首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
When myosin is dehydrated it becomes insoluble. The number of detectable SH groups in myosin coagulated by dehydration is the same as in native soluble myosin. In this respect coagulation by dehydration differs from coagulation brought about in any of the other ways now known, but resembles the coagulation that occurs in muscle during rigor and in the egg after fertilization.  相似文献   

2.
1. In native egg albumin no SH groups are detectable, whereas in completely coagulated albumin as many groups are detectable as are found in the hydrolyzed protein. In egg albumin partially coagulated by heat the soluble fraction contains no detectable groups, and the insoluble fraction contains the number found after hydrolysis. 2. In the reversal of denaturation of serum albumin, when insoluble protein regains its solubility, S-S groups which have been detectable in the denatured protein, disappear. 3. When egg albumin coagulates at an air-water interface, all the SH groups in the molecule become detectable. 4. In egg albumin coagulated by irradiation with ultraviolet light, the same number of SH groups are detectable as in albumin coagulated by a typical denaturing agent. 5. When serum albumin is denatured by urea, there is no evidence that S-S groups appear before the protein loses its solubility. 6. Protein denaturation is a definite chemical reaction: different quantitative methods agree in estimates of the extent of denaturation, and the same changes are observed in the protein when it is denatured by different agents. A protein molecule is either native or denatured. The denaturation of some proteins can be reversed.  相似文献   

3.
1. In the denatured proteins of skeletal muscle, the ratio of SH to S-S groups is higher than in the mixed denatured proteins of other tissues, with a single exception—the proteins of the crystalline lens. 2. The number of active SH groups in the proteins of minced muscle or in any of the protein fractions of muscle is only a fraction of the number found after the proteins have been treated with a denaturing agent. 3. The SH groups of the native proteins of muscle are activated by a rise in pH. 4. The relation between pH and number of active SH groups in the proteins of minced muscle and in the various protein fractions of muscle shows that little, if any, denatured protein is present in minced muscle.  相似文献   

4.
1. Muscle can be prepared in the form of a dry powder in which myosin exists in a state similar to that in intact muscle. As in intact muscle, myosin in powdered muscle is soluble and can be caused to rapidly coagulate. 2. Restoring to powdered muscle the quantity of water previously removed causes coagulation of myosin. The rate of coagulation is considerably slower at 0° than at 20°. 3. Adding the powder to a large volume of dilute salt solution also results in coagulation. 4. The water soluble constituents of muscle can be removed from the powder without thereby causing coagulation. Coagulation occurs in water extracted muscle when it is suspended in a dilute salt solution. 5. Coagulation of myosin in muscle resembles the coagulation of myosin caused by dehydration. 6. Myosin coagulates readily only when it is imbedded in the structure of muscle. The significance for coagulation of the arrangement of myosin particles in muscle has been indicated.  相似文献   

5.
1. An investigation of the physicochemical properties of myosin has been carried out. Prepared under standard conditions, the ratio of flow-birefringence to protein concentration is uniform. The effect of electrolytes, pH, and urea on the flow-birefringence and viscosity (relative and anomalous) of myosin has been examined. 2. Decrease or abolition of flow-birefringence does not necessarily imply far reaching denaturation, since such effects can be reversed by a variety of means. 3. When a myosin solution is treated with adenosinetriphosphate, its flow-birefringence is decreased (average 48 per cent), its anomalous viscosity is retained, and its relative viscosity is decreased (average 14 per cent). The full effect of adenosinetriphosphate is obtained at 0.004 M; a molarity very much less than that of other substances which decrease the flow-birefringence of myosin. 4. The changes in the physicochemical properties of myosin brought about by adenosinetriphosphate are spontaneously reversible, and are connected with the enzymatic action of the protein as adenosinetriphosphatase. 5. Effects similar to those of adenosinetriphosphate on the physicochemical properties of purified myosin have been obtained so far only with inosinetriphosphate. 6. Inorganic phosphate is split off by myosin from inosinetriphosphate as well as from adenosinetriphosphate. Inorganic triphosphate is split by 1 to 2 per cent solution of three times precipitated myosin. 7. Adenosinediphosphate and inorganic triphosphate act as competitive inhibitors with adenosinetriphosphate, blocking the fall of flow-birefringence. 8. The implications of the results, and the conception of active enzymic groups attached to proteins participating in cell structure, whether contractile or non-contractile, are discussed in relation to present views on muscle physiology and other biological problems.  相似文献   

