首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cell-cycle control: POLO-like kinases join the outer circle   总被引:1,自引:0,他引:1  
Named after the polo gene of Drosophila, POLO-like kinases (PLKs) constitute a novel, evolutionarily conserved family of essential cell-cycle regulators. As emphasized in this review, recent studies identify important roles for vertebrate PLKs at the onset of mitosis: Plx1, a Xenopus PLK, has been implicated in the activation of Cdc25 phosphatase (and hence the activation of Cdc2), while human Plk1 is required for the proper maturation of the poles of mitotic spindles. These studies suggest a major role for Plk1/Plx1 in coordinating spindle assembly with the activation of Cdc2-cyclin complexes, and they establish a direct link between PLKs and the core cell-cycle-regulatory machinery. Genetic and biochemical studies in yeasts and Drosophila point to additional roles for PLKs at later stages of mitosis. Finally, mammals express multiple PLKs, suggesting that different family members might function at distinct cell-cycle transitions, reminiscent of cyclin-dependent kinases.  相似文献   

2.
PLK1 (polo-like kinase 1) is a key mitotic kinase and a therapeutic target in the treatment of proliferative diseases. Here we investigate the relative substrate specificity and pharmacological relatedness of PLK1, -2, -3, and -4 that together comprise a conserved family of Ser/Thr kinases (PLK family). We report consensus substrate sequences for PLK2, -3, and -4 and an expanded consensus sequence for PLK1, which we use to design an optimal peptide substrate, PLKtide. We report inhibitory activity for the entire PLK family across a diverse set of small-molecule ATP-competitive inhibitors including several clinical compounds. With respect to both substrate and ATP-site specificity, highest similarity is observed between PLK2 and PLK3, PLK1 is next most similar, and PLK4 is least similar. Further, we have identified and report time-dependent inhibition by two potent and selective PLK inhibitors.  相似文献   

3.
Polo-like kinases (PLKs) consist of a family of kinases which play critical roles during multiple stages of cell cycle progression. Increase of PLK1 and decrease of PLK3 are associated with the developments and metastases of many types of human malignant tumors; however, the situations of PLKs in prion diseases are less understood. Using Western blots and immunohistochemical and immunofluorescent assays, marked increase of PLK1 and decrease of PLK3 were observed in the brains of scrapie strain 263K-infected hamsters, presenting obviously a time-dependent phenomenon along with disease progression. Similar alterations of PLKs were also detected in a scrapie infectious cell line SMB-S15. Both PLK1 and PLK3 were observed in neurons by confocal microscopy. Accompanying with the changes of PLKs in the brains of 263K-infected hamsters, Cdc25C and its phosphorylated forms (p-Cdc25C-Ser198 and p-Cdc25C-Ser216) were significantly down-regulated, whereas Cyclin B1 and PCNA were obviously up-regulated, while phospho-histone H3 remained almost unchanged. Moreover, exposure of the cytotoxic peptide PrP106-126 on the primary cultured cortical neuron cells induced similar changes of cellular PLKs and some cell cycle-related proteins, such as Cdc25C and its phosphorylated forms, phospho-histone H3. Those results illustrate obviously aberrant expressions of cell cycle regulatory proteins in the prion-infected neurons, which may lead to the cell cycle arrest at M phase. Possibly due to the ill-regulation of some key cell cycle events during prion infection, together with the fact that neurons are unable to complete mitosis, the cell cycle reentry in prion-infected neurons is definitely abortive, which may lead to neuron apoptosis and neuron degeneration.  相似文献   

4.
Analyses of human phosphoproteome based on primary structure of the aminoacids surrounding the phosphor Ser/Thr suggest that a significant proportion of phosphosites is generated by a restricted number of acidophilic kinases, among which protein kinase CK2 plays a prominent role. Recently, new acidophilic kinases belonging to the Polo like kinase family have been characterized, with special reference to PLK1, PLK2, and PLK3 kinases. While some progress has been made in deciphering the PLK1-dependent phosphoproteome, very little is known about the targets of PLK2 and PLK3 kinases. In this report by using an in vitro approach, consisting of cell lysate phosphorylation, phosphoprotein separation by 2D gel electrophoresis and mass spectrometry, we describe the identification of new potential substrates of PLK2 and PLK3 kinases. We have identified and validated as in vitro PLK2 and PLK3 substrates HSP90, GRP-94, β-tubulin, calumenin, and 14-3-3 epsilon. The phosphosites generated by PLK3 in these proteins have been identified by mass spectrometry analysis to get new insights about PLKs specificity determinants. These latter have been further corroborated by an in silico analysis of the PLKs substrate binding region.  相似文献   

