首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Clusterin (CLU) gene produces different forms of protein products, which vary in their biological properties and distribution within the cell. Both the extra‐ and intracellular CLU forms regulate cell proliferation and apoptosis. Dis‐regulation of CLU expression occurs in many cancer types, including prostate cancer. The role that CLU plays in tumorigenesis is still unclear. We found that CLU over‐expression inhibited cell proliferation and induced apoptosis in prostate cancer cells. Here we show that depletion of CLU affects the growth of PC‐3 prostate cancer cells. Following siRNA targeting all CLU mRNA variants, all protein products quickly disappeared, inducing cell cycle progression and higher expression of specific proliferation markers (i.e., H3 mRNA, PCNA, and cyclins A, B1, and D) as detected by RT‐qPCR and Western blot. Quite surprisingly, we also found that the turnover of CLU protein is very rapid and tightly regulated by ubiquitin–proteasome mediated degradation. Inhibition of protein synthesis by cycloheximide showed that CLU half‐life is less than 2 h. CLU protein products were found poly‐ubiquitinated by co‐immuniprecipitation. Proteasome inhibition by MG132 caused stabilization and accumulation of all CLU protein products, including the nuclear form of CLU (nCLU), and committing cells to caspase‐dependent death. In conclusion, proteasome inhibition may induce prostate cancer cell death through accumulation of nCLU, a potential tumor suppressor factor. J. Cell. Physiol. 219: 314–323, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

2.
The secreted clusterin/apolipoprotein J (CLU) protein form is a ubiquitously expressed heterodimeric glycoprotein which is differentially regulated in many severe physiological disturbance states including cell death, ageing, cancer progression, and various neurological diseases. Despite extensive efforts CLU function remains an enigma, the main cause being the intriguingly distinct and usually opposed functions in various cell types and tissues. In the current report we investigated the effects of CLU on cellular growth and survival in three human osteosarcoma (OS) cell lines, namely KH OS, Sa OS, and U-2 OS that express very low, moderate, and high endogenous steady-state CLU amounts, respectively. We found that exposure of these established OS cell lines or primary OS cells to genotoxic stress results in CLU gene induction at distinct levels that correlate negatively to CLU endogenous amounts. Following CLU-forced overexpression by means of an artificial transgene, we found that although extracellular CLU inhibits cell death in all three OS cell lines, intracellular CLU has different effects on cellular proliferation and survival in these cell lines. Transgenic KH OS cell lines adapted to moderate intracellular CLU levels were growth-retarded and became resistant to genotoxic and oxidative stress. In contrast, transgenic Sa OS and U2 OS cell lines adapted to high intracellular CLU amounts were sensitive to genotoxic and oxidative stress. In these two cell lines, the proapoptotic CLU function could be rescued by caspase inhibition. To monitor the immediate effects of heterologous CLU overexpression prior to cell adaptation, we performed transient transfections in all three OS cell lines. We found that induction of high intracellular CLU amounts increases spontaneous apoptosis in KH OS cells and reduces DNA synthesis in all three cell lines assayed. On the basis of these novel findings we propose that although extracellular CLU as well as intracellular CLU at low/moderate levels is cytoprotective, CLU may become highly cytostatic and/or cytotoxic if it accumulates intracellularly in high amounts either by direct synthesis or by uptake from the extracellular milieu.  相似文献   

3.
Clusterin (CLU), whose role is still debated, is differentially regulated in several patho-physiological processes and invariably induced during apoptosis. In heat shock response, CLU is considered a stress-inducible, pro-survival/cyto-protective factor via an HSE element present in his promoter. In both human prostate PNT1A and PC-3 epithelial cells we found that apoptotic stimuli induced nuclear localization of CLU (nCLU), and that overexpression of nCLU is pro-apoptotic. We show here that CLU time-course accumulation kinetic is different from that of HSP70 in these cells, thus other factor(s) might mediate HSF-1 activation and CLU expression. Sub-lethal heat shock inhibited the secretion of CLU (sCLU), leading to increased cytoplasm accumulation of CLU (cCLU) in association to cell survival. At difference, lethal heat stress caused massive accumulation of pro-apoptotic nCLU in cells dying by caspase-3-dependent apoptosis. Double heat stress (sub-lethal heat shock followed by recovery and lethal stress) induced HSP70 and thermo-tolerance in PNT1A cells, but not in PC-3 cells. In PNT1A cells, CLU secretion was inhibited and cCLU was accumulated, suggesting that cCLU might be pro-survival, while in PC-3 cells accumulation of nCLU was concomitant to caspase-3 induction and PARP activation instead. Thus, CLU expression/sub-cellular localization is strictly related to cell fate. In particular, nCLU and physiological levels of HSP70 affected cell survival in an antagonistic fashion. Prevalence of heat-induced nCLU, not allowing PC-3 cells to cope with heat shock, could be the rational explaining why malignant cells are more sensitive to heat when delivered by minimally invasive procedures for ablation of localized prostate cancer.  相似文献   