6.
We have used electron paramagnetic resonance (EPR) to investigate the orientation, rotational motion, and actin-binding properties of rabbit psoas muscle cross-bridges in the presence of the nonhydrolyzable nucleotide analogue, 5'-adenylylimido-diphosphate (AMPPNP). This analogue is known to decrease muscle tension without affecting its stiffness, suggesting an attached cross-bridge state different from rigor. We spin-labeled the SH1 groups on myosin heads and performed conventional EPR to obtain high-resolution information about the orientational distribution, and saturation transfer EPR to measure microsecond rotational motion. At 4 degrees C and 100 mM ionic strength, we find that AMPPNP increases both the orientational disorder and the microsecond rotational motion of myosin heads. However, computer analysis of digitized spectra shows that no new population of probes is observed that does not match either rigor or relaxation in both orientation and motion. At 4 degrees C, under nearly saturating conditions of 16 mM AMPPNP (Kd = 3.0 mM, determined from competition between AMPPNP and an ADP spin label), 47.5 +/- 2.5% of myosin heads are dynamically disoriented (as in relaxation) without a significant decrease in rigor stiffness, whereas the remainder are rigidly oriented as in rigor. The oriented heads correspond to actin-attached heads in a ternary complex, and the disoriented heads correspond to detached heads, as indicated by EPR experiments with spin-labeled subfragment 1 (S1) that provide independent measurements of orientation and binding. We take these findings as evidence for a single-headed cross-bridge that is as stiff as the double-headed rigor cross-bridge. The data are consistent with a model in which, in the presence of saturating AMPPNP, one head of each cross-bridge binds actin about 10 times more weakly, whereas the remaining head binds at least 10 times more strongly, than extrinsic S1. Thus, although there is no evidence for heads being attached at nonrigor angles, the attached cross-bridge differs from that of rigor. The heterogeneous behavior of heads is probably due to steric effects of the filament lattice.  相似文献   

7.
Non-specific termination of simian virus 40 DNA replication.   总被引:4,自引:0,他引:4  
Axial X-ray diffraction patterns have been studied from relaxed, contracted and rigor vertebrate striated muscles at different sarcomere lengths to determine which features of the patterns depend on the interaction of actin and myosin. The intensity of the myosin layer lines in a live, relaxed muscle is sometimes less in a stretched muscle than in the muscle at rest-length; the intensity depends not only on the sarcomere length but on the time that has elapsed since dissection of the muscle. The movement of cross-bridges giving rise to these intensity changes are not caused solely by the withdrawal of actin from the A-band.When a muscle contracts or passes into rigor many changes occur that are independent of the sarcomere length: the myosin layer lines decrease in intensity to about 30% of their initial value when the muscle contracts, and disappear completely when the muscle passes into rigor. Both in contracting and rigor muscles at all sarcomere lengths the spacings of the meridional reflections at 143 Å and 72 Å are 1% greater than from a live relaxed muscle at rest-length. It is deduced that the initial movement of cross-bridges from their positions in resting muscle does not depend on the interaction of each cross-bridge with actin, but on a conformational change in the backbone of the myosin filament: occurring as a result of activation. The possibility is discussed that the conformational change occurs because the myosin filament, like the actin filament, has an activation control mechanism. Finally, all the X-ray diffraction patterns are interpreted on a model in which the myosin filament can exist in one of two possible states: a relaxed state which gives a diffraction pattern with strong myosin layer lines and an axial spacing of 143.4 Å, and an activated state which gives no layer lines but a meridional spacing of 144.8 Å.  相似文献   