5.
Polo-like kinase-1 is a target of the DNA damage checkpoint   总被引:1,自引:0,他引:1  
Polo-like kinases (PLKs) have an important role in several stages of mitosis. They contribute to the activation of cyclin B/Cdc2 and are involved in centrosome maturation and bipolar spindle formation at the onset of mitosis. PLKs also control mitotic exit by regulating the anaphase-promoting complex (APC) and have been implicated in the temporal and spatial coordination of cytokinesis. Experiments in budding yeast have shown that the PLK Cdc5 may be controlled by the DNA damage checkpoint. Here we report the effects of DNA damage on Polo-like kinase-1 (Plk1) in a variety of human cell lines. We show that Plk1 is inhibited by DNA damage in G2 and in mitosis. In line with this, we show that DNA damage blocks mitotic exit. DNA damage does not inhibit the kinase activity of Plk1 mutants in which the conserved threonine residue in the T-loop has been changed to aspartic acid, suggesting that DNA damage interferes with the activation of Plk1. Significantly, expression of these mutants can override the G2 arrest induced by DNA damage. On the basis of these data we propose that Plk1 is an important target of the DNA damage checkpoint, enabling cell-cycle arrests at multiple points in G2 and mitosis.  相似文献   

6.
Polo-like kinases play an essential role in the ordered execution of mitotic events and 4 mammalian PLK family members have been identified. Accumulating evidence indicates that PLK1 is an attractive target for anticancer drugs. In this paper, a series of beta-carboline derivatives were synthesized and three compounds, DH281, DH285 and DH287, were identified as potent new PLK inhibitors. We employed various biochemical and cellular approaches to determine the effects of these compounds on the activity of PLK1 and other mitotic kinases and on cell cycle progression. We found that these three compounds could selectively inhibit the kinase activity of purified PLK1, PLK2 and PLK3 in vitro. They show strong antitumor activity against a number of cancer cell lines with relatively low micromolar IC50s, but are relatively less toxic to non-cancer cells (MRC5). Moreover, these compounds could induce obvious accumulation of HeLa cells in G2/M and S phases and trigger apoptosis. Although MRC5 cells show clear S-phase arrest after treatment with these compounds, the G2/M arrest and apoptosis are less insignificant, indicating the distinct sensitivity between normal and cancer cells. We also found that HeLa cells treated with these drugs exhibit monopolar spindles and increased Wee1 protein levels, the characteristics of cells treated with PLK1 inhibitors. Together, these results demonstrate that DH281, DH285 and DH287 beta-carboline compounds are new PLK inhibitors with potential for cancer treatment.  相似文献   

7.
8.
The transition from mitosis to interphase, referred to as mitotic exit, is a critical mitotic process which involves activation and inactivation of multiple mitotic kinases and counteracting protein phosphatases. Loss of mitotic exit checkpoints is a common feature of cancer cells, leading to mitotic dysregulation and confers cancer cells with oncogenic characteristics, such as aberrant proliferation and microtubule-targeting agent (MTA) resistance. Since MTA resistance results from cancer cells prematurely exiting mitosis (mitotic slippage), blocking mitotic exit is believed to be a promising anticancer strategy. Moreover, based on this theory, simultaneous inhibition of mitotic exit and additional cell cycle phases would likely achieve synergistic antitumor effects. In this review, we divide the molecular regulators of mitotic exit into four categories based on their different regulatory functions: 1) the anaphase-promoting complex/cyclosome (APC/C, a ubiquitin ligase), 2) cyclin B, 3) mitotic kinases and phosphatases, 4) kinesins and microtubule-binding proteins. We also review the regulators of mitotic exit and propose prospective anticancer strategies targeting mitotic exit, including their strengths and possible challenges to their use.  相似文献   