4.
5.
Macroautophagy/autophagy is a fundamental cellular degradation mechanism that maintains cell homeostasis, regulates cell signaling, and promotes cell survival. Its role in promoting tumor cell survival in stress conditions is well characterized, and makes autophagy an attractive target for cancer therapy. Emerging research indicates that autophagy also influences cancer metastasis, which is the primary cause of cancer-associated mortality. However, data demonstrate that the regulatory role of autophagy in metastasis is multifaceted, and includes both metastasis-suppressing and -promoting functions. The metastasis-suppressing functions of autophagy, in particular, have important implications for autophagy-based treatments, as inhibition of autophagy may increase the risk of metastasis. In this review, we discuss the mechanisms and context underlying the role of autophagy in metastasis, which include autophagy-mediated regulation of focal adhesion dynamics, integrin signaling and trafficking, Rho GTPase-mediated cytoskeleton remodeling, anoikis resistance, extracellular matrix remodeling, epithelial-to-mesenchymal transition signaling, and tumor-stromal cell interactions. Through this, we aim to clarify the context-dependent nature of autophagy-mediated metastasis and provide direction for further research investigating the role of autophagy in cancer metastasis.  相似文献   

6.
7.
Clusterin (CLU) has been implicated in various cell functions involved in carcinogenesis and tumour progression. There are two known CLU protein isoforms generated in human cells. A nuclear form of CLU protein (nCLU) is proapoptotic, and a secretory form (sCLU) is prosurvival. CLU expression has been associated with tumorigenesis of various malignancies, including tumours of prostate, colon, and breast. Furthermore, CLU expression is modulated by many factors that are believed to regulate tumour growth and/or apoptosis, including 1,25-dihydroxyvitamin D3, transforming growth factor beta-1, ultraviolet radiation, and IR. sCLU upregulation appears to be a general molecular stress response. Presently, preliminary results indicate that therapeutic modalities targeting CLU may be effective in cancer treatment. However, such strategies should make sure that nCLU is not eliminated or reduced. This review summarizes our present understanding of the importance of CLU in various physiological functions including tumour growth, and discusses its relevance to future cancer therapy.  相似文献   

8.
Breast cancer (BC) is a very common cancer among women and one of the primary causes of death in women worldwide. Because BC has different molecular subtypes, the challenges associated with targeted therapy have increased significantly, and the identification of new therapeutic targets has become increasingly urgent. Blocking apoptosis and inhibiting cell death are important characteristics of malignant tumours, including BC. Under adverse conditions, including exposure to antitumour therapy, inhibition of cell death programmes can promote cancerous transformation and the survival of cancer cells. Therefore, inducing cell death in cancer cells is fundamentally important and provides new opportunities for potential therapeutic interventions. Lytic forms of cell death, primarily pyroptosis, necroptosis and ferroptosis, are different from apoptosis owing to their characteristic lysis, that is, the production of cellular components, to guide beneficial immune responses, and the application of lytic cell death (LCD) in the field of tumour therapy has attracted considerable interest from researchers. The latest clinical research results confirm that lytic death signalling cascades involve the BC cell immune response and resistance to therapies used in clinical practice. In this review, we discuss the current knowledge regarding the various forms of LCD, placing a special emphasis on signalling pathways and their implications in BC, which may facilitate the development of novel and optimal strategies for the clinical treatment of BC.  相似文献   

