首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Connexin hemichannels have a low open probability under normal conditions but open in response to various stimuli, forming a release pathway for small paracrine messengers. We investigated hemichannel-mediated ATP responses triggered by changes of intracellular Ca2+ ([Ca2+]i) in Cx43 expressing glioma cells and primary glial cells. The involvement of hemichannels was confirmed with gja1 gene-silencing and exclusion of other release mechanisms. Hemichannel responses were triggered when [Ca2+]i was in the 500 nM range but the responses disappeared with larger [Ca2+]i transients. Ca2+-triggered responses induced by A23187 and glutamate activated a signaling cascade that involved calmodulin (CaM), CaM-dependent kinase II, p38 mitogen activated kinase, phospholipase A2, arachidonic acid (AA), lipoxygenases, cyclo-oxygenases, reactive oxygen species, nitric oxide and depolarization. Hemichannel responses were also triggered by activation of CaM with a Ca2+-like peptide or exogenous application of AA, and the cascade was furthermore operational in primary glial cells isolated from rat cortex. In addition, several positive feed-back loops contributed to amplify the responses. We conclude that an elevation of [Ca2+]i triggers hemichannel opening, not by a direct action of Ca2+ on hemichannels but via multiple intermediate signaling steps that are adjoined by distinct signaling mechanisms activated by high [Ca2+]i and acting to restrain cellular ATP loss.  相似文献   

2.
Phosphorylation affects several biological functions of connexin43 (Cx43), although its role on Cx43-mediated inhibition of DNA synthesis is not known. Previous studies showed increased Cx43 phosphorylation on serine in response to growth factor stimulation of cardiomyocytes, mediated by protein kinase C-epsilon (PKCepsilon). Here we report that activation of PKCepsilon is also necessary for stimulation of cardiomyocyte DNA synthesis and mitosis. We have investigated the participation of specific serine residues that are putative PKC targets in producing phosphorylated Cx43 species and also in regulating DNA synthesis in cardiomyocytes. Interference with the PKC signaling system and/or the phosphorylation of specific amino-acids of Cx43 may allow regulation of the mitogenic response.  相似文献   

3.
Identification of the calmodulin binding domain of connexin 43   总被引:2,自引:0,他引:2  
Calmodulin (CaM) has been implicated in mediating the Ca(2+)-dependent regulation of gap junctions. This report identifies a CaM-binding motif comprising residues 136-158 in the intracellular loop of Cx43. A 23-mer peptide encompassing this CaM-binding motif was shown to bind Ca(2+)-CaM with 1:1 stoichiometry by using various biophysical approaches, including surface plasmon resonance, circular dichroism, fluorescence spectroscopy, and NMR. Far UV circular dichroism studies indicated that the Cx43-derived peptide increased its alpha-helical contents on CaM binding. Fluorescence and NMR studies revealed conformational changes of both the peptide and CaM following formation of the CaM-peptide complex. The apparent dissociation constant of the peptide binding to CaM in physiologic K(+) is in the range of 0.7-1 microM. Upon binding of the peptide to CaM, the apparent K(d) of Ca(2+) for CaM decreased from 2.9 +/- 0.1 to 1.6 +/- 0.1 microM, and the Hill coefficient n(H) increased from 2.1 +/- 0.1 to 3.3 +/- 0.5. Transient expression in HeLa cells of two different mutant Cx43-EYFP constructs without the putative Cx43 CaM-binding site eliminated the Ca(2+)-dependent inhibition of Cx43 gap junction permeability, confirming that residues 136-158 in the intracellular loop of Cx43 contain the CaM-binding site that mediates the Ca(2+)-dependent regulation of Cx43 gap junctions. Our results provide the first direct evidence that CaM binds to a specific region of the ubiquitous gap junction protein Cx43 in a Ca(2+)-dependent manner, providing a molecular basis for the well characterized Ca(2+)-dependent inhibition of Cx43-containing gap junctions.  相似文献   

