首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Patagonian blennie Eleginops maclovinus is a coastal and estuarine species, important in recreational and commercial fisheries, and with aquaculture potential. This study assessed the effect of temperature on feeding and the allocation of energy in growth and swimming in a sub-Antarctic population. For growth experiments, two groups of 8 juveniles were reared at 4 and 10?°C (corresponding to winter and summer habitat temperatures, respectively) for 3?months. Swimming experiments were conducted at 5 and 10?°C, measuring the oxygen consumption before and after forced swimming for 1?min at a speed of 10 total lengths (TL)/s. Temperature affects growth. TL increased 0.09?cm at 4?°C versus 0.30?cm at 10?°C. Body mass grew 0.49?g at 4?°C versus 1.65?g at 10?°C, whereas the Fulton’s condition factor increased 0.021 at 4?°C versus 0.080 at 10?°C. The ingested food was more than twofold higher at 10 than at 4?°C, while the feces produced at 4?°C was about twofold higher. The scope between baseline and peak oxygen consumption after forced swimming was affected by temperature, being 4.51 at 5?°C and 3.03 at 10?°C. The percentage energy expenditure until the return of baseline oxygen consumption values showed a marked temperature effect, being higher at 5?°C. We propose the existence of a trade-off in the allocation of energy between swimming activity and growth, with proportionally more energy being consumed at low temperatures for swimming than for other physiological functions like growth.  相似文献   

2.
There were direct relationships between inoculum density of Heterodera schachtii Schm. (nematode population density), initial soil temperature, the growth of sugarbeets in the greenhouse under controlled temperatures, and nematode populations. Heterodera schachtii was least pathogenic on plants inoculated at 6 wk of age and most pathogenic on plants grown from inoculated germinated seed (0 wk of age). In the field, H. schachtii was least pathogenic on sugarbeets grown at an initial soil temperature of 6 C and most pathogenic on those grown at an initial soil temperature of 24 C. The growth period for sugarbeets at the different soil temperatures was determined by heat units; since penetration of sugarbeet roots by H. schachtii larvae is accelerated at soil temperatures above 10 C, each hour-degree ahove 10 C was counted as one effective heat unit (HU). Using this guideline it was determined that root weight depressions in the greenhouse, for each degree-unit population (HU-UP) where unit population = one larvae/g soil, were 0.052, 0.09, 0.12, and 0.17 mg at initial soil temperatures of 6, 12, 18, and 24 C, respectively. Root weight depressions were 0.28, 0.23, 0.15, and 0.086 mg when plants were inoculated at 0, 2, 4, and 6 wk of age.  相似文献   

3.
The efficacy of electrolyzed oxidizing water for inactivating Escherichia coli O157:H7, Salmonella enteritidis, and Listeria monocytogenes was evaluated. A five-strain mixture of E. coli O157:H7, S. enteritidis, or L. monocytogenes of approximately 108 CFU/ml was inoculated in 9 ml of electrolyzed oxidizing water (treatment) or 9 ml of sterile, deionized water (control) and incubated at 4 or 23°C for 0, 5, 10, and 15 min; at 35°C for 0, 2, 4, and 6 min; or at 45°C for 0, 1, 3, and 5 min. The surviving population of each pathogen at each sampling time was determined on tryptic soy agar. At 4 or 23°C, an exposure time of 5 min reduced the populations of all three pathogens in the treatment samples by approximately 7 log CFU/ml, with complete inactivation by 10 min of exposure. A reduction of ≥7 log CFU/ml in the levels of the three pathogens occurred in the treatment samples incubated for 1 min at 45°C or for 2 min at 35°C. The bacterial counts of all three pathogens in control samples remained the same throughout the incubation at all four temperatures. Results indicate that electrolyzed oxidizing water may be a useful disinfectant, but appropriate applications need to be validated.  相似文献   

4.
Germination of nutrient-amended chlamydospores of the three formae speciales of Fusarium oxysporum tested were inhibited in a suppressive soil collected from central Taiwan. The suppressive soil released a volatile substance when moistened with alkaline solution. The inhibition spectrum of the volatile substance was different from that of the suppressive soil. The inhibitory effect of the suppressive soil was greatly reduced when it was heat-treated for 30 min at 40°C or higher. The inhibitory effect of the heat-treated suppressive soil was restored after infestation with 1% conducive or suppressive soil for 14 days. However, infestation of heat-treated conducive soil even with 1% suppressive soil did not render it suppressive. Amendment of suppressive soil with rose bengal, streptomycin or Rubigan completely or partially reduced the inhibitory effect. Increasing the total population of indigenous microorganisms in conducive soil by amendment with rice germ or soybean meal to about the same level as that in suppressive soil did not render it suppressive. Results suggest that a combination of biotic and abiotic factors is responsible for the inhibitory effect of the suppressive soil.  相似文献   

