首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reproductive potential of Meloidogyne graminicola was compared with that of M. incognita on Trifolium species in greenhouse studies. Twenty-five Trifolium plant introductions, cultivars, or populations representing 23 species were evaluated for nematode reproduction and root galling 45 days after inoculation with 3,000 eggs of M. graminicola or M. incognita. Root galling and egg production by the two root-knot nematode species was similar on most of the Trifolium species. In a separate study, the effect of initial population densities (Pi) of M. graminicola and M. incognita on the growth of white clover (T. repens) was determined. Reproductive and pathogenic capabilities of M. graminicola and M. incognita on Trifolium spp. were similar. Pi levels of both root-knot nematode species as low as 125 eggs per 10-cm-d pots severely galled white clover plants after 90 days. Meloidogyne graminicola has the potential to be a major pest of Trifolium species in the southeastern United States.  相似文献   

2.
The tethered-nematode technique was adapted for use with second-stage juveniles of Meloidogyne incognita. The data demonstrate that M. incognita exhibits the same patterns of behavior as adults of the free-living nematode, Caenorhabditis elegans. The principal differences are that M. incognita is slower and less regular in its behavior than C. elegans. The frequency of normal waves is about 0.2 Hz; that of reversal waves is about 0.06 Hz. Reversal bouts last about 1 minute. In response to a change in NaCl concentration, M. incognita modulates the probability of initiating a reversal bout in the same manner as C. elegans except that it responds more slowly and is repelled instead of attracted.  相似文献   

3.
4.
Quantitative growth response of watermelon (Citrullus lanatus) sensitive to Meloidogyne incognita is poorly understood. Determination of soil population densities of second-stage juveniles (J2) of M. incognita with Baermann funnel extraction often is inaccurate at low soil temperatures. In greenhouse experiments, three sandy soils were inoculated with dilution series of population densities of eggs or J2 of M. incognita and planted in small containers to watermelon ‘Royal Sweet’ or subjected to Baermann funnel extraction. After five weeks of incubation in the greenhouse bioassay plants in egg-inoculated soils, gall numbers on watermelon roots related more closely to inoculated population densities than J2 counts after Baermann funnel extraction. In April 2004, perpendicularly-inserted tubes (45-cm diameter, 55-cm deep) served as microplots where two methyl bromide-fumigated sandy soils were inoculated with egg suspensions of M. incognita at 0, 100, 1,000 or 10,000 eggs/100 cm3 of soil in 15-cm depth. At transplanting of 4-week old watermelon seedlings, soils were sampled for the bioassay or for extraction of J2 by Baermann funnel. In the Seinhorst function of harvested biomass in relation to nematode numbers, decline of biomass with increasing population densities of M. incognita was accurately modeled by the inoculated eggs (R2 = 0.93) and by the counts of galls on the bioassay roots (R2 = 0.98); but poorly by J2 counts (R2 = 0.68). Threshold levels of watermelon top dry weight to M. incognita were 122 eggs/100 cm3 soil, 1.6 galls on bioassay roots, or 3.6 J2/100 cm3 of soil. Using the bioassay in early spring for predicting risk of nematode damage appeared useful in integrated pest management systems of watermelon.  相似文献   

5.
Quantities of free amino acids in segments of cotton roots resistant and susceptible to Meloidogyne incognita were compared. Following infection, the root-knot susceptible cultivar, M8, had greater percentage increases of certain individual free amino acids than the resistant cultivar, Clevewilt, but the sum total of free amino acids was greatest in the resistant cultivar. More free amino acids were present in infected than in noninfected plants of both cultivars. The overall concn of glycine declined over the I 0-day period following inoculation. The concns of the aromatic amino acids, tyrosine and phenylalanine, varied as functions of infection, cultivar, and time of harvest. Proline in susceptible M8 increased nearly 2000-fold 10 days after infection, when considerable thickening of syncytial walls is occurring.  相似文献   

