首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanism responsible for phosphorus inhibition of vesicular-arbuscular mycorrhiza formation in sudangrass (Sorghum vulgare Pers.) was investigated in a phosphorus-deficient sandy soil (0.5 micrograms phosphorus per gram soil) amended with increasing levels of phosphorus as superphosphate (0, 28, 56, 228 micrograms per gram soil). The root phosphorus content of 4-week-old plants was correlated with the amount of phosphorus added to the soil. Root exudation of amino acids and reducing sugars was greater for plants grown in phosphorus-deficient soil than for those grown in the phosphorus-treated soils. The increase in exudation corresponded with changes in membrane permeability of phosphorus-deficient roots, as measured by K+ (86Rb) efflux, rather than with changes in root content of reducing sugars and amino acids. The roots of phosphorus-deficient plants inoculated at 4 weeks with Glomus fasciculatus were 88% infected after 9 weeks as compared to less than 25% infection in phosphorus-sufficient roots; these differences were correlated with root exudation at the time of inoculation. For plants grown in phosphorus-deficient soil, infection by vesicular-arbuscular mycorrhizae increased root phosphorus which resulted in a decrease in root membrane permeability and exudation compared to nonmycorrhizal plants. It is proposed that, under low phosphorus nutrition, increased root membrane permeability leads to net loss of metabolites at sufficient levels to sustain the germination and growth of the mycorrhizal fungus during pre- and postinfection. Subsequently, mycorrhizal infection leads to improvement of root phosphorus nutrition and a reduction in membrane-mediated loss of root metabolites.  相似文献   

2.
NaCl-induced changes in the accumulation of message for the 70 kDa subunit of the tonoplast H+-ATPase and plasma membrane H+-ATPase were studied in hydroponically grown plants of Lycopersicon esculentum Mill. cv. Large Cherry Red. There was increased accumulation of message for the 70 kDa (catalytic) subunit of the tonoplast H+-ATPase in expanded leaves of tomato plants 24 h after final NaCl concentrations were attained. This was a tissue-specific response; levels of this message were not elevated in roots or in young, unexpanded leaves. The NaCl-induced accumulation of this message was transient in the expanded leaves and returned to control levels within 7 days. The temporal and spatial patterns of NaCl-induced accumulation of message for the plasma membrane H+-ATPase differed from the patterns associated with the 70 kDa subunit of the tonoplast H+-ATPase. NaCl-induced accumulation of the plasma membrane H+-ATPase message occurred in both roots and expanded leaves. Initially accumulation of the plasma membrane H+-ATPase message was greater in root tissue than in expanded leaves, but increased to higher levels in expanded leaves after 7 days. These results suggest that increased expression of the tonoplast H+-ATPase is an early response to salinity stress and may be associated with survival mechanisms, rather than with long-term adaptive processes.  相似文献   

3.
Plant copper P1B-type ATPases appear to be crucial for maintaining copper homeostasis within plant cells, but until now they have been studied mostly in model plant systems. Here, we present the molecular and biochemical characterization of two cucumber copper ATPases, CsHMA5.1 and CsHMA5.2, indicating a different function for HMA5-like proteins in different plants. When expressed in yeast, CsHMA5.1 and CsHMA5.2 localize to the vacuolar membrane and are activated by monovalent copper or silver ions and cysteine, showing different affinities to Cu+ (Km ∼1 or 0.5 μm, respectively) and similar affinity to Ag+ (Km ∼2.5 μm). Both proteins restore the growth of yeast mutants sensitive to copper excess and silver through intracellular copper sequestration, indicating that they contribute to copper and silver detoxification. Immunoblotting with specific antibodies revealed the presence of CsHMA5.1 and CsHMA5.2 in the tonoplast of cucumber cells. Interestingly, the root-specific CsHMA5.1 was not affected by copper stress, whereas the widely expressed CsHMA5.2 was up-regulated or down-regulated in roots upon copper excess or deficiency, respectively. The copper-induced increase in tonoplast CsHMA5.2 is consistent with the increased activity of ATP-dependent copper transport into tonoplast vesicles isolated from roots of plants grown under copper excess. These data identify CsHMA5.1 and CsHMA5.2 as high affinity Cu+ transporters and suggest that CsHMA5.2 is responsible for the increased sequestration of copper in vacuoles of cucumber root cells under copper excess.  相似文献   