5.
6.
The prospects of ultra high frequency (UHF, 300--3000 MHz) irradiation producing a nonthermal bioeffect are considered theoretically and found to be small. First, a general formula is derived within the framework of macroscopic electrodynamics for the specific absorption rate of microwaves in a biological tissue; this involves the complex Poynting vector, the mass density of the medium, the angular frequency of the electromagnetic field, and the three complex electromagnetic constitutive parameters of the medium. In the frequency ranges used for cellular telephony and personal communication systems, this model predicts that the chief physical loss mechanism will be ionic conduction, with increasingly important contributions from dielectric relaxation as the frequency rises. However, even in a magnetite unit cell within a magnetosome the deposition rate should not exceed 1/10 k(B)T per second. This supports previous arguments for the improbability of biological effects at UHF frequencies unless a mechanism can be found for accumulating energy over time and space and focussing it. Second, three possible nonthermal accumulation mechanisms are then considered and shown to be unlikely: (i) multiphoton absorption processes; (ii) direct electric field effects on ions; (iii) cooperative effects and/or coherent excitations. Finally, it is concluded that the rate of energy deposition from a typical field and within a typical tissue is so small as to make unlikely any significant nonthermal biological effect.  相似文献   

7.
The influence of Chloris gayana, Crotalaria juncea, Digitaria decumbens, Tagetes patula, and a chitin-based soil amendment on Hawaiian populations of Rotylenchulus reniformis was examined. Chloris gayana was a nonhost for R. reniformis. The nematode did not penetrate the roots, and in greenhouse and field experiments, C. gayana reduced reniform nematode numbers at least as well as fallow. Tagetes patula was a poor host for reniform nematode and reduced reniform nematode numbers in soil better than did fallow. Crotalaria juncea was a poor host for R. reniformis, and only a small fraction of the nematode population penetrated the roots. Crotalaria juncea and D. decumbens reduced reniform nematode populations at least as well as fallow. A chitin-based soil amendment, applied at 2.24 t/ha to fallow soil, did not affect the population decline of reniform nematode.  相似文献   

8.
Soaking potato tuber pieces for 15 min in 8,000 μg/ml of oxamyl just before planting reduced the number of Globodera rostochiensis cysts that developed on potato roots, but this treatment was phytotoxic. Five foliar applications of 1.12 kg a.i./ha of oxamyl or carbofuran at 10-day intervals beginning when 90% of the plants had emerged suppressed increase in G. rostochiensis densities. Similar foliar applications of phenamiphos were ineffective in controlling G. rostochiensis. Soil applications (in the row at planting) of aldicarb, carbofuran, phenamiphos, ethoprop, and oxamyl at 5.6 kg a.i./ha reduced the numbers of white females that developed on potato roots, but only those treatments involving aldicarb and oxamyl suppressed G. rostochiensis population increase. Combined soil and foliar treatments did not provide any advantage over soil treatment alone, as soil applications of 5.6 kg a.i./ha alone were equal to, or better than, combined soil (3.4 kg a.i./ha) and foliar (2.2 kg a.i./ha) applications in controlling G. rostochiensis.  相似文献   