9.
Polo-like kinase 1 (Plk1) plays a critical role in proper M-phase progression and cell proliferation. Plk1 is overexpressed in a broad spectrum of human cancers and is considered an attractive anticancer drug target. Although a large number of inhibitors targeting the catalytic domain of Plk1 have been developed, these inhibitors commonly exhibit a substantial level of cross-reactivity with other structurally related kinases, thus narrowing their applicable dose for patient treatment. Plk1 contains a C-terminal polo-box domain (PBD) that is essentially required for interacting with its binding targets. However, largely due to the lack of both specific and membrane-permeable inhibitors, whether PBD serves as an alternative target for the development of anticancer therapeutics has not been rigorously examined. Here, we used an intracellularly expressed 29-mer-long PBIP1-derived peptide (i.e., PBIPtide), which can be converted into a “suicidal” PBD inhibitor via Plk1-dependent self-priming and binding. Using this highly specific and potent system, we showed that Plk1 PBD inhibition alone is sufficient for inducing mitotic arrest and apoptotic cell death in cancer cells but not in normal cells, and that cancer cell–selective killing can occur regardless of the presence or absence of oncogenic RAS mutation. Intriguingly, PBD inhibition also effectively prevented anchorage-independent growth of malignant cancer cells. Thus, targeting PBD represents an appealing strategy for anti-Plk1 inhibitor development. Additionally, PBD inhibition–induced cancer cell–selective killing may not simply stem from activated RAS alone but, rather, from multiple altered biochemical and physiological mechanisms, which may have collectively contributed to Plk1 addiction in cancer cells.  相似文献   

10.
Several families of protein kinases have been shown to play a critical role in the regulation of cell cycle progression, particularly progression through mitosis. These kinase families include the Aurora kinases, the Mps1 gene product and the Polo Like family of protein kinases (PLKs). The PLK family consists of five members and of these, the role of PLK1 in human cancer is well documented. PLK2 (SNK), which is highly homologous to PLK1, has been shown to play a critical role in centriole duplication and is also believed to play a regulatory role in the survival pathway by physically stabilizing the TSC1/2 complex in tumor cells under hypoxic conditions. As a part of our research program, we have developed a library of novel ATP mimetic chemotypes that are cytotoxic against a panel of cancer cell lines. We show that one of these chemotypes, the 6-arylsulfonyl pyridopyrimidinones, induces apoptosis of human tumor cell lines in nanomolar concentrations. The most potent of these compounds, 7ao, was found to be a highly specific inhibitor of PLK2 when profiled against a panel of 288 wild type, 55 mutant and 12 lipid kinases. Here, we describe the synthesis, structure activity relationship, in vitro kinase specificity and biological activity of the lead compound, 7ao.  相似文献   

11.
Polo-like kinase 1 (PLK1), which has been shown to have a critical role in mitosis, is one possible target for cancer therapeutic intervention. PLK1, at least in Xenopus, starts the mitotic cascade by phosphorylating and activating cdc25C phosphatase. Also, loss of PLK1 function has been shown to induce mitotic catastrophe in a HeLa cervical carcinoma cell line but not in normal Hs68 fibroblasts. We wanted to understand whether the selective mitotic catastrophe in HeLa cells could be extended to other tumor types, and, if so, whether it could be attributable to a tumor-specific loss of dependence on PLK1 for cdc25C activation. When PLK1 function was blocked through adenovirus delivery of a dominant-negative gene, we observed tumor-selective apoptosis in most tumor cell lines. In some lines, dominant-negative PLK1 induced a mitotic catastrophe similar to that published in HeLa cells (K. E. Mundt et al., Biochem. Biophys Res. Commun., 239: 377-385, 1997). Normal human mammary epithelial cells, although arrested in mitosis, appeared to escape the loss of centrosome maturation and mitotic catastrophe seen in tumor lines. Mitotic phosphorylation of cdc25C and activation of cdk1 was blocked by dominant-negative PLK1 in human mammary epithelial cells as well as in the tumor lines regardless of whether they underwent mitotic catastrophe. These data strongly argue that the mitotic catastrophe is not attributable to a lack of dependence for PLK1 in activating cdc25C.  相似文献   

