首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Drosophila possesses an inherited reflex response to a moving visual pattern which can be used to measure its capacity for intensity discrimination and its visual acuity at different illuminations. It is found that these two properties of vision run approximately parallel courses as functions of the prevailing intensity. Visual acuity varies with the logarithm of the intensity in much the same sigmoid way as in man, the bee, and the fiddler crab. The resolving power is very poor at low illuminations and increases at high illuminations. The maximum visual acuity is 0.0018, which is 1/1000 of the maximum of the human eye and 1/10 that of the bee. The intensity discrimination of Drosophila is also extremely poor, even at its best. At low illuminations for two intensities to be recognized as different, the higher must be nearly 100 times the lower. This ratio decreases as the intensity increases, and reaches a minimum of 2.5 which is maintained at the highest intensities. The minimum value of ΔI/I for Drosophila is 1.5, which is to be compared with 0.25 for the bee and 0.006 for man. An explanation of the variation of visual acuity with illumination is given in terms of the variation in number of elements functional in the retinal mosaic at different intensities, this being dependent on the general statistical distribution of thresholds in the ommatidial population. Visual acuity is thus determined by the integral form of this distribution and corresponds to the total number of elements functional. The idea that intensity discrimination is determined by the differential form of this distribution—that is, that it depends on the rate of entrance of functional elements with intensity—is shown to be untenable in the light of the correspondence of the two visual functions. It is suggested that, like visual acuity, intensity discrimination may also have to be considered as a function of the total number of elements active at a given intensity.  相似文献   

2.
1. Bees respond by a characteristic reflex to a movement in their visual field. By confining the field to a series of parallel stripes of different brightness it is possible to determine at any brightness of one of the two stripe systems the brightness of the second at which the bee will first respond to a displacement of the field. Thus intensity discrimination can be determined. 2. The discriminating power of the bee''s eye varies with illumination in much the same way that it does for the human eye. The discrimination is poor at low illumination; as the intensity of illumination increases the discrimination increases and seems to reach a constant level at high illuminations. 3. The probable error of See PDF for Equation decreases with increasing I exactly in the same way as does See PDF for Equation itself. The logarithm of the probable error of ΔI is a rectilinear function of log I for all but the very lowest intensities. Such relationships show that the measurements exhibit an internal self-consistency which is beyond accident. 4. A comparison of the efficiency of the bee''s eye with that of the human eye shows that the range over which the human eye can perceive and discriminate different brightnesses is very much greater than for the bee''s eye. When the discrimination power of the human eye has reached almost a constant maximal level the bee''s discrimination is still very poor, and at an illumination where as well the discrimination power of the human eye and the bee''s eye are at their best, the intensity discrimination of the bee is twenty times worse than in the human eye.  相似文献   

3.
1. A study of the historical development of the Weber-Fechner law shows that it fails to describe intensity perception; first, because it is based on observations which do not record intensity discrimination accurately, and second, because it omits the essentially discontinuous nature of the recognition of intensity differences. 2. There is presented a series of data, assembled from various sources, which proves that in the visual discrimination of intensity the threshold difference ΔI bears no constant relation to the intensity I. The evidence shows unequivocally that as the intensity rises, the ratio See PDF for Equation first decreases and then increases. 3. The data are then subjected to analysis in terms of a photochemical system already proposed for the visual activity of the rods and cones. It is found that for the retinal elements to discriminate between one intensity and the next perceptible one, the transition from one to the other must involve the decomposition of a constant amount of photosensitive material. 4. The magnitude of this unitary increment in the quantity of photochemical action is greater for the rods than for the cones. Therefore, below a certain critical illumination—the cone threshold—intensity discrimination is controlled by the rods alone, but above this point it is determined by the cones alone. 5. The unitary increments in retinal photochemical action may be interpreted as being recorded by each rod and cone; or as conditioning the variability of the retinal cells so that each increment involves a constant increase in the number of active elements; or as a combination of the two interpretations. 6. Comparison with critical data of such diverse nature as dark adaptation, absolute thresholds, and visual acuity shows that the analysis is consistent with well established facts of vision.  相似文献   

4.
1. Bees respond by a characteristic reflex to a movement of their visual field. By confining the field to a series of parallel stripes of two alternating different brightnesses it is possible to determine for any width of stripe, at any brightness of one of the two sets of stripes, the brightness of the second at which the bee will first respond to a displacement of the field. Thus the relations between visual acuity and intensity discrimination can be studied. 2. For each width of stripe and visual angle subtended by the stripe the discrimination power of the bee''s eye for different brightnesses was studied. For each visual acuity the intensity discrimination varies with illumination in a characteristic, consistent manner. The discrimination is poor at low illuminations; as the intensity of illumination increases the discrimination increases, and reaches a constant level at high illuminations. 3. From the intensity discrimination curves obtained at different visual acuities, visual acuity curves can be reconstructed for different values of ΔI/I. The curves thus obtained are identical in form with the curve found previously by direct test for the relation between visual acuity and illumination.  相似文献   