8.
1. Cyanide inhibits the oxidation of the SH groups of cysteine and denatured egg albumin by the uric acid reagent. 2. At pH 4.8 cysteine is oxidized by the uric acid reagent and by ferricyanide in the presence but not in the absence of added copper sulfate. 3. In neutral solution, the uric acid reagent oxidizes the SH groups of denatured egg albumin in the presence of urea but not in the presence of alkyl sulfate or in the absence of denaturing agents. 4. Ferricyanide oxidizes the SH groups of neutral denatured egg albumin even in the presence of alkyl sulfate or, if precautions are taken to avoid aggregation, in the absence of denaturing agents. 5. In acid solution, ferricyanide does not oxidize the SH groups of denatured egg albumin completely. The oxidation is more complete, however, in the presence of urea than in the presence of alkyl sulfate, and more complete in the presence of guanidine hydrochloride than in the presence of urea. 6. The uric acid reagent which does not oxidize the SH groups of neutral denatured but unhydrolyzed egg albumin in the absence of denaturing agents does, under the same conditions, oxidize the SH groups of egg albumin partially hydrolyzed by pepsin. 7. At pH 4.8 in alkyl sulfate solution ferricyanide oxidizes the SH groups of digested egg albumin more completely than the SH groups of denatured but undigested egg albumin.  相似文献   

9.
1. The reaction between ferricyanide and egg albumin in solutions of urea, guanidine hydrochloride, and Duponol has been investigated. 2. In neutral medium ferricyanide oxidizes all the SH groups of egg albumin that give a color reaction with nitroprusside. In neutral medium ferricyanide appears to react only with the SH groups of egg albumin. The quantity of ferrocyanide formed can accordingly be considered the equivalent of the number of SH groups in egg albumin detectable with nitroprusside. 3. In solutions of urea, guanidine hydrochloride, and Duponol sufficiently concentrated so that all the egg albumin present is denatured, the same number of SH groups are found—equivalent to a cysteine content of 0.96 per cent. 4. In denaturation of egg albumin loss of solubility (solubility not in presence of the denaturing agent, but solubility examined in water at the isoelectric point) and appearance of reactive SH groups are integral parts of the same process. As denaturation proceeds in urea, SH groups are liberated only in the egg albumin with altered solubility and in this albumin the maximum number of SH groups is liberated. In a molecule of egg albumin either all of its SH groups that give a test with nitroprusside are liberated or none of them are.  相似文献   

10.
1. The same number of SH groups reduces ferricyanide in surface films of egg albumin as in albumin denatured by urea, guanidine hydrochloride, Duponol, or heat, provided the ferricyanide reacts with films while they still are at the surface and with the denatured proteins while the denaturing agent (urea, heat, etc.) is present. 2. The SH groups of a suspension of egg albumin made by clumping together many surface films react with ferricyanide in the same sluggish and incomplete manner as do the groups in egg albumin denatured by concentrated urea when the urea is diluted or in albumin denatured by heat when the solution is allowed to cool off. 3. The known change in configuration of the egg albumin molecule when it forms part of a surface film explains why SH groups in the film react with ferricyanide whereas those in native egg albumin do not. In the native egg albumin molecule groups in the interior are inaccessible to certain reagents. A film is so thin that there are no inaccessible groups. 4. Because of the marked resemblance in the properties of egg albumin in surface films and of egg albumin after denaturation by the recognized denaturing agents, it may be supposed that the same fundamental change takes place in denaturation as in film formation—indeed, that film formation is one of the numerous examples of denaturation. This would mean that in general the SH groups of denatured egg albumin reduce ferricyanide and react with certain other reagents because they are no longer inaccessible to these reagents.  相似文献   