12.
Polo-like kinases (PLKs) control several aspects of eukaryotic cell division and DNA damage response. Remarkably, PLKs are overexpressed in several types of cancer, being therefore a marker of bad prognosis. As such, specific PLK kinase activity inhibitors are already used in clinical trials and the regulation of PLK activation is a relevant topic of cancer research. Phosphorylation of threonine residues in the T-loop of the kinase domain is pivotal for PLKs activation. Here, we show that T238A substitution in the T-loop reduces the kinase activity of Cdc5, the only PLK in Saccharomyces cerevisiae, with minor effect on cell growth in unperturbed conditions. However, the cdc5-T238A cells have increased rate of chromosome loss and gross chromosomal rearrangements, indicating altered genome stability. Moreover, the T238A mutation affects timely localization of Cdc5 to the spindle pole bodies and blocks cell cycle restart after one irreparable double-strand break. In cells responding to alkylating agent metylmethane sulfonate (MMS), the cdc5-T238A mutation reduces the phosphorylation of Mus81-Mms4 resolvase and exacerbates the MMS sensitivity of sgs1Δ cells that accumulate Holliday junctions. Of importance, the previously described checkpoint adaptation defective allele, cdc5-ad does not show reduced kinase activity, defective Mms4 phosphorylation and genetic interaction with sgs1Δ. Our data define the importance of regulating Cdc5 activity through T-loop phosphorylation to preserve genome integrity and respond to DNA damage.  相似文献   

13.
Myosin phosphatase-targeting subunit 1 (MYPT1) binds to the catalytic subunit of protein phosphatase 1 (PP1C). This binding is believed to target PP1C to specific substrates including myosin II, thus controlling cellular contractility. Surprisingly, we found that during mitosis, mammalian MYPT1 binds to polo-like kinase 1 (PLK1). MYPT1 is phosphorylated during mitosis by proline-directed kinases including cdc2, which generates the binding motif for the polo box domain of PLK1. Depletion of PLK1 by small interfering RNAs is known to result in loss of gamma-tubulin recruitment to the centrosomes, blocking centrosome maturation and leading to mitotic arrest. We found that codepletion of MYPT1 and PLK1 reinstates gamma-tubulin at the centrosomes, rescuing the mitotic arrest. MYPT1 depletion increases phosphorylation of PLK1 at its activating site (Thr210) in vivo, explaining, at least in part, the rescue phenotype by codepletion. Taken together, our results identify a previously unrecognized role for MYPT1 in regulating mitosis by antagonizing PLK1.  相似文献   

14.
Polo-like kinases (PLKs) are conserved eukaryotic cell cycle regulators, which play multiple roles, particularly during mitosis. The function of Trypanosoma brucei PLK was investigated in procyclic and bloodstream-form parasites. In procyclic trypanosomes, RNA interference (RNAi) of PLK, or overexpression of TY1-epitope-tagged PLK (PLKty), but not overexpression of a kinase-dead variant, resulted in the accumulation of cells that had divided their nucleus but not their kinetoplast (2N1K cells). Analysis of basal bodies and flagella in these cells suggested the defect in kinetoplast division arose because of an inhibition of basal body duplication, which occurred when PLK expression levels were altered. Additionally, a defect in kDNA replication was observed in the 2N1K cells. However, the 2N1K cells obtained by each approach were not equivalent. Following PLK depletion, the single kinetoplast was predominantly located between the two divided nuclei, while in cells overexpressing PLKty, the kinetoplast was mainly found at the posterior end of the cell, suggesting a role for PLK kinase activity in basal body and kinetoplast migration. PLK RNAi in bloodstream trypanosomes also delayed kinetoplast division, and was further observed to inhibit furrow ingression during cytokinesis. Notably, no additional roles were detected for trypanosome PLK in mitosis, setting this protein kinase apart from its counterparts in other eukaryotes.  相似文献   