9.
The survival of germinating spores of vesicular-arbuscular endophytes after treatments with oxidizing agents, antibiotics, moist heat, ultrasonic radiation, and ultraviolet radiation was compared with that of their contaminating microbes. Spores of three species were rapidly decontaminated by treatment with 0.42% (wt/vol) chlorine available from 5.0% (wt/vol) chloramine-T at 30°C for 20 to 40 min depending on the species and the soil from which they were extracted. This treatment did not change spore viability. The survival of spores was reduced by exposure for 20 min to 1.11% chlorine at 30°C for Glomus caledonius or at 35°C for Acaulospora laevis. Growth of any bacteria surviving treatment with oxidizing agents was inhibited by 100 μg of chloramphenicol per ml in agar; however, spore germination and germ tube growth were reduced only by concentrations greater than 200 μg/ml in agar. Spore germination was decreased by concentration of pimaracin, which controlled fungal growth. The spores survived moist heat at 40°C for 80 min, 55°C for 10 min, and 60°C for less than 1 min. The viability of spores was unaffected by ultrasonic irradiation for up to 4 min. Spores of G. caledonius and A. laevis were extremely resistant to ultraviolet radiation. Their viability was unaffected by exposure to 5 × 108 ergs cm−2 from an ultraviolet source of 253.7nm. The spores had very thick, pigmented walls, and the possibility that these provided some protection against the physical and chemical treatments is discussed. The degree of physiological damage to the spores caused by the treatments demonstrated some adverse effects of basic laboratory procedures. This information, together with that on the comparative sensitivity of contaminating microbes to the treatments, was used in the development of protocol for producing large numbers of uncontaminated spores.  相似文献   

10.
Soil solarization was evaluated for control of Rotylenchulus reniformis in the lower Rio Grande Valley of Texas. In field experiments, solarization significantly reduced soil nematode population densities 0-15 cm deep and increased yields of lettuce and cowpea. The length of time required for 90% mortality of nematodes in soil heated under controlled conditions in the laboratory varied from 25 hours to less than 1 hour between 41 and 47 C. Daily exposures of nematode-infested soil to lethal temperatures for sublethal time periods had a cumulative lethal effect. In water, vermiform stages required up to 10 days to recover from sublethal thermal stress. Eggs were similar to juveniles in their sensitivity to high temperatures. Lethal time-temperatures under controlled conditions were in general agreement with field results.  相似文献   

11.
The effect of daylength and temperature on the regulation of the larval diapause of a central Missouri population of the sunflower moth, Homoeosoma electellum, was examined. Fully grown fourth-instar larvae exhibit a facultative diapause. Measurements of the effect of photoperiod on diapause induction revealed critical photoperiods of about 13 h 30 min light/day at 20°C, and between 11 h 45 min and 12 h light/day at 23°C. Third and fourth-instar larvae were shown to be the main sensitive stages for diapause determination. Daylength was also shown to be an important regulator of the rate of diapause development. A short day of LD 10:14 h permitted only a low rate of diapause development, whereas long days of LD 14:10 h and LD 16:8 h accelerated diapause development at 25 and 30°C. When long days were alternated with short days at 30°C the accelerating effect of long days on diapause development was not found. Systematic transfers of chilled diapausing larvae revealed an accelerated diapause development in groups transferred from 10 to 30°C LD 10:14 h, but diapause development was not accelerated in groups transferred from 10 to 30°C LD 16:8 h.  相似文献   

12.
In a petri-dish study, development of the nematode Pratylenchus neglectus was observed every 4 days, and stage-specific development times were estimated, using a parameter estimation algorithm for a distributed-delay population model. The lower threshold temperature for development of a population of P. neglectus was 7.75 C. Temperatures above 25 C were unfavorable for this population on barley. Total numbers of P. neglectus in barley roots and associated soil in pots were greatest at 25 C and lower at temperatures above and below that level. There was no change in nematode numbers per gram of root as temperature increased between 24 C and 32 C because root weights decreased at higher temperatures. Restricted root mass may contribute to the lower total nematode population levels at higher temperature. Maximum number of nematodes moved through a 2-cm layer of sand on a Baermann funnel at about 20 C; lowest number of nematodes moved at 10 C and 30 C.  相似文献   

13.
In greenhouse experiments, the effect of Arthrobotrys conoides on Meloidogyne incognita population densities as affected by soil temperature, inoculum density, and green alfalfa was determined. The effect on M. incognita population densities was greater at a soil temperature of 25 C than at 18 or 32 C. Nematode control by A. conoides was most effective when the fungus was introduced into the soil 2 wk prior to nematode inoculation and planting of corn. Inoculum density of A. conoides was positively correlated with plant shoot weight (r = 0.81) and negatively correlated with numbers of Meloidogyne juveniles (r = -0.96), eggs (-0.89) and galls per gram of root (-0.91). A. conoides was not isolated from green alfalfa, but was isolated from alfalfa-amended soil to which no fungus had been added.  相似文献   