6.
S. D. Park    Z. Khan    J. G. Ryu    Y. J. Seo    J. T. Yoon 《Journal of Phytopathology》2005,153(4):250-253
The pathogenic potential and reproduction fitness of Meloidogyne hapla on three species of medicinal plants, Angelica koreana, Peucedanum japonicum and Astragalus membranaceus was determined in potted soil under greenhouse conditions. Three weeks old seedlings were inoculated with population density (Pi) of 1000; 2000; 3000; 4000; 5000 and 10000 juveniles (J2)/kg soil. A significant damage was observed in shoot and root length, weight and root‐diameter of these plants by all Pi levels at 90‐day postinoculation. Damage increased with increase in Pi up to 5000 J2/kg soil. At 5000 Pi caused 34.8, 34.1 and 33.3% reduction in root weight of Ang. koreana, P. japonicum and Ast. membranaceus, respectively. Greater root gall severity was observed on Ang. koreana and P. japonicum than on Ast. membranaceus at all Pi levels. At 5000 Pi, root gall severity was 5.0, 5.0, and 3.0 on Ang. koreana, P. japonicum and Ast. membranaceus, respectively. Increasing rate of Pi exponentially reduced reproductive factor (Rf) of M. hapla on all of these medicinal plants. However, Rf was higher on Ang. koreana and P. japonicum than on Ast. membranaceus at all Pi levels. The host status of these medicinal plants renders them unsuitable for their use in crop rotation system in M. hapla‐infested fields.  相似文献   

7.
Eight to ten precipitin bands were formed in a double immunodiffusion system comparing antigens of adult females of Meloidogyne incognita and M. arenaria. Most of the precipitin bands, based on band position and coalescence, were common to both species. Antiserum specific for M. incognita was prepared by cross absorption. Two populations of M. incognita were serologically identical, whereas two populations of M. arenaria differed slightly with respect to one weak precipitin band.  相似文献   

8.
Two greenhouse experiments were conducted to examine the effect of Crotalaria juncea amendment on Meloidogyne incognita population levels and growth of yellow squash (Cucurbita pepo). In the first experiment, four soils with a long history of receiving yard waste compost (YWC+), no-yard-waste compost (YWC-), conventional tillage, or no-tillage treatments were used; in the second experiment, only one recently cultivated soil was used. Half of the amount of each soil received air-dried residues of C. juncea as amendment before planting squash, whereas the other half did not. Crotalaria juncea amendment increased squash shoot and root weights in all soils tested, except in YWC+ soil where the organic matter content was high without the amendment. The amendment suppressed the numbers of M. incognita if the inoculum level was low, and when the soil contained relatively abundant nematode-antagonistic fungi. Microwaved soil resulted in greater numbers of M. incognita and free-living nematodes than frozen or untreated soil, indicating nematode-antagonistic microorganisms played a role in nematode suppression. The effects of C. juncea amendment on nutrient cycling were complex. Amendment with C. juncea increased the abundance of free-living nematodes and Harposporium anguillulae, a fungus antagonistic to them in the second experiment but not in the first experiment. Soil histories, especially long-term yard waste compost treatments that increased soil organic matter, can affect the performance of C. juncea amendment.  相似文献   

9.
The degree of resistance by a cotton plant to Meloidogyne incognita is affected by soil temperature, particularly in moderately resistant cultivars, The total number of nematodes in the resistant and moderately resistant rools at 35 C was equal to, or greater than, the number in susceptible roots at 20, 25, or 30 C. A shift in numbers to developing and egg-bearing forms of nematodes in the susceptible cultivar as tentperature increased indicates development was affected by temperature rather than by genetic resistance mechanisms. However, the nematode resistant cultivar did not support maturation of nematodes until a soil tempurature of 35 C was attained. This indicated that resistance mechanisms are partially repressed at 35 C and differences in nematode development cannot be explained in terms of accumulated heat units. The moderately resistant cultivar was significantly more sensitive to the effects of high temperature than was the resistant cultivar.  相似文献   

10.
The cotton root-knot nematode, Meloidogyne incognita acrita, reproduced on the roots of grain sorghum, causing syncytia in the cortex or stele of lateral roots. Giant cells developed either singly with few nuclei or in groups with many nuclei. Giant cells that developed in groups appeared the same as those which developed singly. The pericycle and endodermis were interrupted at the site of nematode invasion. Large areas of these tissues were absent for one-third of the circumference of the stele and extended 1.5 mm longitudinally along the root. In the area where pericycle and endodernris were absent, the parenchyma of the cortex extended to the vascular elements, and abnormal xylem surrounding giant cells extended into the region of the cortex. Root-knot galls appeared on sorghum roots as elongate swellings, discrete knots, or swellings with root proliferation. Galls were not observed on brace roots.  相似文献   

