreactor system was used successfully for assisted-batch refolding of guanidinium chloride (Gu-HCl) unfolded mitochondrial malate dehydrogenase (mMDH). We believe that protein folding bioreactor systems of this type could have wide potential utility for the folding/refolding of unfolded protein substrates.  相似文献   

19.
The next step in our reductional analysis of GroEL was to study the activity of an isolated single seven-membered ring of the 14-mer. A known single-ring mutant, GroEL(SR1), contains four point mutations that prevent the formation of double-rings. That heptameric complex is functionally inactive because it is unable to release GroES. We found that the mutation E191G, which is responsible for the temperature sensitive (ts) Escherichia coli allele groEL44 and is located in the hinge region between the intermediate and apical domains of GroEL, appears to function by weakening the binding of GroES, without destabilizing the overall structure of GroEL44 mutant. We introduced, therefore, the mutation E191G into GroEL(SR1) in order to generate a single-ring mutant that may have weaker binding of GroES and hence be active. The new single-ring mutant, GroEL(SR44), was indeed effective in refolding both heat and dithiothreitol-denatured mitochondrial malate dehydrogenase with great efficiency. Further, unlike all smaller constructs of GroEL, the expression of GroEL(SR44) in E. coli that contained no endogenous GroEL restored biological viability, but not as efficiently as does wild-type GroEL. We envisage the notional evolution of the structure and properties of GroEL. The minichaperone core acts as a primitive chaperone by providing a binding surface for denatured states that prevents their self-aggregation. The assembly of seven minichaperones into a ring then enhances substrate binding by introducing avidity. The acquisition of binding sites for ATP then allows the modulation of substrate binding by introducing the allosteric mechanism that causes cycling between strong and weak binding sites. This is accompanied by the acquisition by the heptamer of the binding of GroES, which functions as a lid to the central cavity and competes for peptide binding sites. Finally, dimerization of the heptamer enhances its biological activity.  相似文献   

20.
Martin J 《Biochemistry》2002,41(15):5050-5055
Macromolecular crowding is a critical parameter affecting the efficiency of cellular protein folding. Here we show that the proteins dihydrofolate reductase, enolase, and green fluorescent protein, which can fold spontaneously in diluted buffer, lose this ability in a crowded environment. Instead, they accumulate as soluble, protease-sensitive non-native species. Their folding becomes dependent on the complete GroEL/GroES chaperonin system and is not affected by trap-GroEL, indicating that folding has to occur in the chaperonin cavity with release of nativelike proteins into the bulk solution. In addition, we demonstrate that efficient folding in the chaperonin cavity requires ATP hydrolysis, as formation of ternary GroEL/GroES complexes with substrate proteins in the presence of ADP results only in very inefficient reactivation. However, protein refolding reactions using ADP-fluoroaluminate complexes, or single-ring GroEL and GroES under conditions where only a single round of ATP hydrolysis occurs, yield large amounts of refolded enzymes. Thus, the mode of initial ternary complex formation appears to be critical for subsequent productive release of substrate into the cavity under certain crowding conditions, and is only efficient when triggered by ATP hydrolysis. Our data indicate that stringent conditions of crowding can impart a stronger dependence of folding proteins on the assistance by chaperonins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号