首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
2.
The alpha splice variant of p73 (p73alpha), a homologue of the tumor suppressor p53, has close to its C terminus a sterile alpha motif (SAM), SAMp73, that is thought to be involved in protein-protein interactions. Here, we report the lipid binding properties of this domain. Binding was assayed against zwitterionic (phosphatidylcholine) and anionic (phosphatidic acid) lipids and was studied by different biophysical techniques, namely, circular dichroism and fluorescence spectroscopies and differential scanning calorimetry. These techniques unambiguously indicate that SAMp73 binds to lipids. The binding involves protein surface attachment and partial membrane penetration, accompanied by changes in SAMp73 structure.  相似文献   

3.
Plakophilin 1 (PKP1), a member of the armadillo repeat family of proteins, is a key structural component of cell-cell adhesion scaffolds, although it can also be found in other cell locations, including the cytoplasm and the nucleus. PADI4 (peptidyl-arginine deiminase 4) is one of the human isoforms of a family of enzymes engaged in the conversion of arginine to citrulline, and is present in monocytes, macrophages, granulocytes, and in several types of cancer cells. It is the only family member observed both within the nucleus and the cytoplasm under ordinary conditions. We studied the binding of the armadillo domain of PKP1 (ARM-PKP1) with PADI4, by using several biophysical methods, namely fluorescence, far-ultraviolet (far-UV) circular dichroism (CD), isothermal titration calorimetry (ITC), and molecular simulations; furthermore, binding was also tested by Western-blot (WB) analyses. Our results show that there was binding between the two proteins, with a dissociation constant in the low micromolar range (~ 1 μM). Molecular modelling provided additional information on the possible structure of the binding complex, and especially on the binding hot-spot predicted for PADI4. This is the first time that the interaction between these two proteins has been described and studied. Our findings could be of importance to understand the development of tumors, where PKP1 and PADI4 are involved. Moreover, our findings pave the way to describe the formation of neutrophil extracellular traps (NETs), whose construction is modulated by PADI4, and which mediate the proteolysis of cell-cell junctions where PKP1 intervenes.  相似文献   

4.
ASPP1 and ASPP2 are activators of p53-dependent apoptosis, whereas iASPP is an inhibitor of p53. Binding assays showed differential binding for C-terminal domains of iASPP and ASPP2 to the core domains of p53 family members p53, p63, and p73. We also determined a high-resolution crystal structure for the C terminus of iASPP, comprised of four ankyrin repeats and an SH3 domain. The crystal lattice revealed an interaction between eight sequential residues in one iASPP molecule and the p53-binding site of a neighboring molecule. ITC confirmed that a peptide corresponding to the crystallographic interaction shows specific binding to iASPP. The contributions of ankyrin repeat residues, in addition to those of the SH3 domain, generate distinctive architecture at the p53-binding site suitable for inhibition by small molecules. These results suggest that the binding properties of iASPP render it a target for antitumor therapeutics and provide a peptide-based template for compound design.  相似文献   

5.
6.
AbstractThe p53 protein family is the most studied protein family of all. Sequence analysis and structure determination have revealed a high similarity of crucial domains between p53, p63 and p73. Functional studies, however, have shown a wide variety of different tasks in tumor suppression, quality control and development. Here we review the structure and organization of the individual domains of p63 and p73, the interaction of these domains in the context of full-length proteins and discuss the evolutionary origin of this protein family. Facts
  • Distinct physiological roles/functions are performed by specific isoforms.
  • The non-divided transactivation domain of p63 has a constitutively high activity while the transactivation domains of p53/p73 are divided into two subdomains that are regulated by phosphorylation.
  • Mdm2 binds to all three family members but ubiquitinates only p53.
  • TAp63α forms an autoinhibited dimeric state while all other vertebrate p53 family isoforms are constitutively tetrameric.
  • The oligomerization domain of p63 and p73 contain an additional helix that is necessary for stabilizing the tetrameric states. During evolution this helix got lost independently in different phylogenetic branches, while the DNA binding domain became destabilized and the transactivation domain split into two subdomains.
Open questions
  • Is the autoinhibitory mechanism of mammalian TAp63α conserved in p53 proteins of invertebrates that have the same function of genomic quality control in germ cells?
  • What is the physiological function of the p63/p73 SAM domains?
  • Do the short isoforms of p63 and p73 have physiological functions?
  • What are the roles of the N-terminal elongated TAp63 isoforms, TA* and GTA?
Subject terms: X-ray crystallography, Solution-state NMR  相似文献   