9.
The role of aldo‐keto reductase family 1 member B1 (AKR1B1) in cancer is not totally clear but growing evidence is suggesting to have a great impact on cancer progression. AKR1B1 could participate in a complicated network of signalling pathways, proteins and miRNAs such as mir‐21 mediating mechanisms like inflammatory responses, cell cycle, epithelial to mesenchymal transition, cell survival and apoptosis. AKR1B1 has been shown to be mostly overexpressed in cancer. This overexpression has been associated with inflammatory mediators including nuclear factor kappa‐light‐chain‐enhancer of activated B cells (NFκB), cell cycle mediators such as cyclins and cyclin‐dependent kinases (CDKs), survival proteins and pathways like mammalian target of rapamycin (mTOR) and protein kinase B (PKB) or AKT, and other regulatory factors in response to reactive oxygen species (ROS) and prostaglandin synthesis. In addition, inhibition of AKR1B1 has been shown to mostly have anti‐cancer effects. Several studies have also suggested that AKR1B1 inhibition as an adjuvant therapy could render tumour cells more sensitive to anti‐cancer therapy or alleviate the adverse effects of therapy. AKR1B1 could also be considered as a potential cancer diagnostic biomarker since its promoter has shown high levels of methylation. Although pre‐clinical investigations on the role of AKR1B1 in cancer and the application of its inhibitors have shown promising results, the lack of clinical studies on AKR1B1 inhibitors has hampered the use of these drugs to treat cancer. Thus, there is a need to conduct more clinical studies on the application of AKR1B1 inhibitors as adjuvant therapy on different cancers.  相似文献   

10.
Studies on chronic myeloid leukemia (CML) have served as a paradigm for cancer research and therapy. These studies involve the identifi cation of the fi rst cancer-associated chromosomal abnormality and the subsequent development of tyrosine kinase inhibitors (TKIs) that inhibit BCR-ABL kinase activity in CML. It becomes clear that leukemia stem cells (LSCs) in CML which are resistant to TKIs, and eradication of LSCs appears to be extremely diffi cult. Therefore, one of the major issues in current CML biology is to understand the biology of LSCs and to investigate why LSCs are insensitive to TKI monotherapy for developing curative therapeutic strategies. Studies from our group and others have revealed that CML LSCs form a hierarchy similar to that seen in normal hematopoiesis, in which a rare stem cell population with limitless selfrenewal potential gives rise to progenies that lack such potential. LSCs also possess biological features that are different from those of normal hematopoietic stem cells (HSCs) and are critical for their malignant characteristics. In this review, we summarize the latest progress in CML field, and attempt to understand the molecular mechanisms of survival regulation of LSCs.  相似文献   

11.
Macroautophagy (hereafter referred to as autophagy) is a lysosomal catabolic pathway whereby cells recycle macromolecules and organelles. The capacity of autophagy to maintain cellular metabolism under starvation conditions and to remove damaged organelles under stress conditions improves the survival of cells. Yet, autophagy appears to suppress tumorigenesis. In this review we discuss recent data that begin to elucidate the molecular basis for this apparent controversy. First, we summarize our current knowledge on the autophagy-mediated control of both cell survival and cell death in general. Then, we highlight the common cancer-associated changes in autophagy induction, regulation and execution. And finally we discuss the potential of pro- as well as anti-autophagic signaling pathways as targets for future cancer therapy.  相似文献   

12.
Autophagy and tumorigenesis   总被引:1,自引:0,他引:1  
Nan Chen 《FEBS letters》2010,584(7):1427-674
Autophagy, or cellular self-digestion, is activated in cancer cells in response to multiple stresses and has been demonstrated to promote tumor cell survival and drug resistance. Nonetheless, genetic evidence supports that autophagy functions as a tumor suppressor mechanism. Hence, the precise role of autophagy during cancer progression and treatment is both tissue and context dependent. Here, we discuss our current understanding of the biological functions of autophagy during cancer development, overview how autophagy is regulated by cancer-associated signaling pathways, and review how autophagy inhibition is being exploited to improve clinical outcomes.  相似文献   