11.
Sensitivity and host efficiency of susceptible (''Lee 68'', ''Coker 156'') and resistant (''Bragg'', ''Centennial'', ''Forrest'', ''Lee 74'') soybean (Glycine max (L.) Merr.) cultivars for races of Meloidogyne incognita (Mi) were determined in greenhouse experiments. Eight Mi populations collected from the southeastern United States were utilized. All Mi races reproduced readily on Lee 68 and Lee 74 and moderately on Forrest and Bragg. Coker 156 exhibited resistance to races 1 and 2, and some race 3 populations, but was very susceptible to certain race 3 and 4 populations. Reproduction of all races was lowest on Centennial. Forrest and Centennial shoot growth was not significantly suppressed by any race. There were no distinct differences in virulence between races except for a race 3 population which reproduced readily on all cultivars, stunting their growth. Considerable variation in reproduction existed within races 1 and 3.  相似文献   

12.
Fifteen isolates of Bacillus, isolated from the root-knot nematode suppressive soils, were used for the biocontrol of Meloidogyne incognita on tomato. Bacillus isolates B1, B4, B5 and B11 caused greater inhibitory effect on hatching of M. incognita than caused by other isolates. In addition, these isolates (B1, B4, B5 and B11) caused greater colonisation of tomato roots and also caused greater increase in the growth of tomato seedling than caused by other isolates. All the isolates of Bacillus were able to increase growth of tomato and caused reduction in galling and nematode multiplication in green house tests. Isolates B1, B4, B5 and B11 caused a greater increase in growth of tomato and higher reduction in galling and nematode multiplication than other isolates in a green house test. These isolates were also tested for hydrogen cyanide (HCN) and indole acetic acid productions. Only one isolate (B13) produced HCN out of 15 tested. On the other hand, isolates B5, B11, B4 and B1 showed greater production of IAA than the other 11 isolates tested. This study suggests that Bacillus isolates B5, B11, B4 and B1 may be used for the biocontrol of M. incognita on tomato.  相似文献   

13.
Aldicarb, ethoprop, and fenamiphos were evaluated for their efficacy in controlling various species of root-knot nematodes on flue-cured tobacco and for their residual activity, as determined through periodic sampling and bioassays of soil taken from field plots. Field experiments were conducted at five locations over 2 years with flue-cured tobacco. Soil in plots treated with nematicides were formed into high, wide beds before transplanting with ''Coker 371-Gold'' or ''K 326'' tobacco. Residual control of Meloidogyne spp. was greatest (P ≤ 0.05) with fenamiphos (in some cases up to 10 weeks, as measured in tomato bioassays of infested soil and root fragments). Suppression of nematode reproduction by ethoprop was short-lived, and numbers of second-stage juveniles + eggs and numbers of galls in bioassays sometimes surpassed those of untreated plots within 4 weeks after treatment. Aldicarb gave intermediate control over time as compared to the other compounds. Although nematicidal efficacy of all compounds varied with site and season, fenamiphos and aldicarb generally produced the highest yields.  相似文献   

14.
The non-pathogenic endophytic fungus, Fusarium oxysporum strain 162, originally isolated from the endorhiza of tomato roots, reduces damage caused by Meloidogyne incognita, by inhibiting juvenile penetration of and development in the root. However, little is known about the mode of action of this endophyte fungus against the nematode. This study aimed at investigating how the endophyte affects nematode motility and survival and if induced resistance plays a role in the relationship. In a previous study, F. oxysporum strain 162 decreased nematode penetration of tomato up to 60%. In experiments using a split-root chamber to test for induced resistance, nematode penetration, number of galls, and number of egg masses were investigated 2 and 5 weeks after nematode inoculation. Split-root plants treated with F. oxysporum strain 162 showed 26-45% less nematode penetration, 21-36% less galls and a 22-26% reduction in the number of egg masses in the roots not directly inoculated with the fungus when compared to untreated control plants in repeated tests. In conclusion, inoculation of tomato plants with the non-pathogenic fungal endophyte F. oxysporum strain 162 resulted in a signficant reduction of nematode infection, which was in part due to induced resistance in the first 2-3 weeks after fungal inoculation.  相似文献   

15.
Biocontrol of root-knot nematode Meloidogyne incognita was studied on tomato using 15 isolates of fluorescent Pseudomonads isolated from pathogen suppressive soils. Pseudomonas aeruginosa (isolates Pa8, Pa9 and Pa3) caused greater inhibitory effect on hatching of M. incognita than other isolates. In addition, isolates Pa8, Pa9 and Pa3 caused greater colonisation of tomato roots and also caused a greater increase in the growth of tomato seedlings. These isolates also caused a greater increase in growth of tomato and higher reduction in galling and nematode multiplication in a green house test than is caused by other isolates. Isolates Pf1, Pf5, Pf6 and Pa13 were unable to increase growth of tomato and caused less reduction in galling and nematode multiplication compared to other isolates. Only 10 isolates produced siderophores on chromo-azurol sulfonate (CAS) agar medium and isolate Pa12 showed greater production of siderophore followed by Pa11, Pa9, Pf10, Pa3 and Pf5. Similarly, isolates Pa14, Pa12, Pf10, Pa9, Pa8, Pa7 and Pa6 produced greater amount of HCN than the other isolates tested. Isolates Pa8 and Pa9 showed greater production of IAA than the other 13 isolates tested. This study suggests that P. aeruginosa isolates Pa8 and Pa9 may be used for the biocontrol of M. incognita on tomato.  相似文献   