7.
8.
9.
10.
In renal cell carcinoma, transglutaminase 2 (TGase 2) crosslinks p53 in autophagosomes, resulting in p53 depletion and the tumor''s evasion of apoptosis. Inhibition of TGase 2 stabilizes p53 and induces tumor cells to enter apoptosis. This study explored the mechanism of TGase 2-dependent p53 degradation. We found that TGase 2 competes with human double minute 2 homolog (HDM2) for binding to p53; promotes autophagy-dependent p53 degradation in renal cell carcinoma (RCC) cell lines under starvation; and binds to p53 and p62 simultaneously without ubiquitin-dependent recognition of p62. The bound complex does not have crosslinking activity. A binding assay using a series of deletion mutants of p62, p53 and TGase 2 revealed that the PB1 (Phox and Bem1p-1) domain of p62 (residues 85–110) directly interacts with the β-barrel domains of TGase 2 (residues 592–687), whereas the HDM2-binding domain (transactivation domain, residues 15–26) of p53 interacts with the N terminus of TGase 2 (residues 1–139). In addition to the increase in p53 stability due to TGase 2 inhibition, the administration of a DNA-damaging anti-cancer drug such as doxorubicin-induced apoptosis in RCC cell lines and synergistically reduced tumor volume in a xenograft model. Combination therapy with a TGase 2 inhibitor and a DNA-damaging agent may represent an effective therapeutic approach for treating RCC.Transglutaminase 2 (TGase 2, E.C. 2.1.2.13) is an enzyme that catalyzes an isopeptide bond between protein glutamine and lysine residues, resulting in a covalent crosslink.1 Previously, we found that, in renal cell carcinoma (RCC) cell lines, TGase 2 crosslinks p53 into aggregates in the autophagosome, resulting in p53 degradation by autophagy.2 This p53 instability allows tumor cells to evade apoptosis and grow. Instability of p53 in RCC is not associated with mutations because only 4% of samples of clear cell RCC in the COSMIC database present p53 mutations (Supplementary Figure 1). We recently reported that monotherapy using the TGase 2 inhibitor GK921 in a xenograft tumor model abrogated RCC growth through p53 stabilization.3 These results suggest the possibility of using TGase 2 inhibitors as a cancer therapy.3p53 Regulation by human double minute 2 homolog (HDM2) involves proteasomal degradation through ubiquitination, whereas TGase 2-mediated p53 regulation involves autophagosome degradation. However, how TGase 2 depletes p53 in the context of the central regulation system of p53 under HDM2 surveillance is unknown. The half-life of p53 is very short due to its interaction with HDM2. HDM2 depletes p53 by binding to a region of its transactivation domain,4 which facilitates rapid turnover through ubiquitination.5 DNA damage-induced phosphorylation of the N terminus of p53 blocks its interaction with HDM2,6 which stabilizes p53 by inhibiting proteasome-mediated degradation.7In this study, we found that silencing TGM2, the gene encoding TGase 2, in RCC cell lines induced cell death under starvation conditions through p53 stabilization to the same extent as did silencing of HDM2. This result suggests that the general instability of p53 in RCC largely depends on TGase 2-mediated autophagy. In fact, p53 depletion induced by TGase 2 has no energy cost to cancer cells because TGase 2 only uses calcium to catalyze covalent crosslinks. However, the role of TGase 2 in autophagy is not clearly understood in cancer, although it is known that TGase 2 knockout mice present impaired autophagy, which increases ubiquitinated protein aggregates upon starvation and deceases p62-dependent peroxisome degradation.8 The binding mechanism between TGase 2 and p62 is unknown, although TGase 2 is able to bind directly with p62, which often localizes in the autophagosome.2, 8 p62 (also known as sequestosome 1) is an adapter protein in the degradation of ubiquitinated proteins in autophagosomes through interaction with microtubule-associated protein 1 light chain 3 alpha (LC3).9 The N terminus of p62 is a PB1 (Phox and Bem1p-1) domain that binds to the PB1 region in the atypical protein kinase C, the MAPK kinase, and the NBR1 (neighbor of BRCA1 gene) protein.10 The C terminus of p62 harbors a ubiquitin-associated (UBA) domain11 that interacts with ubiquitin and polyubiquitin chains, and an LC3-interacting region domain that interacts with LC3 in phagophore membranes.12 The part of the p53–TGase 2 complex that binds to p62 is unknown, but could be a part of either p53 or TGase 2. We observed that p53 does not bind to p62 directly but is transferred to p62 through association with TGase 2.Here, we explored the possibility that TGase 2 is a chaperone in autophagy by analyzing the domains of p53 and p62 that bind to TGase 2 as well as the domain of TGase 2 that binds to p62. Based on the finding that TGase 2 inhibition increases p53 stability, we also tested the possibility that DNA-damaging reagents such as doxorubicin expand the damage of p53-mediated cell death when combined with TGase 2 inhibition in a preclinical model of RCC.  相似文献   