5.
6.
1. This investigation has been concerned with an analysis of brightness discrimination as it is influenced by the duration of ΔI. The durations used extend from 0.002 second to 0.5 second. 2. ΔI/I values at constant intensity are highest for the shortest duration and decrease with an increase in duration up to the limits of a critical exposure time. At durations longer than the critical duration the ratio ΔI/I remains constant. 3. The Bunsen-Roscoe law holds for the photolysis due to ΔI. This is shown by the fact that, within the limits of a critical duration, the product of ΔI and exposure time is constant for any value of prevailing intensity, I. 4. At durations greater than the critical duration the Bunsen-Roscoe law is superseded by the relation ΔI = Constant. This change of relation is considered in the light of Hartline''s discussion (1934). 5. The critical duration is a function of intensity. As intensity increases the critical duration decreases. 6. Hecht''s theory (1935) accounts for the data of this experiment if it be assumed that brightness discrimination is determined by a constant amount of photolysis.  相似文献   

7.
The relation between flash duration and mean critical intensity (white light) for threshold recognition of visual flicker, as a function of flash frequency, was investigated by means of measurements at five values of the light-time fraction: 0.10, 0.25, 0.50, 0.75, 0.90, with flash frequencies of the interrupted beam ranging from 2 to 60 per second. A square area, 6.1 x 6.1°, centrally fixated) was viewed monocularly; the discriminometer used provides automatically an artificial pupil 1.8 mm. in diameter. Except for the slight day-to-day fluctuation in the magnitudes of the parameters, the data for the observer used are shown to form an essentially homogeneous group. As for other animals tested, the F - log Im curve is enlarged and moved toward lower flash intensities as the light-time fraction is decreased. The high intensity segments of the duplex curves are fitted by normal probability integrals for which F max. and the abscissa of inflection are rectilinear functions of tL(tL + tD), with opposite slopes. The third parameter, (σ''log I, is invariant. The low intensity segments are composites, their shapes determined by the summation of the lower part of the high intensity curve with an overlapping low intensity population of effects. Both the rising and the declining branches of this latter assemblage suffer competitive partial suppression by the effects in the high intensity population. The detailed analysis shows that these results are consistent with the theory of the central, rather than peripheral, location of the dynamically recognizable elements in the determination of flicker.  相似文献   

8.
From the data of experiments with bees in which threshold response is employed as a means of recognizing visual discrimination between stripes of equal width alternately illuminated by intensities I 1 and I 2, it is shown that the detectable increment of intensity ΔI, where ΔI = I 2 - I 1, is directly proportional to σI2 (I 1 being fixed). From tests of visual acuity, where I 1 = 0 and the width of the stripes is varied, σI2 = kI 2 + const.; here I 2 = ΔI, and ΔI/I 2 = 1. When the visual excitability of the bee is changed by dark adaptation, λIkΔI (= k'' σΔI) = k'''' I + const. For the measurements of critical illumination at threshold response to flicker, σI2 (= σΔI) = k I 2 = k'' ΔI + const. The data for critical illumination producing threshold response to flicker in the sun-fish Lepomis show for the rods σI2 = K I 2 for the cones σI2 = K''(I 2 + const.). The data thus indicate that in all these experiments essentially the same visual function is being examined, and that the recognition of the production of a difference in effect by alternately illuminated stripes takes place in such a way that dI)/dI2) = const., and that ΔI is directly proportional to I (or "I 2," depending on the nature of the experiment). It is pointed out that the curve for each of the cases considered can be gotten equally well if mean I or σI is plotted as a function of the independent variable involved in the experiment. Certain consequences of these and related facts are important for the treatment of the general problem of intensity discrimination.  相似文献   

9.
Using the rotating striped cylinder device previously employed for determination of the flicker response function with lower animals, corresponding measurements have been made with human observers. The curves based upon the relation between critical flash frequency and critical intensity for the signalling of the recognition of flicker have the properties of human flicker fusion data as obtained by other methods. They also have the quantitative properties of the flicker curves provided by the motor responses of insects and fishes to the seen movement of flashes. This applies to the variation found in repeated measurements as well as to the nature of the analytical function describing the connection between flash frequency and intensity. The data for human visual flicker and those for the responses of lower animals are therefore essentially homologous.  相似文献   