13.
《Autophagy》2013,9(5):574-580
Macroautophagy (hereafter referred to as autophagy) is a lysosomal catabolic pathway whereby cells recycle macromolecules and organelles. The capacity of autophagy to maintain cellular metabolism under starvation conditions and to remove damaged organelles under stress conditions improves the survival of cells. Yet, autophagy appears to suppress tumorigenesis. In this review we discuss recent data that begin to elucidate the molecular basis for this apparent controversy. First, we summarize our current knowledge on the autophagy-mediated control of both cell survival and cell death in general. Then, we highlight the common cancer-associated changes in autophagy induction, regulation and execution. And finally we discuss the potential of pro- as well as anti-autophagic signaling pathways as targets for future cancer therapy.  相似文献   

14.
Clusterin (CLU) plays numerous roles in mammalian cells after stress. A review of the recent literature strongly suggests potential roles for CLU proteins in low dose ionizing radiation (IR)-inducible adaptive responses, bystander effects, and delayed death and genomic instability. Its most striking and evident feature is the inducibility of the CLU promoter after low, as well as high, doses of IR. Two major forms of CLU, secreted (sCLU) and nuclear (nCLU), possess opposite functions in cellular responses to IR: sCLU is cytoprotective, whereas nCLU (a byproduct of alternative splicing) is a pro-death factor. Recent studies from our laboratory and others demonstrated that down-regulation of sCLU by specific siRNA increased cytotoxic responses to chemotherapy and IR. sCLU was induced after low non-toxic doses of IR (0.02-0.5 Gy) in human cultured cells and in mice in vivo. The low dose inducibility of this survival protein suggests a possible role for sCLU in radiation adaptive responses, characterized by increased cell radioresistance after exposure to low adapting IR doses. Although it is still unclear whether the adaptive response is beneficial or not to cells, survival of damaged cells after IR may lead to genomic instability in the descendants of surviving cells. Recent studies indicate a link between sCLU accumulation and cancer incidence, as well as aging, supporting involvement of the protein in the development of genomic instability. Secreted after IR, sCLU may also alter intracellular communication due to its ability to bind cell surface receptors, such as the TGF-beta receptors (types I and II). This interference with signaling pathways may contribute to IR-induced bystander effects. We hypothesize that activation of the TGF-beta signaling pathway, which often occurs after IR exposure, can in turn activate the CLU promoter. TGF-beta and IR-inducible de novo synthesized sCLU may then bind the TGF-beta receptors and suppress downstream growth arrest signaling. This complicated negative feedback regulation most certainly depends on the cellular microenvironment, but undoubtedly represents a potential link between IR-induced adaptive responses, genomic instability and bystander effects. Further elucidation of clusterin protein functions in IR responses are clearly warranted.  相似文献   

15.
16.
Clusterin (CLU) is a heterodimeric secreted glycoprotein implicated in several physiological and pathological processes including cancer. Although recent data showed that overexpression of CLU is closely associated with disease progression in patients with breast tumor, the functional role of CLU expression in this tumor hystotype remains to be determined. The objectives in this study were to evaluate CLU expression levels after treatment with Trastuzumab, a HER2-targeted monoclonal antibody used in the clinical management of advanced breast cancer patients, and to test the usefulness of combined treatment with OGX-011, the second generation 2'-methoxyethyl gapmer oligonucleotides targeting the CLU gene, and Trastuzumab in this tumor hystotype. By using the HER-2 gene amplified-BT474 human breast cancer cells, we found Trastuzumab decreased HER-2 expression and inhibited cell proliferation without affecting apoptosis. Interestingly, Trastuzumab treatment up-regulated CLU protein expression in a dose-dependent fashion. We therefore hypothesized that the treatment with OGX-011, by blocking Trastuzumab-induced CLU expression, might potentiate the growth-inhibitory effect of Trastuzumab alone. Although OGX-011 had no effect on the behavior of the BT474 cells when used alone, it significantly enhanced the sensitivity of cells to Trastuzumab. A significant increase in the percentage of apoptotic cells, analyzed in terms of annexin V positivity and cleavage of poly(ADP-ribose) polymerase, was observed after combined treatment with OGX-011 plus Trastuzumab but not with either agent alone. Altogether our findings suggest that combined targeting of HER-2 and CLU may represent a novel, rational approach to breast cancer therapy.  相似文献   