4.
Luttge U  Laties GG 《Plant physiology》1966,41(9):1531-1539
The characteristics of ion transport to the shoots of young corn seedlings were studied with respect to the nature of the isotherm through a wide concentration range, the competitive influence of closely related ions upon the transport of a given ion, and the influence of the counter-ion. Both with respect to 36Cl and 86Rb transport, the characteristics of the process in every way resemble uptake by non-vacuolate root tips wherein the plasma membrane is the only membrane involved in absorption, and where system 1 — of the 2 systems which can be shown to participate in absorption by vacuolate tissue — is the only system operative. Net ion uptake by the roots per se was shown to display both the high affinity (system 1) and low affinity (system 2) mechanisms. It is concluded that the symplastic theory of ion movement to the xylem is valid, and that the contention that system 1 operates at the plasma membrane while system 2 functions at the tonoplast is strengthened.  相似文献   

5.
Gniazdowska  A.  Rychter  A. M. 《Plant and Soil》2000,226(1):79-85
Bean (Phaseolus vulgaris L.) plants were cultured for 19 d on complete or on phosphate deficient culture media. Low inorganic phosphate concentration in the roots decreased ATP level and nitrate uptake rate. The mechanisms which may control nitrate uptake rate during phosphate deficiency were examined. Plasma membrane enriched fractions from phosphate sufficient and phosphate deficient plants were isolated and compared. The decrease in total phospholipid content was observed in plasma membranes from phosphate deficient roots, but phospholipid composition was similar. No changes in ATPase and proton pumping activities measured in isolated plasma membrane of phosphate sufficient and phosphate deficient bean roots were noted. The electron microscope observations carried out on cortical meristematic cells of the roots showed that active ATPases were found in plasma membrane of both phosphate sufficient and phosphate deficient plants. The decrease in inorganic phosphate concentration in roots led to increased nitrate accumulation in roots, accompanied by a corresponding alterations in NO3 distribution between shoots and roots. Nitrate reductase activity in roots of phosphate deficient plants estimated in vivo and in vitro was reduced to 50–60% of the control. The increased NO3 concentration in root tissue may be explained by decreased NR activity and lower transport of nitrate from roots to shoots. Therefore, the reduction of nitrate uptake during phosphate starvation is mainly a consequence of nitrate accumulation in the roots.  相似文献   

6.
In waterlogged soil, deficiency of oxygen triggers development of aerenchyma in roots which facilitates gas diffusion between roots and the aerial environment. However, in contrast to other monocots, roots of rice (Oryza sativa L.) constitutively form aerenchyma even in aerobic conditions. The formation of cortical aerenchyma in roots is thought to occur by either lysigeny or schizogeny. Schizogenous aerenchyma is developed without cortical cell death. However, lysigenous gas-spaces are formed as a consequence of senescence of specific cells in primary cortex followed by their death due to autolysis. In the last stage of aerenchyma formation, a ‘spoked wheel’ arrangement is observed in the cortical region of root. Ultrastructural studies show that cell death is constitutive and no characteristic cell structural differentiation takes place in the dying cells with respect to surrounding cells. Cell collapse initiation occurs in the center of the cortical tissues which are characterized by shorter with radically enlarged diameter. Then, cell death proceeds by acidification of cytoplasm followed by rupturing of plasma membrane, loss of cellular contents and cell wall degradation, while cells nuclei remain intact. Dying cells releases a signal through symplast which initiates cell death in neighboring cells. During early stages, middle lamella-degenerating enzymes are synthesized in the rough endoplasmic reticulum which are transported through dictyosome and discharged through plasmalemma beneath the cell wall. In rice several features of root aerenchyma formation are analogous to a gene regulated developmental process called programmed cell death (PCD), for instance, specific cortical cell death, obligate production of aerenchyma under environmental stresses and early changes in nuclear structure which includes clumping of chromatin, fragmentation, disruption of nuclear membrane and apparent engulfment by the vacuole. These processes are followed by crenulation of plasma membrane, formation of electron-lucent regions in the cytoplasm, tonoplast disintegration, organellar swelling and disruption, loss of cytoplasmic contents, and collapse of cell. Many processes in lysing cells are structural features of apoptosis, but certain characteristics of apoptosis i.e., pycnosis of the nucleus, plasma membrane blebbing, and apoptotic bodies formation are still lacking and thus classified as non-apoptotic PCD. This review article, describes most recent observations alike to PCD involved in aerenchyma formation and their systematic distributions in rice roots.  相似文献   

