首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
  1. Download : Download high-res image (224KB)
  2. Download : Download full-size image
  相似文献   

2.
Over the past few decades the extremes at which life thrives has continued to challenge our understanding of biochemistry, biology and evolution. As more new extremophiles are brought into laboratory culture, they have provided a multitude of potential applications for biotechnology. More recently, innovative culturing approaches, environmental genome sequencing and whole genome sequencing have provided new opportunities for the biotechnological exploration of extremophiles.  相似文献   

3.
  1. Download : Download high-res image (78KB)
  2. Download : Download full-size image
  相似文献   

4.
In contrast to thermophilic or psychrophilic organisms, heavy metal-resistant bacteria do not supply enzymes that are active under harsh conditions, but are themselves tools for the evaluation and remediation of heavy metal-contaminated environments. Ralstonia sp. CH34 is a gram-negative bacterium with a remarkable set of resistance determinants, allowing this bacterium to live in extreme environments that are heavily contaminated with toxic metal ions. These heavy metal ions are mostly detoxified by inducible ion efflux systems that reduce the intracellular concentration of a given ion by active export. Because all metal resistance determinants in this bacterium are inducible, their regulatory systems can be used to develop biosensors that measure the biologically important concentrations of heavy metals in an environment. Resistance based on metal ion efflux detoxifies only the cytoplasm of the respective cell. Therefore, this resistance mechanism cannot be used directly to develop biotechnological procedures; however, metal ion efflux can protect a cell in a metal-contaminated environment. Thus, the cell can be enabled to mediate biochemical reactions such as precipitation of heavy metals with the carbon dioxide produced during growth or degradation of xenobiotics. Received: July 11, 1999 / Accepted: December 27, 1999  相似文献   

5.
极端微生物的研究概况   总被引:16,自引:0,他引:16  
结合古细菌介绍了极端微生物的几种类型及其生理特点,适应机制及其应用概况。  相似文献   

6.
7.
Whey is a highly polluting by-product of cheese and casein powder manufacture with worldwide production of whey estimated at around 190 × 106 ton/year and growing. Historically whey was considered a burdensome, environmentally damaging by-product. In the last decades however, much research has gone into finding viable alternatives for whey rather than just disposing of it. Multiple biotechnological avenues have been explored and in some cases exploited to turn this waste product into a valuable commodity. Avenues explored include traditional uses of whey as both an animal and human food to the more advanced uses such as the use of whey protein as health promoters and the potential of whey to be used as a feed stock to manufacture a whole range of useful substances e.g. ethanol.  相似文献   

8.
Iron oxide magnetic nanoparticles (MNPs) alone are suitable for a broad spectrum of applications, but the low stability and heterogeneous size distribution in aqueous medium represent major setbacks. These setbacks can however be reduced or diminished through the coating of MNPs with various polymers, especially biopolymers such as polysaccharides. Polysaccharides are biocompatible, non-toxic and renewable; in addition, they possess chemical groups that permit further functionalization of the MNPs. Multifunctional entities can be created through decoration with specific molecules e.g. proteins, peptides, drugs, antibodies, biomimetic ligands, transfection agents, cells, and other ligands. This development opens a whole range of applications for iron oxide nanoparticles. In this review the properties of magnetic structures composed of MNPs and several polysaccharides (Agarose, Alginate, Carrageenan, Chitosan, Dextran, Heparin, Gum Arabic, Pullulan and Starch) will be discussed, in view of their recent and future biomedical and biotechnological applications.  相似文献   

9.
The conditional yeast lysis mutant cly8 was studied for potential biotechnological applications. The strain stops to grow immediately after a shift to elevated temperatures ( > 30°C). Cell viability (colony forming capacity) decreases at 37°C at a rate depending on the composition of the medium. However, at the elevated temperature cells still consume glucose and incorporate [14C]leucine into cell material. With decreasing viability the mutant cells become leaky for small, predominantly cytoplasmic components such as leucine or uridine but not for vacuolar storage products like arginine. No trichloroacetic acid-precipitable material could be detected in the medium after the shift to the elevated temperature indicating that leakiness was restricted to low molecular weight compounds. On acetate medium mutant cells became permeable only after prolonged incubation at 37°C but could be used for the oxidation of exogenous NADH. In comparison to the wild type the mutant also produced more glycerol. When the mutant cells were immobilized, glycerol production was in the same range at room temperature and at 28°C and could be maintained for several days.  相似文献   