17.
Prostate stromal cells may play binary roles in the process of prostate cancer development. As the first to be encountered by infiltrating prostate cancer cells, prostate stromal cells form the first defense line against prostate cancer progression and metastasis. However, interaction between prostate cancer and stromal cells may facilitate the formation of a tumor microenvironment favoring cancer cell growth and survival. To establish an experimental system for studying the interaction between cancer and stromal cells, we isolated three matched pairs of normal and cancer-associated human prostate stromal clones. In this report, we describe the morphologic and behavioral characteristics of these cells and their effect on LNCaP prostate cancer cells in co-culture. Unlike LNCaP prostate cancer cells, the isolated prostate stromal clones are large fibroblast-like cells with a slow proliferation rate. Growth and survival of these clones are not affected by androgens. The stromal cells display high resistance to serum starvation, while cancer-associated stromal clones have differentiated survival ability. In co-culture experiments, the stromal cells protected some LNCaP prostate cancer cells from death by serum starvation, and cancer-associated stromal clones showed more protection. This work thus established a panel of valuable human prostate stromal cell lines, which could be used in co-culture to study the interaction between prostate cancer and prostate stromal cells.  相似文献   

18.
Wang W  Ma JL  Jia WD  Xu GL 《Cell biology international》2011,35(11):1085-1088
Despite advances in the development of anti-angiogenic agents for cancer treatment, the increase in the survival duration of cancer patients is still rather modest. One major obstacle in anti-angiogenic therapy is the emergence of drug resistance. Understanding the molecular mechanisms that enable a tumour to evade anti-angiogenic treatment is valuable to improve therapeutic efficacy. Targeting blood supply usually causes hypoxic responses of tumours that trigger a series of adaptive changes leading to a resistant phenotype. Periostin, a secreted ECM (extracellular matrix) protein, is mainly produced by CAFs (cancer-associated fibroblasts) on hypoxic stress. As CAFs have been casually linked to tumour resistance to angiogenesis blockade and periostin can influence many aspects of tumour biology, we hypothesized that periostin might be a crucial mediator involved anti-angiogenic resistance in cancer treatment. This hypothesis is indirectly supported by the following facts: (a) high levels of periostin promote tumour angiogenesis; (b) periostin improves cancer cell survival under hypoxic conditions; and (c) genetic modulation of periostin induces EMT (epithelial-mesenchymal transition) and enhances cancer cell invasion and metastasis, which represents an escape mechanism from anticancer treatment. Testing and confirmation of this hypothesis will give more insight into the resistance mechanisms and provide the rationale for improvement of therapeutic outcome of anti-angiogenic therapy.  相似文献   

19.
20.
Expression of the clusterin (CLU) gene results in the synthesis of a conventional secretory isoform set (pre- and mature secretory clusterin proteins, psCLU/sCLU), as well as another set of intracellular isoforms, appearing in the cytoplasm (pre-nuclear CLU, pnCLU) and in the nucleus as an ~55-kDa mature nuclear clusterin (nCLU) form. These two isoform sets have opposing cell functions: pro-survival and pro-death, respectively. Although much is known about the regulation and function of sCLU as a pro-survival factor, the regulation and function of endogenous nCLU in cell death are relatively unexplored. Here, we show that depletion of endogenous nCLU protein using siRNA specific to its truncated mRNA increased clonogenic survival of ionizing radiation (IR)-exposed cells. nCLU-mediated apoptosis was Bax-dependent, and lethality correlated with accumulation of mature nCLU protein. nCLU accumulation was regulated by CRM1 because binding between CRM1 and nCLU proteins was significantly diminished by leptomycin B (LMB), and nuclear levels of nCLU protein were significantly enhanced by LMB and IR co-treatment. Moreover, LMB treatment significantly enhanced IR-induced nCLU-mediated cell death responses. Importantly, bax(-/-) and bax(-/-)/bak(-/-) double knock-out cells were resistant to nCLU-mediated cell death, whereas bak(-/-) or wild-type bax(+/+)/bak(+/+) cells were hypersensitive. The regulation of nCLU by CRM1 nuclear export/import may explain recent clinical results showing that highly malignant tumors have lost the ability to accumulate nCLU levels, thereby avoiding growth inhibition and cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号