11.
12.
Many macromolecular interactions, including protein‐nucleic acid interactions, are accompanied by a substantial negative heat capacity change, the molecular origins of which have generated substantial interest. We have shown previously that temperature‐dependent unstacking of the bases within oligo(dA) upon binding to the Escherichia coli SSB tetramer dominates the binding enthalpy, ΔHobs, and accounts for as much as a half of the observed heat capacity change, ΔCp. However, there is still a substantial ΔCp associated with SSB binding to ssDNA, such as oligo(dT), that does not undergo substantial base stacking. In an attempt to determine the origins of this heat capacity change, we have examined by isothermal titration calorimetry (ITC) the equilibrium binding of dT(pT)34 to SSB over a broad pH range (pH 5.0–10.0) at 0.02 M, 0.2 M NaCl and 1 M NaCl (25°C), and as a function of temperature at pH 8.1. A net protonation of the SSB protein occurs upon dT(pT)34 binding over this entire pH range, with contributions from at least three sets of protonation sites (pKa1 = 5.9–6.6, pKa2 = 8.2–8.4, and pKa3 = 10.2–10.3) and these protonation equilibria contribute substantially to the observed ΔH and ΔCp for the SSB‐dT(pT)34 interaction. The contribution of this coupled protonation (∼ −260 to −320 cal mol−1 K−1) accounts for as much as half of the total ΔCp. The values of the “intrinsic” ΔCp,0 range from −210 ± 33 cal mol−1 °K−1 to −237 ± 36 cal mol−1K−1, independent of [NaCl]. These results indicate that the coupling of a temperature‐dependent protonation equilibria to a macromolecular interaction can result in a large negative ΔCp, and this finding needs to be considered in interpretations of the molecular origins of heat capacity changes associated with ligand‐macromolecular interactions, as well as protein folding. Proteins 2000;Suppl 4:8–22. © 2000 Wiley‐Liss, Inc.  相似文献   

13.
14.
BackgroundCopper is an essential trace element required for the proper functioning of various enzymes present in the central nervous system. An imbalance in the copper homeostasis results in the pathology of various neurodegenerative disorders including Parkinson’s Disease. Hence, residue specific interaction of Cu2+ to α-Syn along with the familial mutants H50Q and G51D needs to be studied in detail.MethodsWe investigated the residue specific mapping of Cu2+ binding sites and binding strength using solution-state NMR and ITC respectively. The aggregation kinetics, secondary structural changes, and morphology of the formed fibrils in the presence and absence of Cu2+ were studied using fluorescence, CD, and AFM respectively.ResultsCopper binding to α-Syn takes place at three different sites with a higher affinity for the region 48-53. While one of the sites got abolished in the case of H50Q, the mutant G51D showed a binding pattern similar to WT. The aggregation kinetics of these proteins in the presence of Cu2+ showed an enhanced rate of fibril formation with a pronounced effect for G51D.ConclusionCu2+ binding results in the destabilization of long-range tertiary interactions in α-Syn leading to the exposure of highly amyloidogenic NAC region which results in the increased rate of fibril formation. Although the residues 48-53 have a stronger affinity for Cu2+ in case of WT and G51D, the binding is not responsible for enhancing the rate of fibril formation in case of H50Q.General SignificanceThese findings will help in the better understanding of Cu2+ catalyzed aggregation of synucleins.  相似文献   