4.
Astrocytes play a crucial role in maintaining the homeostasis of the brain. Changes to gap junctional intercellular communication (GJIC) in astrocytes and excessive inflammation may trigger brain damage and neurodegenerative diseases. In this study, we investigated the effect of lipopolysaccharide (LPS) on connexin43 (Cx43) gap junctions in rat primary astrocytes. Following LPS treatment, dose- and time-dependent inhibition of Cx43 expression was seen. Moreover, LPS induced a reduction in Cx43 immunoreactivity at cell–cell contacts and significantly inhibited GJIC, as revealed by the fluorescent dye scrape loading assay. Toll-like receptor 4 (TLR4) protein expression was increased 2–3-fold following LPS treatment. To study the pathways underlying these LPS-induced effects, we examined downstream effectors of TLR4 signaling and found that LPS induced a significant increase in phosphorylated extracellular signal-regulated kinase (pERK) levels up to 6 h, followed by signal attenuation and downregulation of caveolin-3 expression. Interestingly, LPS treatment also induced a dramatic increase in inducible nitric oxide synthase (iNOS) levels at 6 h, which were sustained up to 18–24 h. The LPS-induced downregulation of Cx43 and caveolin-3 was prevented by co-treatment of astrocytes with the iNOS cofactor inhibitor 1400W, but not the ERK inhibitor PD98059. Specific knockdown of caveolin-3 using siRNA had a significant inhibitory effect on GJIC and resulted in a downregulation of Cx43. Our results suggest that long-term LPS treatment of astrocytes leads to inhibition of Cx43 gap junction communication by the activation of iNOS and downregulation of caveolin-3 via a TLR4-mediated signaling pathway.  相似文献   

5.
6.
7.
8.
9.
The phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA), is a potent inhibitor of gap junctional intercellular communication (GJIC). This inhibition requires activation of protein kinase C (PKC), but the events downstream of this kinase are not known. Since PKC can activate extracellular signal regulated kinases (ERKs) and these also downregulate GJIC, we hypothesized that the inhibition of GJIC by TPA involved ERKs. TPA treatment (10 ng/ml for 30 min) of WB-F344 rat liver epithelial cells strongly activated p42 and p44 ERK-1 and -2, blocked gap junction-mediated fluorescent dye-coupling, and induced connexin43 hyperphosphorylation and gap junction internalization. These effects were completely prevented by inhibitors of PKC (bis-indolylmaleimide I; 2 microM) and ERK activation (U-0126; 10 microM). These data suggest that ERKs are activated by PKC in response to TPA treatment and are downstream mediators of the gap junction effects of the phorbol ester.  相似文献   

10.
Differential expression of connexin 43 in mouse mammary cells   总被引:2,自引:0,他引:2  
In this study we have employed suppressive subtractive hybridization (SSH) analysis to investigate differential gene expression in primary mouse mammary epithelial cells (PMMEC) cultured under mildly apoptotic/quiescent and differentiating conditions. Among a small group of genes whose expression was differentially regulated was connexin 43. In vitro, connexin 43 mRNA and protein were detectable in PMMEC cultured under proliferative or mildly apoptotic conditions. The level of connexin 43 mRNA expression in vivo was also investigated. High levels of expression were found to be associated with the periods of greatest glandular plasticity (pubertal expansion of the mammary tree, early pregnancy and during early involution). Thus, terminally differentiated cells in vivo and in vitro did not express connexin 43 mRNA suggesting that connexin 43 expression, and perhaps facilitated gap junction communication, is associated with undifferentiated progenitor cell populations.  相似文献   