14.
Criconemella onoensis (Luc) Luc and Raski increased to high (458-1,290/100 cm³) soil population densities in four fields planted to cover crops of sorghum-sudangrass (Sorghum bicolor (L.) Moench × S. arundinaceum (Desv.) Stapf var. sudanense (Stapf) Hitchc. ''Funk FP-4'') during the summer of 1984 in southeastern Florida. Three pathogenicity tests conducted in the greenhouse with C. onoensis on potato (Solanum tuberosum L. ''La Rouge'') using three different methods (inoculation, chemical treatment of infested soil, or pasteurization of infested soil) revealed no significant (P = 0.10) differences in plant growth, despite significant (P = 0.05) differences in population densities of C. onoensis between treated and control pots in each test. In these three tests, the maximum initial density of C. onoensis used was 720/100 cm³ soil and the maximum final density was 686/100 cm³ soil. Application of 933 liters/ha of Vapam to a field site with a pretreatment density of 1,120 C. onoensis/100 cm³ soil significantly (P = 0.05) reduced populations compared with untreated control plots, but yields remained higher in control plots. Apparently C. onoensis has no significant effect on potato growth at the population densities tested.  相似文献   

15.
Thermogenic effectiveness of electromagnetic irradiation (EMI) of UHF range (7 GHz) in the dependence on intensity (10-50 mW/cm2) and environmental temperature (22 degrees and 30 degrees C) was studied in experiments with mice and rats. Negative influence of high ambient temperature on thermoregulate responses of animals at microwave exposure was showed. It is concluded that this interaction should been taken into account for hygienic standardization of non-ionizing EMI.  相似文献   

16.
Brassicas have been used frequently for biofumigation, a pest-management strategy based on the release of biocidal volatiles during decomposition of soil-incorporated tissue. However, the role of such volatiles in control of plant-parasitic nematodes is unclear. The goal of this study was to determine the direct localized and indirect volatile effects of amending soil with broccoli tissue on root-knot nematode populations. Meloidogyne incognita-infested soil in 50-cm-long tubes was amended with broccoli tissue, which was mixed throughout the tube or concentrated in a 10-cm layer. After three weeks at 28°C, M. incognita populations in the amended tubes were 57 to 80% smaller than in non-amended tubes. Mixing broccoli throughout the tubes reduced M. incognita more than concentrating broccoli in a 10-cm layer. Amending a 10-cm layer reduced M. incognita in the non-amended layers of those tubes by 31 to 71%, probably due to a nematicidal effect of released volatiles. However, the localized direct effect was much stronger than the indirect effect of volatiles. The strong direct effect may have resulted from the release of non-volatile nematicidal compounds. Therefore, when using biofumigation with broccoli to control M. incognita, the tissue should be thoroughly and evenly mixed through the soil layer(s) where the target nematodes occur. Effects on saprophytic nematodes were the reverse. Amended soil layers had much greater numbers of saprophytic nematodes than non-amended layers, and there was no indirect effect of amendments on saprophytic nematodes in adjacent non-amended layers.  相似文献   

17.
The objective of this study was to evaluate the addition of IGF-I to pig insemination doses stored at 15°C, in conjunction with the addition of different amounts of vitamin E (α-tocopherol). Semen samples (n = 12) from four boars were treated by the addition of different concentrations of vitamin E, ranging up to 400 μg/ml. Immediately after processing and after the doses had been stored at 15°C for 24 or 72 h, samples were warmed at 37°C and 30 ng/ml of IGF-I was added. The assessments were made after 10 and 120 min of IGF-I addition. There was a minor effect of the vitamin E added before cooling and IGF-I added after storage on sperm quality. The addition of 400 μg/ml of vitamin E to diluted semen reduced (P < 0.01) the malondialdehyde (MDA) production in boar semen stored at 15°C for 72 h, regardless of the addition of IGF-I as additive during a 120 min incubation period at 37°C. In these conditions, IGF-I also reduced (P < 0.05) the MDA production in semen samples without addition of vitamin E. IGF-I in the presence of vitamin E reduced (P = 0.03) the glucose intake in freshly diluted boar semen samples before cooling. It was concluded that the addition of 400 μg/ml of vitamin E reduces the MDA production in boar semen stored at 15°C for 72 h, regardless of the presence of IGF-I additive. The addition of IGF-I in doses stored for 72 h with vitamin E ensures higher sperm motility after 120 min of incubation at 37°C.  相似文献   