7.
The effect of Zn2+ on the plasma membrane permeability and superoxide radical (O2-) formation in roots was studied with cotton ( Gossypium hirsutum L. cv. Delta-pine 15/21) plants grown in nutrient solution with different Zn2+ supply. Compared to Zn-sufficient plants, the plasma membrane permeability of Zn-deficient plants was increased as indicated by a 3-, 5- and 2.5-fold increase in root cell leakage of K+, NO3- and organic carbon compounds, respectively. Resupply of Zn2+ to Zn-deficient plants for 12 h substantially decreased this leakage. The effects of Zn2+ on membrane permeability were closely correlated with the levels of O2- measured by electron spin resonance (ESR) spectroscopy in the microsomal membrane fraction and in the cytosol fraction of root cells. The amplitudes of the O2- -derived Tiron ESR signal also coincided with a O2- -generating oxidase activity which was strongly dependent on the presence of NADPH and FAD. The results suggest that Zn2+ directly affects the integrity of the plasma membrane, at least in part, by interfering with O2- generation by a membrane-bound NADPH oxidase.  相似文献   

8.
Intracellular pH (pHi) is a crucial parameter in cellular physiology but its mechanisms of homeostasis are only partially understood. To uncover novel roles and participants of the pHi regulatory system, we have screened an Arabidopsis mutant collection for resistance of seed germination to intracellular acidification induced by weak organic acids (acetic, propionic, sorbic). The phenotypes of one identified mutant, weak acid‐tolerant 1‐1D (wat1‐1D) are due to the expression of a truncated form of AP‐3 β‐adaptin (encoded by the PAT2 gene) that behaves as a as dominant‐negative. During acetic acid treatment the root epidermal cells of the mutant maintain a higher pHi and a more depolarized plasma membrane electrical potential than wild‐type cells. Additional phenotypes of wat1‐1D roots include increased rates of acetate efflux, K+ uptake and H+ efflux, the latter reflecting the in vivo activity of the plasma membrane H+‐ATPase. The in vitro activity of the enzyme was not increased but, as the H+‐ATPase is electrogenic, the increased ion permeability would allow a higher rate of H+ efflux. The AP‐3 adaptor complex is involved in traffic from Golgi to vacuoles but its function in plants is not much known. The phenotypes of the wat1‐1D mutant can be explained if loss of function of the AP‐3 β‐adaptin causes activation of channels or transporters for organic anions (acetate) and for K+ at the plasma membrane, perhaps through miss‐localization of tonoplast proteins. This suggests a role of this adaptin in trafficking of ion channels or transporters to the tonoplast.  相似文献   