11.
In the eye lens, three connexins have been detected in epithelial cells and bow region/differentiating fiber cells, suggesting the possible formation of heteromeric gap junction channels. To study possible interactions between Cx56 and Cx43, we stably transfected a normal rat kidney cell line (NRK) that expresses Cx43 with Cx56 (NRK-Cx56). Similar to the lens, several bands of Cx56 corresponding to phosphorylated forms were detected by immunoblotting in NRK-Cx56 cells. Immunofluorescence studies showed co-localization of Cx56 with Cx43 in the perinuclear region and at appositional membranes. Connexin hexamers in NRK-Cx56 cells contained both Cx43 and Cx56 as demonstrated by sedimentation through sucrose gradients. Immunoprecipitation of Cx56 from sucrose gradient fractions resulted in co-precipitation of Cx43 from NRK-Cx56 cells suggesting the presence of relatively stable interactions between the two connexins. Double whole-cell patch-clamp experiments showed that the voltage-dependence of Gmin in NRK-Cx56 cells differed from that in NRK cells. Moreover, stable interactions between Cx43 and Cx56 were also demonstrated in the embryonic chicken lens by co-precipitation of Cx43 in Cx56 immunoprecipitates. These data suggest that Cx43 and Cx56 form heteromeric connexons in NRK-Cx56 cells as well as in the lens in vivo leading to differences in channel properties which might contribute to the variations in gap junctional intercellular communication observed in different regions of the lens.  相似文献   

12.
13.
Despite the extensive use of propofol in general anesthetic procedures, the effects of propofol on glial cell were not completely understood. In lipopolysaccharide (LPS)-stimulated rat primary astrocytes and BV2 microglial cell lines, co-treatment of propofol synergistically induced inflammatory activation as evidenced by the increased production of NO, ROS and expression of iNOS, MMP-9 and several cytokines. Propofol augmented the activation of JNK and p38 MAPKs induced by LPS and the synergistic activation of glial cells by propofol was prevented by pretreatment of JNK and p38 inhibitors. When we treated BV2 cell culture supernatants treated with LPS plus propofol on cultured rat primary neuron, it induced a significant neuronal cell death. The results suggest that the repeated use of propofol in immunologically challenged situation may induce glial activation in brain.  相似文献   

14.
15.
16.
17.
We have developed polyclonal antibodies (SA226P) to a peptide of the human connexin43 (Cx43) protein between amino acids 271 and 288 containing phosphorylated S279 and S282. Antibodies specific for the phosphorylated form of the peptide were isolated by double immunoaffinity chromatography and were characterised using proteins of the cell line WB-F344, known to contain large amounts of Cx43. SA226P recognises specifically the slowest migrating Cx43 band in immunoblots of proteins isolated from untreated cells. In immunofluorescence experiments SA226P scarcely stains the plasma membrane in untreated cells in contrast to a commercial antibody recognising all isoforms of the Cx43 protein. EGF or stress treatment of the cells results in a rapid increase in the phosphorylated forms of Cx43 as revealed by immunoblotting. Immunofluorescence experiments reveal that both phosphorylated and non-phosphorylated Cx43 could be found at the plasma membrane. Whether phosphorylation of S279/S282 takes place before or after incorporation of Cx43 into the membranes is so far unknown. More interestingly, confocal microscopy using our antibodies and a commercial antibody recognising all isoforms of Cx43 shows the coexistence of differentially phosphorylated forms of the protein at the plasma membrane. Our results indicate that MAP kinases erk1/2 are mainly responsible for this phosphorylation, as already published. Nevertheless, treatment of the cells with anisomycin, known to activate stress kinase p38 but not erk1/2, also results in a weak but reproducible Cx43 phosphorylation.  相似文献   

18.
Microglial activation has been studied extensively in diabetic retinopathy. We have previously detected activation and migration of microglia in 8-week-old diabetic rat retinas. It is widely acknowledged that microglia-mediated inflammation contributes to the progression of diabetic retinopathy. However, existing cell models do not explore the role of activated microglia in vitro. In this study, microglia were subject to various conditions mimicking diabetic retinopathy, including high glucose, glyoxal, and hypoxia. Under high glucose or glyoxal treatment, microglia demonstrated only partially functional changes, while under hypoxia, microglia became fully activated showing enlarged cell bodies, enhanced migration and phagocytosis as well as increased production of pro-inflammatory factors such as cyclooxygenase-2 (COX-2), interleukin-1β (IL-1β), and inducible nitric oxide synthase (iNOS). The data indicate that hypoxia-treated microglia is an optimal in vitro model for exploration of microglia activation in diabetic retinopathy.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号