10.
It is shown that the velocity of bleaching of visual purple by light, under comparable conditions of concentration, volume, and surface exposed, is directly proportional to the intensity.  相似文献   

11.
我们已发现外源性催产素能改善人及豚鼠以恼干电位或耳蜗电图为指标的听觉功能。本文在对照组和预先给予催产素处理的豚鼠上,比较了125dB(SPL)白噪声暴露20min前后声音强度辨别能力的改变,并比较了肌内注射和侧脑室微量注射两种不同给药途径的作用。实验以重复短声调幅引起的皮层慢反应电位阈值I_r为指标,观察了催产素对豚鼠声音强度辨别功能的影响。结果发现对照组噪声暴露所致I_r的升高明显高于催产素处理组,且此种暂时性阈移的恢复也明显慢于催产素组;催产素两种给药途径的结果无明显差异。这些结果进一步提示催产素对声音强度辨别功能具有保护作用。  相似文献   

12.
Visual masking techniques are frequently used to prevent panelists from discriminating among samples on the basis of color differences, only. The purpose of the study was to determine if these conditions alter the responses of the judges. Raspberry gelatins sweetened with 9, 10, 14 and 16% sucrose, respectively, and lemonades sweetened with 8, 10, 12 and 14% sucrose, respectively, were rated for perceived sweetness intensity using four different visual masking conditions (red lights, red glasses, dyes and blindfolds) and a white light and clear glasses control condition. Most of the visual masking techniques did not significantly affect the sweetness scores for the gelatins or lemonades. The one exception was the dye condition for the lemonades where the color (turquoise) probably affected the results.  相似文献   

13.
14.
15.
刘觐龙  宿双宁 《生理学报》1989,41(5):504-511
我们曾经提出,额叶神经元的反应,主要不是取决于刺激物的物理属性,而是与信号意义有密切的关系。为了验证这一看法,设计了两套作业,即视延缓辨别作业(作业Ⅰ)和视辨别反应作业(作业Ⅰ),对4只成年猕猴进行实验。两套作业都由1—4期组成,在第2期都有伪随机出现的红绿灯光信号,在第3期都要求动物密切注意随后的灯光信号变化。但是,作业Ⅰ要求动物对第2期出现的红绿灯光进行辨别,作业Ⅰ则要求对第4期的红绿灯光进行辨别。待动物学会作业,正确率达90%以上,在动物进行作业的同时引导额叶神经元放电。共记录作业相关神经元163个。其中作业Ⅰ98个,作业Ⅱ 65个。在作业Ⅰ中,神经元的反应多数出现在第2、3期,占该作业反应总数的70%。而在作业Ⅱ中,反应多数出现在第3、4期,也占该作业反应总数的70%。其次,作业Ⅰ第2期的神经元反应绝大多数对红、绿灯光有明显的特异性,而作业Ⅱ第2期的则没有,只有第4期的反应才有明显的特异性。本实验结果进一步支持了我们的上述看法,并且表明,额叶神经元对信号的反应主要是在学习中逐渐形成的,有很大的可塑性。  相似文献   

16.
Flicker response curves (man) obtained with images formed entirely within the fovea are like those secured with lower animals having only one general class of retinal receptors. They are normal probability integrals (F vs. log Im), and the properties of their parameters agree with those for visually simplex animals and for the "cone" portions of contours exhibiting visual duplexity. By several different procedures, involving experimental modifications of the "cone" curve, the "rod" part of the typical human duplex curve can be obtained free from overlapping by the extrapolated "cone" curve. It then has the probability integral form which the lower segment does not directly exhibit when combined with "cone" effects. These results are discussed with reference to the statistical nature of the fundamental form of the flicker contour and to the interpretation of duplex curves produced by the neural integration of two independently modifiable groups of sensory effects.  相似文献   

17.
In Vol. 27, No. 5, May 20, 1944, page 403, in the eighth line from the bottom of the page, the comma after "intensity" should be a semicolon. On page 413, in the second formula from the bottom of the page, for See PDF for Equation read See PDF for Equation On the same page, formula 2 should read See PDF for Equation On page 414, line 3, at the end of the line add "or" to read "of the level of I or of F." On page 422, in the first line below the figure legend, for "illuminate" read "illuminated." On page 430, line 22, for "lighteb dars" read "lighted bars."  相似文献   

18.
19.
20.
应用扁平溶度计考察了一个水青冈林(Fagetapaupera)的重力土壤溶液,该森林位于克里尼奇克  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号