11.
We have used electron paramagnetic resonance (EPR) spectroscopy to study the orientation and rotational motions of spin-labeled myosin heads during steady-state relaxation and contraction of skinned rabbit psoas muscle fibers. Using an indane-dione spin label, we obtained EPR spectra corresponding specifically to probes attached to Cys 707 (SH1) on the catalytic domain of myosin heads. The probe is rigidly immobilized, so that it reports the global rotation of the myosin head, and the probe's principal axis is aligned almost parallel with the fiber axis in rigor, making it directly sensitive to axial rotation of the head. Numerical simulations of EPR spectra showed that the labeled heads are highly oriented in rigor, but in relaxation they have at least 90 degrees (Gaussian full width) of axial disorder, centered at an angle approximately equal to that in rigor. Spectra obtained in isometric contraction are fit quite well by assuming that 79 +/- 2% of the myosin heads are disordered as in relaxation, whereas the remaining 21 +/- 2% have the same orientation as in rigor. Computer-simulated spectra confirm that there is no significant population (> 5%) of heads having a distinct orientation substantially different (> 10 degrees) from that in rigor, and even the large disordered population of heads has a mean orientation that is similar to that in rigor. Because this spin label reports axial head rotations directly, these results suggest strongly that the catalytic domain of myosin does not undergo a transition between two distinct axial orientations during force generation. Saturation transfer EPR shows that the rotational disorder is dynamic on the microsecond time scale in both relaxation and contraction. These results are consistent with models of contraction involving 1) a transition from a dynamically disordered preforce state to an ordered (rigorlike) force-generating state and/or 2) domain movements within the myosin head that do not change the axial orientation of the SH1-containing catalytic domain relative to actin.  相似文献   

12.
K Ajtai  L Pótó  T P Burghardt 《Biochemistry》1990,29(33):7733-7741
The nitroxide spin label (iodoacetamido)proxyl (IPSL) was specifically and rigidly attached to sulfhydryl 1 (SH1) on myosin subfragment 1 (S1). The specificity of this label for SH1 was demonstrated by using a technique where the spin label is localized on the electrophoresis-isolated proteolytic fragments of myosin using electron paramagnetic resonance (EPR). Studies of the rigidity of the probe on SH1 indicate that the IPSL is immobilized on the surface of S1 in the presence and absence of the nucleotides MgADP or MgATP. The EPR spectrum of muscle fibers decorated with IPSL-S1 shows that the IPSL-S1 rotates from its orientation in rigor upon binding MgADP. The angular displacement due to nucleotide binding is larger than that detected with the (maleimido)tempo spin label [Ajtai, K., French, A. R., & Burghardt, T. P. (1989) Biophys. J. 56, 535-541], demonstrating that the IPSL is oriented on the myosin cross-bridge in a manner that is favorable for detecting cross-bridge rotation during the rigor to MgADP state transition.  相似文献   

13.
The effects of chemical modifications of myosin's reactive cysteines on actomyosin adenosine triphosphatase (ATPase) activities and sliding velocities in the in vitro motility assays were examined in this work. The three types of modifications studied were 4-[N-[(iodoacetoxy)ethyl]-N-methylamino]-7-nitrobenz-2-oxa-1,3- diazole labeling of SH2 (based on Ajtai and Burghart. 1989. Biochemistry. 28:2204-2210.), phenylmaleimide labeling of SH1, and phenylmaleimide labeling of myosin in myofibrils under rigor conditions. Each type of modified myosin inhibited the sliding of actin in motility assays. The sliding velocities of actin over copolymers of modified and unmodified myosins in the motility assay were slowest with rigor-modified myosin and most rapid with SH2-labeled myosin. The actin-activated ATPase activities of similarly copolymerized myosins were lowest with SH2-labeled myosin and highest with rigor-modified myosin. The actin-activated ATPase activities of myosin subfragment-1 obtained from these modified myosins decreased in the same linear manner with the fraction of modified heads. These results are interpreted using a model in which the sliding of actin filaments over myosin filaments decreases the probability of myosin activation by actin. The sliding velocity of actin over monomeric rigor-modified myosin exceeded that over the filamentous form, which suggests for this myosin that filament structure is important for the inhibition of actin sliding in motility assays. The fact that all cysteine modifications examined inhibited the actomyosin ATPase activities and sliding velocities of actin over myosin poses questions concerning the information about the activated crossbridge obtained from probes attached to SH1 or SH2 on myosin.  相似文献   