15.
16.
Faithful chromosome segregation with bipolar spindle formation is critical for the maintenance of genomic stability. Perturbation of this process often leads to severe mitotic failure, contributing to tumorigenesis. MLL5 has been demonstrated to play vital roles in cell cycle progression and the maintenance of genomic stability. Here, we identify a novel interaction between MLL5 and PLK1 in the cytosol that is crucial for sustaining spindle bipolarity during mitosis. Knockdown of MLL5 caused aberrant PLK1 aggregation that led to acentrosomal microtubule-organizing center (aMTOC) formation and subsequent spindle multipolarity. Further molecular studies revealed that the polo-box domain (PBD) of PLK1 interacted with a binding motif on MLL5 (Thr887-Ser888-Thr889), and this interaction was essential for spindle bipolarity. Overexpression of wild-type MLL5 was able to rescue PLK1 mislocalization and aMTOC formation in MLL5-KD cells, whereas MLL5 mutants incapable of interacting with the PBD failed to do so. We thus propose that MLL5 preserves spindle bipolarity through maintaining cytosolic PLK1 in a nonaggregated form.  相似文献   

17.
Cyclin-dependent kinases (CDKs) and Polo-like kinases (PLKs) play key role in the regulation of the cell cycle. The aim of our study was originally the further development of our recently discovered polo-like kinase 1 (PLK1) inhibitors. A series of new 2,4-disubstituted pyrimidine derivatives were synthesized around the original hit, but their PLK1 inhibitory activity was very poor. However the novel compounds showed nanomolar CDK9 inhibitory activity and very good antiproliferative effect on multiple myeloma cell lines (RPMI-8226).  相似文献   

18.
翟睿  霍立军 《生命科学》2012,(3):292-296
Aurora蛋白激酶A及Polo样蛋白激酶1(PLK在)作为重要的细胞周期调节蛋白可参与调控纺锤体组装、有丝分裂等细胞进程,但其激活机制及在有丝分裂中的作用机制仍然不是很清楚。Bora作为Aurora蛋白激酶A的结合蛋白,在果蝇和脊椎动物中功能高度保守,其主要通过结合Aurora蛋白激酶A从而调节Aurora蛋白激酶A的活性、促进PLK1的磷酸化、调节纺锤体的组装以及调控细胞周期进程等。随着对Bora研究的深入,人们对AuroraA和PLK1的激活机制以及Bora、Aurora蛋白激酶A、PLK1三者对细胞的调控也有了进一步的认识。主要综述Bora在细胞功能调控中的作用和研究机制。  相似文献   

19.
Polo-like kinases (PLKs) and Aurora kinases (AKs) act as key cell cycle regulators in healthy human cells. In cancer, these protein kinases are often overexpressed and dysregulated, thus contributing to uncontrolled cell proliferation and growth. T-cell acute lymphoblastic leukemia (T-ALL) is a heterogeneous malignancy arising in the thymus from T-cell progenitors. Primary chemoresistant and relapsed T-ALL patients have yet a poor outcome, therefore novel therapies, targeting signaling pathways important for leukemic cell proliferation, are required. Here, we demonstrate the potential therapeutic effects of BI6727, MK-5108, and GSK1070916, three selective inhibitors of PLK1, AK-A, and AK-B/C, respectively, in a panel of T-ALL cell lines and primary cells from T-ALL patients. The drugs were both cytostatic and cytotoxic to T-ALL cells by inducing G2/M-phase arrest and apoptosis. The drugs retained part of their pro-apoptotic activity in the presence of MS-5 bone marrow stromal cells. Moreover, we document for the first time that BI6727 perturbed both the PI3K/Akt/mTORC2 and the MEK/ERK/mTORC1 signaling pathways, and that a combination of BI6727 with specific inhibitors of the aforementioned pathways (MK-2206, CCI-779) displayed significantly synergistic cytotoxic effects. Taken together, our findings indicate that PLK1 and AK inhibitors display the potential for being employed in innovative therapeutic strategies for improving T-ALL patient outcome.  相似文献   

20.
Aurora kinases play an essential role in mitosis and cell cycle regulation. In recent years Aurora kinases have proved popular cancer targets and many inhibitors have been developed. The majority of these clinical candidates are multi-targeted, rendering them inappropriate as tools for studying Aurora kinase mediated signaling. Here we report discovery of a highly selective inhibitor of Aurora kinases A, B and C, with potent cellular activity and minimal off-target activity (PLK4). The X-ray co-crystal structure of Aurora A in complex with compound 2 is reported, and provides insights into the structural determinants of ligand binding and selectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号