10.
The biotechnological potential of piezophiles   总被引:5,自引:0,他引:5  
Microorganisms that prefer high-pressure conditions are termed piezophiles (previously termed barophiles). The molecular basis of piezophily is now being investigated extensively focusing on aspects of gene regulation and the function of certain proteins in deep-sea isolates. Little attention has been paid, however, to the potential biotechnological applications of piezophiles compared with other extremophiles. Based on the fundamental knowledge available, we will try to answer the following questions: How can we exploit the biotechnological potential of piezophiles? What can be understood by the application of high-pressure in biological systems?  相似文献   

11.
Baking is a universal process for the preparation of baked products like, bread, biscuits, pastries, cookies, crackers, pies, and others. Although usage of enzymes in bakery is quite old but recent developments in basic biology, biochemistry, advancements in technological approaches, and discovery of new/novel enzymes, has revolutionized the application potential of enzymes in a variety of food industries including the bakery. World over people want their foods to be free of chemical preservatives and additives, therefore, the role of enzymes in potentially replacing the chemicals is very imperative. Application of enzymes in bakery not only enhances the dough properties such as, gas retention, crumb softness, water absorption capacity, and others but improves the nutritional status of products. Microbial sources of enzymes offer multiple advantages over plants and animals. Microbial enzymes from diverse resources have been reported for usage in bread making. A wide array of microbial enzymes viz. xylanases, phytases, α-amylases, proteases, cellulases, glucose oxidases, lipase and others have been reported to enhance the nutritional, sensory and other desirable properties of bread. Current article presents recent developments on application of enzymes for improvement of bread quality.  相似文献   

12.
Glucuronoyl esterases (GEs) belonging to the carbohydrate esterase family 15 (CE15) are involved in microbial degradation of lignocellulosic plant materials. GEs are capable of degrading complex polymers of lignin and hemicellulose cleaving ester bonds between glucuronic acid residues in xylan and lignin alcohols. GEs promote separation of lignin, hemicellulose and cellulose which is crucial for efficient utilization of biomass as an energy source and feedstock for further processing into products or chemicals. Genes encoding GEs are found in both fungi and bacteria, but, so far, bacterial GEs are essentially unexplored, and despite being discovered >10?years ago, only a limited number of GEs have been characterized. The first laboratory scale example of improved xylose and glucuronic acid release by the synergistic action of GE with cellulolytic enzymes was only reported recently (improved C5 sugar and glucuronic acid yields) and, until now, not much is known about their biotechnology potential. In this review, we discuss the diversity, structure and properties of microbial GEs and consider the status of their action on natural substrates and in biological systems in relation to their future industrial use.  相似文献   

13.
The production of marine sponge biomass is one of the main outstanding goals of marine biotechnology. Due to the increased number of sponge secondary metabolites of economical value the interest in sponge cultivation increased over the last years, too. Therefore, we examined cultivation properties of 11 Mediterranean sponge species. Two methodologies were tested: functional fragment culture and multicell reaggregate culture. The in vitro cultivation of sponge fragments without further dissociation and reaggregation is a method formerly not reported. Reaggregates and functional fragments are promising attempts for culture system development. A broad spectrum of reaggregation properties was found among the species tested. In three species multicell aggregate cultures could be maintained for several months: Petrosia ficiformis, Suberites domuncula and Acanthella acuta. Our results indicate that cellular aggregates or fragments of sponges can be valuable tools in the development of methods for biotechnological production of sponge biomass. Further focus on nutritional demands and the biochemical status of the cells in these kind of cellular associations are needed in order to obtain functional aggregates and fragments.  相似文献   

14.
Extremophiles are organisms able to thrive in extreme environmental conditions. Microorganisms with the ability to survive high doses of radiation are known as radioresistant or radiation-resistant extremophiles. Excessive or intense exposure to radiation (i.e., gamma rays, X-rays, and particularly UV radiation) can induce a variety of mutagenic and cytotoxic DNA lesions, which can lead to different forms of cancer. However, some populations of microorganisms thrive under different types of radiation due to defensive mechanisms provided by primary and secondary metabolic products, i.e., extremolytes and extremozymes. Extremolytes (including scytonemin, mycosporine-like amino acids, shinorine, porphyra-334, palythine, biopterin, and phlorotannin, among others) are able to absorb a wide spectrum of radiation while protecting the organism’s DNA from being damaged. The possible commercial applications of extremolytes include anticancer drugs, antioxidants, cell-cycle-blocking agents, and sunscreens, among others. This article aims to review the strategies by which microorganisms thrive in extreme radiation environments and discuss their potential uses in biotechnology and the therapeutic industry. The major challenges that lie ahead are also discussed.  相似文献   