16.
Two microplot experiments in 1981 and 1983 provided information on the effect of different population densities of Meloidogyne incognita race 1 and yield of sweet pepper. Microplots were square concrete pipes (30 × 30 cm and 50 cm long) filled with 40 liters of soil infested with 0, 0.062, 0.125, 0.25, 0.5, 1, 2, 4, 8, 16, 32, 64, 128, 256, and 512 eggs and juveniles/cm³ soil. Tolerance limits of 2.2 and 0.165 eggs and juveniles/cm³ soil and minimum yields of 58% and 20% of the controls were obtained in 1981 and 1983, respectively. Maximum reproduction rates of the nematode were 274 and 1,498 at the lowest initial population density. The population of the nematode declined rapidly after harvest, and only 13% and 6.5% of eggs and juveniles were detected in the soil after 1 and 6 months, respectively.  相似文献   

17.
To determine the energy cost of a population of Meloidogyne incognita on the roots of alyceclover, nematode biomass was estimated and equations in the literature were used to calculate energy budgets. Amounts of energy consumed, respired, or used in production of nematode biomass were calculated. Results suggested that severe infestations of root-knot nematodes can remove significant quantities of energy from their hosts. Over a 36-day period, a population of 2.6 females of M. incognita per root system removed less than 0.4 calories of energy from a resistant alyceclover plant but over 11 calories were removed by 28 females from a susceptible alyceclover. The calculations indicate that on the resistant alyceclover line, 53% of the energy assimilated by the root-knot population was allocated to respiration, with only 47% allocated to production, whereas on the susceptible line, 65% of the assimilated energy was allocated to production. Such energy demands by the parasite could result in significant reductions in yield quantity and quality at a field production level.  相似文献   

18.
Pot experiments laid out in a complete randomised design were conducted in the screen house of the Department of Crop Protection, University of Agriculture, Abeokuta, Ogun State, Nigeria to determine the effects of organic fertiliser and Chromolaena odorata residue at 1% w/w on the pathogenicity of Meloidogyne incognita infecting maize. M. incognita significantly reduced the plant height, number of leaves per plant, leaf area, cob weight and grain yield of maize by 6.89, 15.18, 20, 63.92 and 56.16% respectively. C. odorata residue and organic fertiliser significantly suppressed M. incognita galling, inhibited the nematode fecundity and reduced the number of eggs and juveniles on maize. A remarkable increase in plant height, number of leaves per plant, leaf area, cob weight and grain yield were observed on maize plants treated with the mixture of C. odorata and organic fertiliser despite the nematode infection. The observation from this study suggests that C. odorata in combination with organic fertiliser is a viable option for the control of M. incognita on maize.  相似文献   

19.
Cotton (Gossypium hirsutum) seedlings, uniformly infected with Meloidogyne incognita, were exposed for periods of 1-15 days to a nutrient solution containing tritium-labelled thymidine. Syncytium formation began with the amalgamation of cells near the nematode head, and was followed by synchronized mitoses of the nuclei which had been incorporated into a single cell. Syncytial nuclei synthesized DNA in roots harvested 3, 6, 9, 12, and 15 days after inoculation. Seedlings transferred from unlabelled to labelled nutrient solution 9 days after inoculation, and grown for 6 more days, contained some syncytial nuclei which did not become labelled. Giant-cell nuclei increased in size and, in many cases, all nuclei in one giant cell of a set showed active DNA synthesis at about the time the nematode molted to the adult stage.  相似文献   

20.
In laboratory thermal gradients, newly hatched infective juveniles of the plant-parasitic root-knot nematode Meloidogyne incognita migrated toward a preferred temperature that was several degrees above the temperature to which they were acclimated. After shifting egg masses to a new temperature, the preferred temperature was reset in less than a day. Possible functions of this type of thermotaxis are discussed, including the use of thermal gradients around plant roots to locate hosts and to maintain a relatively straight path while ranging in the absence of other cues (a collimating stimulus).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号