18.
Nisin in combination with ultrahigh-pressure treatment (UHP) showed strong synergistic effects against Lactobacillus plantarum and Escherichia coli at reduced temperatures (<15°C). The strongest inactivation effects were observed when nisin was present during pressure treatment and in the recovery medium. Elimination (>6-log reductions) of L. plantarum was achieved at 10°C with synergistic combinations of 0.5 μg of nisin per ml at 150 MPa and 0.1 μg of nisin per ml at 200 MPa for 10 min. Additive effects of nisin and UHP accounted for only 1.2- and 3.7-log reductions, respectively. Elimination was also achieved for E. coli at 10°C with nisin present at 2 μg/ml, and 10 min of pressure at 200 MPa, whereas the additive effect accounted for only 2.6-log reductions. Slight effects were observed even against the yeast Saccharomyces cerevisiae with nisin present at 5 μg/ml and with 200 MPa of pressure. Combining nisin, UHP, and lowered temperature may allow considerable reduction in time and/or pressure of UHP treatments. Kill can be complete without the frequently encountered survival tails in UHP processing. The slightly enhanced synergistic kill with UHP at reduced temperatures was also observed for other antimicrobials, the synthetic peptides MB21 and histatin 5. The postulated mode of action was that the reduced temperature and the binding of peptides to the membrane increased the efficacy of UHP treatment. The increases in fatty acid saturation or diphosphatidylglycerol content and the lysylphosphatidyl content of the cytoplasm membrane of L. plantarum were correlated with increased susceptibility to UHP and nisin, respectively.  相似文献   

19.
Proteases, lipase, and chitinase killed Tylenchorhynchus dubius in vitro and in soil. Tylenchorhynchus dubius was more susceptible to the enzymes than Pratylenchus penetrans. Papain was the most effective protease, and other enzymes were less effective. Heating enzymes to 80 C for 10 min greatly reduced nematicidal effectiveness. Scanning electron micrographs showed that papain and chitinase produced structural changes in the cuticle of T. dubius. Lipase removed a thin outer layer. Papain removed material filling the striata, or furrow, between the horizontal bands. When added to soil, chitinase, lipase, collagenase, and proteases (papain and bromelain) decreased motility of T. dubius populations up to 75%. Bromelain was the most active in soil against T. dubius, and collagenase was the most active in soil against P. penetrans.  相似文献   

20.
The efficacy of chlorine and hot water treatments in killing Salmonella stanley inoculated onto alfalfa seeds was determined. Treatment of seeds containing 10(2) to 10(3) CFU/g in 100-micrograms/ml active chlorine solution for 5 or 10 min caused a significant (P < or = 0.05) reduction in population, and treatment in 290-micrograms/ml chlorine solution resulted in a significant reduction compared with treatment in 100 micrograms of chlorine per ml. However, concentrations of chlorine of up to 1,010 micrograms/ml failed to result in further significant reductions. Treatment of seeds containing 10(1) to 10(2) CFU of S. stanley per g for 5 min in a solution containing 2,040 micrograms of chlorine per ml reduced the population to undetectable levels (< 1 CFU/g). Treatment of seeds in water for 5 or 10 min at 54 degrees C caused a significant reduction in the S. stanley population, and treatment at > or = 57 degrees C reduced populations to < or = 1 CFU/g. However, treatment at > or = 54 degrees C for 10 min caused a substantial reduction in viability of the seeds. Treatment at 57 or 60 degrees C for 5 min appears to be effective in killing S. stanley without substantially decreasing germinability of seeds. Storage of seeds for 8 to 9 weeks at 8 and 21 degrees C resulted in reductions in populations of S. stanley of about 1 log10 and 2 log10 CFU/g, respectively. The behavior of S. stanley on seeds during soaking germination, sprouting, and refrigerated storage of sprouts was determined. An initial population of 3.29 log10 CFU/g increased slightly during 6 h of soaking, by about 10(3) CFU/g during a 24-h germination period, and by an additional 10 CFU/g during a 72-h sprouting stage. A population of 10(7) CFU/g of mature alfalfa sprouts was detected throughout a subsequent 10-day storage period at 5 degrees C. These studies indicate that while populations of S. stanley can be greatly reduced, elimination of this organism from alfalfa seeds may not be reliably achieved with traditional disinfection procedures. If S. stanley is present on seeds at the initiation of the sprout production process, populations exceeding 10(7) CFU/g can develop and survive on mature sprouts exposed to handling practices used in commercial production and marketing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号