9.
The Permeability of the Guard Cell Plasma Membrane and Tonoplast   总被引:4,自引:0,他引:4  
Uptake experiments and efflux compartmental analysis of planthormones, osmotica and toxins using ‘isolated’ guardcells of Valerianella locusta and guard cell protoplasts (GCP)of Vicia faba were performed in order to study the permeabilityproperties of guard cell plasma membrane and tonoplast. Theplasma membrane of guard cells exhibits a higher permeabilitythan plasma membranes of mesophyll cells for most solutes investigated.The permeability coefficients (Ps calculated for the guard cellplasma membranes are also significantly higher than the Ps valuesfor the guard cell tonoplast. This applies also for protonatedABA. We suppose that the high permeability for ABAH could bepart of the target cell properties. A Collander analysis demonstratesa linear correlation between Ps, values and the ratio Kr/Mr1,5for both plasma membrane (r = 0.87) and for the tonoplast (r=0.93). Because of deviations from the observed correlations,the permeation of some solutes (ABA, GA, IAA through the tonoplast;methylamine through the plasma membrane) seems to be facilitatedby an additional transport mechanism. The Collander analysisof the plasma membrane of GCP shows very similar results tothe analysis of the plasma membrane of ‘isolated’guard cells, indicating that isolation of protoplasts does notalter the permeability of the guard cell plasma membrane. Key words: Permeability coefficient, guard cells, plasma membrane, tonoplast  相似文献   

10.
Nitrate transport and compartmentation in cereal root cells   总被引:37,自引:6,他引:31  
Measurement of cytosolic nitrate is one of the factors requiredfor the resolution of factors controlling nitrate uptake andassimilation in plants and for identifying likely nitrate transportmechanisms at both the plasma membrane and tonoplast. This paperreviews methods and reported measurements of cytosolic nitratein higher plants and concludes that nitrate-selective microelectrodesare the best approach. These microelectrodes have been usedto measure intracellular nitrate activities in barley and maizeroot cells. Triplebarrelled electrodes, incorporating a pH-sensingbarrel have been used to identify the compartmental locationof the nitrate-selective tip giving unequivocal estimates ofvacuolar and cytosolic nitrate activities. The microelectrodemeasurements are used to discuss the possible mechanisms ofnitrate transport at both the tonoplast and plasma membrane.The energetics of possible proton-coupled transport systemsare described and the feasibility of the mechanism is discussed. Key words: Cytosol, compartmentation, Hordeum vulgare L, nitrate, roots, Zea mays L  相似文献   

11.
An NMR method with a pulsed magnetic field gradient was applied to study changes in water permeability of the vacuolar symplast in maize (Zea mays L.) seedling roots treated with various inhibitors of cell metabolism. The results were qualitatively analogous to literature data on conductivity changes of intercellular gap junctions in animal cells exposed to similar treatments. Electron microscopy examination of root cells provided evidence for the existence of membrane contacts between the endoplasmic reticulum and the tonoplast. It is supposed that vacuoles of neighboring plant cells are interconnected through highly dynamical gap junctions between the tonoplast and the endoplasmic reticulum membrane.  相似文献   

12.
The mesocarp tissue of zucchini (Cucurbita pepo L. cv. Black Beauty, zucchini) fruit exhibits ATP-dependent H+-pumping activities associated with tonoplast (nitrate-sensitive) and plasma membrane (vanadate-sensitive) vesicles. The two activities are easily separated on step gradients with isopycnic densities lower than usually reported (< 20% (w/w) sucrose for tonoplast; 25–35% (w/w) sucrose for plasma membrane). The tonoplast is relatively impermeable to H+ (the half-time for equilibration of a pH gradient is 23–36 min) compared to plasma membrane (half-time of 4–6 min). Anion permeability was measured by adding ATP in the absence of an accompanying K+ salt, then measuring the increase in the pH gradient caused by the addition of a K+ salt. The increase in the pH gradient is presumably due to alleviation of the Δψ component (positive inside) and consequent increase in the Δ pH component (acid inside) of the electrochemical gradient by movement of the anion into the vesicle interior. Cl and NO3 are permeable, SO42− is not. The anion permeabilities of the tonoplast and plasma membrane were similar. This is inconsistent with the marked difference in the H+ permeabilities, but might be explained by the presence of anion channel(s) associated with tonoplast-derived vesicles.  相似文献   