14.
The influence of pH and temperature on the properties of myosin   总被引:1,自引:0,他引:1       下载免费PDF全文
1. The rate of denaturation of myosin solutions at temperatures between 32 degrees and 45 degrees and at pH values between 5.3 and 6.2 has been studied, by using adenosine-triphosphatase activity and solubility in m-potassium chloride at pH6.1 as criteria. 2. Myosin, when heated, loses its adenosine-triphosphatase activity before it becomes insoluble. 3. The loss of adenosine-triphosphatase activity and solubility are both first-order and pH-dependent reactions. Myosin, however, becomes insoluble only when heated within a narrow range of pH values. 4. The thermodynamic functions found for the two processes of denaturation are compared and discussed. 5. The possibility is discussed that, in muscle undergoing rigor, conditions may obtain that would denature myosin.  相似文献   

15.
When Asterias or Thyone sperm come in contact with egg jelly, a long process which in Thyone measures up to 90 µm in length is formed from the acrosomal region. This process can be generated in less than 30 s. Within this process is a bundle of microfilaments. Water extracts prepared from acetone powders of Asterias sperm contain a protein which binds rabbit skeletal muscle myosin forming a complex whose viscosity is reduced by ATP. Within this extract is a protein with the same molecular weight as muscle actin. It can be purified either by collecting the pellet produced after the addition of Mg++ or by reextracting an acetone powder of actomyosin prepared by the addition of highly purified muscle myosin to the extract. The sperm actin can be polymerized and by electron microscopy the polymer is indistinguishable from muscle F-actin. The sperm actin was shown to be localized in the microfilaments in the acrosomal processes by: (a) heavy meromyosin binding in situ, (b) sodium dodecyl sulfate (SDS) gel electrophoresis of the isolated acrosomal processes and a comparison to gels of flagella which contain no band corresponding to the molecular weight of actin, and (c) SDS gel electrophoresis of the extract from isolated acrosomal caps. Since the precursor for the microfilaments in the unreacted sperm appears amorphous, we suspected that the force for the generation of the acrosomal process is brought about by the polymerization of the sperm actin. This supposition was confirmed, for when unreacted sperm were lysed with the detergent Triton X-100 and the state of the actin in the sperm extract was analyzed by centrifugation, we determined that at least 80% of the actin in the unreacted sperm was in the monomeric state.  相似文献   

16.
The process of the denaturation of “myosin B” solution was studied by the measurement of ATPase activity, SH groups, sedimentation behaviour and flow birefringence. When “myosin B” solution was stored at lower temperature, lower pH or higher ionic strength, the interaction between myosin A and actin became less strong, and further storage brought about an irreversible dissociation.

The condition for measuring Mg-modified ATPase activity of “myosin B” at low ionic strength was explained in the relation with superprecipitation.  相似文献   

17.
The rotational motion of crossbridges, formed when myosin heads bind to actin, is an essential element of most molecular models of muscle contraction. To obtain direct information about this molecular motion, we have performed saturation transfer EPR experiments in which spin labels were selectively and rigidly attached to myosin heads in purified myosin and in glycerinated myofibrils. In synthetic myosin filaments, in the absence of actin, the spectra indicated rapid rotational motion of heads characterized by an effective correlation time of 10 microseconds. By contrast, little or no submillisecond rotational motion was observed when isolated myosin heads (subfragment-1) were attached to glass beads or to F-actin, indicating that the bond between the myosin head and actin is quite rigid on this time scale. A similar immobilization of heads was observed in spin-labeled myofibrils in rigor. Therefore, we conclude that virtually all of the myosin heads in a rigor myofibril are immobilized, apparently owing to attachment of heads to actin. Addition of ATP to myofibrils, either in the presence or absence of 0.1 mM Ca2+, produced spectra similar to those observed for myosin filaments in the absence of actin, indicating rapid submillisecond rotational motion. These results indicate that either (a) most of the myosin heads are detached at any instant in relaxed or activated myofibrils or (b) attached heads bearing the products of ATP hydrolysis rotate as rapidly as detached heads.  相似文献   