15.
16.
17.
The tumour suppressor gene p53 and the intracellular signalling molecule ceramide have both been shown to play crucial roles in the induction of apoptosis by ionising radiation. In this study we examined whether p53 and ceramide are involved in independent signal pathways, inducing different types of apoptosis. TK6 (p53wt/wt) and WTK1 (p53mut/mut) lymphoblastoid cells were treated with ionising radiation or N-acetyl-d-sphingosine (C2-ceramide). Flow cytometry and fluorescence microscopy studies were performed to characterise the time kinetics and morphological features of induced apoptosis. Ceramide- and radiation-induced apoptotic cells display characteristic differences in morphology and DNA staining and ceramide-induced apoptosis is expressed much faster than radiation-induced apoptosis. Radiation-induced apoptosis is p53-dependent and ceramide-induced apoptosis is p53-independent. The p53 pathway and the ceramide pathway are two independent signal pathways leading to distinct types of apoptosis. Since p53 is very often dysfunctional in tumour cells, modifying the ceramide pathway is a promising strategy to increase tumour sensitivity to radiation and other anticancer agents. Received: 19 April 2001 / Accepted: 15 October 2001  相似文献   

18.
19.
Abstract

In this study, the interaction between 3-phenyl-1H-indazole (1a) and the fat mass and obesity-associated (FTO) protein was confirmed by isothermal titration calorimetry (ITC). The structure feature of 1a was different from our previously reported FTO inhibitors (radicicol, N-CDPCB and CHTB); the Cl and diol group in structure motif is critical for inhibitors to bind to FTO. In order to test whether there is specificity for the interaction between FTO and 1a, the interactions between 1a and four important proteins (human serum albumin (HSA), pepsin, catalase and trypsin) were investigated by ITC, spectroscopy and molecular docking methods. ITC results showed spontaneous exothermic reactions occurring between 1a and the proteins except trypsin under investigated conditions. The order of the binding affinity of 3-phenyl-1H-indazole is catalase?>?HSA?>?FTO?>?pepsin. Comparison between ITC and spectral results was made. This work will provide the basis for the design of novel inhibitors for FTO. Abbreviations CAT catalase

DMSO dimethyl sulfoxide

FTO fat mass and obesity-associated protein

HSA human serum albumin

Pep pepsin

Try trypsin

Communicated by Ramaswamy H. Sarma  相似文献   

20.
Craig A  Scott M  Burch L  Smith G  Ball K  Hupp T 《EMBO reports》2003,4(8):787-792
The tumour suppressor p53 is a tetrameric protein that is phosphorylated in its BOX-I transactivation domain by checkpoint kinase 2 (CHK2) in response to DNA damage. CHK2 cannot phosphorylate small peptide fragments of p53 containing the BOX-I motif, indicating that undefined determinants in the p53 tetramer mediate CHK2 recognition. Two peptides derived from the DNA-binding domain of p53 bind to CHK2 and stimulate phosphorylation of full-length p53 at Thr 18 and Ser 20, thus identifying CHK2-docking sites. CHK2 can be fully activated in trans by the two p53 DNA-binding-domain peptides, and can phosphorylate BOX-I transactivation-domain fragments of p53 at Thr 18 and Ser 20. Although CHK2 has a basal Ser 20 kinase activity that is predominantly activated towards Thr 18, CHK1 has constitutive Thr 18 kinase activity that is predominantly activated in trans towards Ser 20. Cell division cycle 25C (CDC25C) phosphorylation by CHK2 is unaffected by the p53 DNA-binding-domain peptides. The CHK2-docking site in the BOX-V motif is the smallest of the two CHK2 binding sites, and mutating certain amino acids in the BOX-V peptide prevents CHK2 activation. A database search identified a p53 BOX-I-homology motif in p21WAF1 and although CHK2 is inactive towards this protein, the p53 DNA-binding-domain peptides induce phosphorylation of p21WAF1 at Ser 146. This provides evidence that CHK2 can be activated allosterically towards some substrates by a novel docking interaction, and identify a potential regulatory switch that may channel CHK2 into distinct signalling pathways in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号