13.
When the 7-d old barley ( Hordeum vulgare L. ) seedlings were treated with different concentrations of NaC1 for 3 d, the levels of the noncovalemly conjugated polyamines (PAs) in the plasma membrane and tonoplast vesicles and the covalently conjugated PAs in the membrane proteins were promoted by NaC1 of low concentrations and suppressed by NaC1 of high concentrations. Among the noncovalenfly conjugated PAs in the vesicles, spennidine (Spd) level was the most abundant, while putrescine (Put) content was predominant among the covalenfly conjugated PAs, accounted for 40%– 70%, 35% – 60%, respectively. In addition, the TLC (thin-layer chromatography) profiles of the benzoylated PAs presented an unknown polyamine with Rf = 0.92 (X0.92), which conjugated covalently and noncovalently in root tonoplast and its content changed as well as Spd with NaC1 treatment. The total PA contents in the roots were higher than that in the leaves, and the types and contents of covalenfly and noncovalently conjugated PAs in the tonoplast were higher than those in the plasma membrane. The results showed that the above two PAs associated with the membrane might be essential in salt adaption of cells and the maintenance of membrane function.  相似文献   

14.
用不同浓度NaCl处理7d龄大麦(Hordeum vulgareL.)幼苗3d。以非共价键和共价键形式分别与质膜和液泡膜微囊及膜蛋白结合的多胺含量受低 度盐的促进而被高浓度盐所抑制。以非共价键形式与膜微囊结合的各种多胺中亚精胺(Spd)含量最高,占膜上多胺总量的40%-70%,与膜蛋白共价结合的各种多胺中腐胺(Put)含量占主导地位,占膜蛋白上多胺总量的35%-60%。在根系液泡膜上发现一种含量丰  相似文献   

15.
Changes in superoxide radical formation and bioelectrical characteristics of excised wheat root cells under modification of plasma membrane ion permeability were studied. It was shown that a 2 h treatment of excised roots with valinomycin (Val, 20 microM), N, N'-dicyclohexylcarbodimide (DCCD, 100 microM), gramicidin S (Gr, 20 microM), chlorpromazine (CPZ, 100 microM) caused an increased loss of potassium by cells, lowering of membrane potential (MP) and electrical input resistance (Rin) of the cells. The superoxide formation by excised root cells diminished (under DCCD) or remained at the control level (under Val), which was accompanied by a minor decrease of MP and Rin of the cells, a small increase in potassium loss by excised roots, and in no change of pH of incubation medium. Significant depolarization of plasma membrane, dropping of Rin and essential loss of potassium ions by the cells correlated with a rise in the medium alkalinization and superoxide formation by excised roots (in the presence of Gr, CPZ). Ion channel blocker gadolinium (Gd3+, 200 microM) caused an increase of MP and Rin reduction of potassium loss by cells, and a decrease of pH of the incubation medium, and also enhancement of superoxide formation by excised root cells. It is suggested that upon plasma membrane ion permeability modification the activity of superoxide generating systems depends on the specificity and mechanisms of action of modulators, and is determined by their influence on redox state of plasma membrane as well as by peculiarities of ion transport disturbance.  相似文献   

16.
The vacuolar membrane, the tonoplast, is a proteinrich membranehitherto only few proteins in it have been identified. As anapproach for the identification of tonoplast proteins by monoclonalantibodies (MABs), purified tonoplast from cress roots (Lepidiumsativum L.) were used for immunization and plasma membranesas a control membrane to test the absence of antigen. The MABTOP 35 identified a glycoprotein of about 35 kDa in purifiedtonoplast of cress roots. Triton X-114 phase separation showedthat it was a hydrophobic integral membrane protein. In immunocytochemistrythe MAB TOP 35 strongly labelled the vacuolar membrane. Theabsence of cell wall or plasma membrane labelling by TOP 35indicates a distinct biosynthetic pathway of this protein tothe vacuolar membrane in plants. Key words: Immnocytochemistry, Lepidium sativum, monoclonal antibody, secretion, vacuole  相似文献   