15.
The primary objective of this review is to propose an approach for the biosynthesis of phylloquinone (vitamin K1) based upon its known sources, its role in photosynthesis and its biosynthetic pathway. The chemistry, health benefits, market, and industrial production of vitamin K are also summarized. Vitamin K compounds (K vitamers) are required for the normal function of at least 15 proteins involved in diverse physiological processes such as coagulation, tissue mineralization, inflammation, and neuroprotection. Vitamin K is essential for the prevention of Vitamin K Deficiency Bleeding (VKDB), especially in neonates. Increased vitamin K intake may also reduce the severity and/or risk of bone fracture, arterial calcification, inflammatory diseases, and cognitive decline. Consumers are increasingly favoring natural food and therapeutic products. However, the bulk of vitamin K products employed for both human and animal use are chemically synthesized. Biosynthesis of the menaquinones (vitamin K2) has been extensively researched. However, published research on the biotechnological production of phylloquinone is restricted to a handful of available articles and patents. We have found that microalgae are more suitable than plant cell cultures for the biosynthesis of phylloquinone. Many algae are richer in vitamin K1 than terrestrial plants, and algal cells are easier to manipulate. Vitamin K1 can be efficiently recovered from the biomass using supercritical carbon dioxide extraction.  相似文献   

16.
Thermophilic and halophilic extremophiles.   总被引:6,自引:0,他引:6  
The microbiology of extremely hot or saline habitats is a fast moving field with many new successes in the enrichment and isolation of new organisms and in an understanding of molecular factors that impart stability on thermostable and halophilic biomolecules. The results of these studies have shed new light on our understanding of prokaryotic diversity and structural biochemistry.  相似文献   

17.
Mineral-microbe interactions: biotechnological potential of bioweathering   总被引:3,自引:0,他引:3  
Mineral-microbe interaction has been a key factor shaping the lithosphere of our planet since the Precambrian. Detailed investigation has been mainly focused on the role of bioweathering in biomining processes, leading to the selection of highly efficient microbial inoculants for the recovery of metals. Here we expand this scenario, presenting additional applications of bacteria and fungi in mineral dissolution, a process with novel biotechnological potential that has been poorly investigated. The ability of microorganisms to trigger soil formation and to sustain plant establishment and growth are suggested as invaluable tools to counteract the expansion of arid lands and to increase crop productivity. Furthermore, interesting exploitations of mineral weathering microbes are represented by biorestoration and bioremediation technologies, innovative and competitive solutions characterized by economical and environmental advantages. Overall, in the future the study and application of the metabolic properties of microbial communities capable of weathering can represent a driving force in the expanding sector of environmental biotechnology.  相似文献   

18.
Microalgae are photosynthetic microorganisms that use sunlight as an energy source, and convert water, carbon dioxide, and inorganic salts into algal biomass. The isolation and selection of microalgae, which allow one to obtain large amounts of biomass and valuable compounds, is a prerequisite for their successful industrial production. This work provides an overview of extremophile algae, where their ability to grow under harsh conditions and the corresponding accumulation of metabolites are addressed. Emphasis is placed on the high-value products of some prominent algae. Moreover, the most recent applications of these microorganisms and their potential exploitation in the context of astrobiology are taken into account.  相似文献   

19.
Sponges are well known to harbor diverse microbes and represent a significant source of bioactive natural compounds derived from the marine environment. Recent studies of the microbial communities of marine sponges have uncovered previously undescribed species and an array of new chemical compounds. In contrast to natural compounds, studies on enzymes with biotechnological potential from microbes associated with sponges are rare although enzymes with novel activities that have potential medical and biotechnological applications have been identified from sponges and microbes associated with sponges. Both bacteria and fungi have been isolated from a wide range of marine sponge, but the diversity and symbiotic relationship of bacteria has been studied to a greater extent than that of fungi isolated from sponges. Molecular methods (e.g., rDNA, DGGE, and FISH) have revealed a great diversity of the unculturable bacteria and archaea. Metagenomic approaches have identified interesting metabolic pathways responsible for the production of natural compounds and may provide a new avenue to explore the microbial diversity and biotechnological potential of marine sponges. In addition, other eukaryotic organisms such as diatoms and unicellular algae from marine sponges are also being described using these molecular techniques. Many natural compounds derived from sponges are suspected to be of bacterial origin, but only a few studies have provided convincing evidence for symbiotic producers in sponges. Microbes in sponges exist in different associations with sponges including the true symbiosis. Fungi derived from marine sponges represent the single most prolific source of diverse bioactive marine fungal compounds found to date. There is a developing interest in determining the true diversity of fungi present in marine sponges and the nature of the association. Molecular methods will allow scientists to more accurately identify fungal species and determine actual diversity of sponge-associated fungi. This is especially important as greater cooperation between bacteriologists, mycologists, natural product chemists, and bioengineers is needed to provide a well-coordinated effort in studying the diversity, ecology, physiology, and association between bacteria, fungi, and other organisms present in marine sponges.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号