18.
In muscle fibres labelled with iodoacetamidotetramethylrhodamine at Cys707 of the myosin heavy chain, the probes have been reported to change orientation when the fibre is activated, relaxed or put into rigor. In order to test whether these motions are indications of the cross-bridge power stroke, we monitored tension and linear dichroism of the probes in single glycerol-extracted fibres of rabbit psoas muscle during mechanical transients initiated by laser pulse photolysis of caged ATP and caged ADP. In rigor dichroism is negative, indicating average probe absorption dipole moments oriented more than 54.7 degrees away from the fibre axis. During activation from rigor induced by photoliberation of ATP from caged ATP in the presence of calcium, the dichroism reversed sign promptly (half-time 12.5 ms for 500 microM-ATP) upon release of ATP, but then changed only slightly during tension development 20 to 100 milliseconds later. During the onset of rigor following transfer of the fibre from an ATP-containing relaxing solution to a rigor medium lacking ATP, force generation preceded the change in dichroism. The dichroism change occurred slowly (half-time 47 s), because binding of ADP to sites within the muscle fibre limited its rate of diffusion out of the fibre. When ADP was introduced or removed, the dichroism transient was similar in time course and magnitude to that obtained after the introduction or removal of ATP. Neither adding nor removing ADP produced substantial changes in force. These results demonstrate that orientation of the rhodamine probes on the myosin head reflects mainly structural changes linked to nucleotide binding and release, rather than rotation of the cross-bridge during force generation.  相似文献   

19.
The fluorescence polarization intensities from fluorescent probes and the electron paramagnetic resonance spectra from spin probes, specifically modifying elements of a biological assembly such as myosin sulfhydryl 1 (SH1) in muscle fibers, are interpreted in terms of probe order parameters using a model-independent method. The probe order parameters are related to each other by an Euler rotation of coordinates. We use this relationship to link the sets of order parameters from the different probes and in so doing create a system of equations that can be solved using only the information available from the experimental data. The solution yields the Euler angles relating the different probe coordinate frames and a larger set of probe order parameters than can be directly detected experimentally. The Euler angles are used to display the relative orientation of the probe molecular frames. The order parameters give rise to probe angular distributions that are at the theoretical limit of resolution. We demonstrate the utility of this analytical method by investigating the rotation of myosin SH1 from its orientation in rigor upon the binding of the nucleotide MgADP to the myosin cross-bridge. Our findings, discussed in the accompanying paper, suggest that the rigor-to-MgADP cross-bridge angular transition consists predominantly of a rotation about the hydrodynamic axis of symmetry of the cross-bridge, i.e., its torsional degree of freedom [Ajtai, K., Ringler, A., & Burghardt, T. P. (1992) Biochemistry (following paper in this issue)].  相似文献   

20.
Mello RN  Thomas DD 《Biophysical journal》2012,102(5):1088-1096
We have used thiol cross-linking and electron paramagnetic resonance (EPR) to resolve structural transitions of myosin's light chain domain (LCD) and catalytic domain (CD) that are associated with force generation. Spin labels were incorporated into the LCD of muscle fibers by exchanging spin-labeled regulatory light chain for endogenous regulatory light chain, with full retention of function. To trap myosin in a structural state analogous to the elusive posthydrolysis ternary complex A.M'.D.P, we used pPDM to cross-link SH1 (Cys(707)) to SH2 (Cys(697)) on the CD. LCD orientation and dynamics were measured in three biochemical states: relaxation (A.M.T), SH1-SH2 cross-linked (A.M'.D.P analog), and rigor (A.M.D). EPR showed that the LCD of cross-linked fibers has an orientational distribution intermediate between relaxation and rigor, and saturation transfer EPR revealed slow rotational dynamics indistinguishable from that of rigor. Similar results were obtained for the CD using a bifunctional spin label to cross-link SH1-SH2, but the CD was more disordered than the LCD. We conclude that SH1-SH2 cross-linking traps a state in which both the CD and LCD are intermediate between relaxation (highly disordered and microsecond dynamics) and rigor (highly ordered and rigid), supporting the hypothesis that the cross-linked state is an A.M'D.P analog on the force generation pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号