17.
A response when wheat is grown in excess copper is an altered lipid composition of the root plasma membrane (PM). With detailed characterisation of the root PM lipid composition of the copper-treated plants as a basis, in the present study, model systems were used to gain a wider understanding about membrane behaviour, and the impact of a changed lipid composition.PMs from root cells of plants grown in excess copper (50 μM Cu2+) and control (0.3 μM Cu2+) were isolated using the two-phase partitioning method. Membrane vesicles were prepared of total lipids extracts from the isolated PMs, and also reference vesicles of phosphatidylcholine (PC). In a series of tests, the vesicle permeability for glucose and for protons was analysed. The vesicles show that copper stress reduced the permeability for glucose of the lipid bilayer barrier. When vesicles from stressed plants were modified by addition of lipids to resemble vesicles from control plants, the permeability for glucose was very similar to that of vesicles from control plants. The permeability for protons did not change upon stress.Electron paramagnetic resonance (EPR) of the lipid vesicles spin probed with n-doxylstearic acid (nDSA) was used to explore the lipid rotational freedom at different depth of the bilayer. The EPR measurements supported the permeability data, indicating that the copper stress resulted in more tightly packed bilayers of the PMs with reduced acyl chain motion.  相似文献   

18.
White lupin (Lupinus albus) is able to adapt to phosphorus deficiency by producing proteoid roots that release a huge amount of organic acids, resulting in mobilization of sparingly soluble soil phosphate in rhizosphere. The mechanisms responsible for the release of organic acids by proteoid root cells, especially the trans-membrane transport processes, have not been elucidated. Because of high cytosolic pH, the release of undissociated organic acids is not probable. In the present study, we focused on H+ export by plasma membrane H+ ATPase in active proteoid roots. In vivo, rhizosphere acidification of active proteoid roots was vanadate sensitive. Plasma membranes were isolated from proteoid roots and lateral roots from P-deficient and -sufficient plants. In vitro, in comparison with two types of lateral roots and proteoid roots of P-sufficient plants, the following increase of the various parameters was induced in active proteoid roots of P-deficient plants: (a) hydrolytic ATPase activity, (b) Vmax and Km, (c) H+ ATPase enzyme concentration of plasma membrane, (d) H+-pumping activity, (e) pH gradient across the membrane of plasmalemma vesicles, and (f) passive H+ permeability of plasma membrane. In addition, lower vanadate sensitivity and more acidic pH optimum were determined for plasma membrane ATPase of active proteoid roots. Our data support the hypothesis that in active proteoid root cells, H+ and organic anions are exported separately, and that modification of plasma membrane H+ ATPase is essential for enhanced rhizosphere acidification by active proteoid roots.  相似文献   

19.
锌营养状况对小麦根细胞膜透性的影响   总被引:1,自引:0,他引:1  
小麦缺锌不仅导致根系K~ 和NO_3~-泌出量增加,而且低分子量有机化合物如氨基酸、糖类化合物和酚类化合物的泌出量也明显提高。重新供锌(ZnSO_4)12h后,根系K~ 、NO_3~-、氨基酸和碳水化合物的泌出量迅速减少,随着时间的延长,泌出量接近对照水平。结果说明锌对根细胞膜结构的稳定性及膜功能的完整性是必不可少的。  相似文献   

20.
Aquaporins are integral membrane proteins of the tonoplast and the plasma membrane that facilitate the passage of water through these membranes. Because of their potentially important role in regulating water flow in plants, studies documenting aquaporin gene expression in specialized tissues involved in water and solute transport are important. We used in situ hybridization to examine the expression pattern of the tonoplast aquaporin ZmTIP1 in different organs of maize (Zea mays L.). This tonoplast water channel is highly expressed in the root epidermis, the root endodermis, the small parenchyma cells surrounding mature xylem vessels in the root and the stem, phloem companion cells and a ring of cells around the phloem strand in the stem and the leaf sheath, and the basal endosperm transfer cells in developing kernels. We postulate that the high level of expression of ZmTIP1 in these tissues facilitates rapid flow of water through the tonoplast to permit osmotic equilibration between the cytosol and the vacuolar content, and to permit rapid transcellular water flow through living cells when required.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号