首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The main protease (Mpro, also known as 3CL protease) of SARS-CoV-2 is a high priority drug target in the development of antivirals to combat COVID-19 infections. A feline coronavirus antiviral drug, GC376, has been shown to be effective in inhibiting the SARS-CoV-2 main protease and live virus growth. As this drug moves into clinical trials, further characterization of GC376 with the main protease of coronaviruses is required to gain insight into the drug’s properties, such as reversibility and broad specificity. Reversibility is an important factor for therapeutic proteolytic inhibitors to prevent toxicity due to off-target effects. Here we demonstrate that GC376 has nanomolar Ki values with the Mpro from both SARS-CoV-2 and SARS-CoV strains. Restoring enzymatic activity after inhibition by GC376 demonstrates reversible binding with both proteases. In addition, the stability and thermodynamic parameters of both proteases were studied to shed light on physical chemical properties of these viral enzymes, revealing higher stability for SARS-CoV-2 Mpro. The comparison of a new X-ray crystal structure of Mpro from SARS-CoV complexed with GC376 reveals similar molecular mechanism of inhibition compared to SARS-CoV-2 Mpro, and gives insight into the broad specificity properties of this drug. In both structures, we observe domain swapping of the N-termini in the dimer of the Mpro, which facilitates coordination of the drug’s P1 position. These results validate that GC376 is a drug with an off-rate suitable for clinical trials.  相似文献   

2.
The Coronavirus Disease 2019 (COVID-19) pandemic caused by the novel lineage B betacoroanvirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in significant mortality, morbidity, and socioeconomic disruptions worldwide. Effective antivirals are urgently needed for COVID-19. The main protease (Mpro) of SARS-CoV-2 is an attractive antiviral target because of its essential role in the cleavage of the viral polypeptide. In this study, we performed an in silico structure-based screening of a large chemical library to identify potential SARS-CoV-2 Mpro inhibitors. Among 8,820 compounds in the library, our screening identified trichostatin A, a histone deacetylase inhibitor and an antifungal compound, as an inhibitor of SARS-CoV-2 Mpro activity and replication. The half maximal effective concentration of trichostatin A against SARS-CoV-2 replication was 1.5 to 2.7µM, which was markedly below its 50% effective cytotoxic concentration (75.7µM) and peak serum concentration (132µM). Further drug compound optimization to develop more stable analogues with longer half-lives should be performed. This structure-based drug discovery platform should facilitate the identification of additional enzyme inhibitors of SARS-CoV-2.  相似文献   

3.
New variants of the severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) emerged and spread rapidly all over the world, which strongly supports the need for pharmacological options to complement vaccine strategies. Main protease (Mpro or 3CLpro) is a critical enzyme in the life cycle of SARS-CoV-2 and appears to be highly conserved among different genera of coronaviruses, making it an ideal target for the development of drugs with broad-spectrum property. PF-07304814 developed by Pfizer is an intravenously administered inhibitor targeting SARS-CoV-2 Mpro. Here we showed that PF-07304814 displays broad-spectrum inhibitory activity against Mpros from multiple coronaviruses. Crystal structures of Mpros of SARS-CoV-2, SARS-CoV, MERS-CoV, and HCoV-NL63 bound to the inhibitor PF-07304814 revealed a conserved ligand-binding site, providing new insights into the mechanism of inhibition of viral replication. A detailed analysis of these crystal structures complemented by comprehensive comparison defined the key structural determinants essential for inhibition and illustrated the binding mode of action of Mpros from different coronaviruses. In view of the importance of Mpro for the medications of SARS-CoV-2 infection, insights derived from the present study should accelerate the design of pan-coronaviral main protease inhibitors that are safer and more effective.  相似文献   

4.
SARS-CoV-2 is the causative agent of COVID-19. The dimeric form of the viral Mpro is responsible for the cleavage of the viral polyprotein in 11 sites, including its own N and C-terminus. The lack of structural information for intermediary forms of Mpro is a setback for the understanding its self-maturation process. Herein, we used X-ray crystallography combined with biochemical data to characterize multiple forms of SARS-CoV-2 Mpro. For the immature form, we show that extra N-terminal residues caused conformational changes in the positioning of domain-three over the active site, hampering the dimerization and diminishing its activity. We propose that this form preludes the cis and trans-cleavage of N-terminal residues. Using fragment screening, we probe new cavities in this form which can be used to guide therapeutic development. Furthermore, we characterized a serine site-directed mutant of the Mpro bound to its endogenous N and C-terminal residues during dimeric association stage of the maturation process. We suggest this form is a transitional state during the C-terminal trans-cleavage. This data sheds light in the structural modifications of the SARS-CoV-2 main protease during its self-maturation process.  相似文献   

5.
6.
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as a global threat to human health has highlighted the need for the development of novel therapies targeting current and emerging coronaviruses with pandemic potential. The coronavirus main protease (Mpro, also called 3CLpro) is a validated drug target against coronaviruses and has been heavily studied since the emergence of SARS-CoV-2 in late 2019. Here, we report the biophysical and enzymatic characterization of native Mpro, then characterize the steady-state kinetics of several commonly used FRET substrates, fluorogenic substrates, and six of the 11 reported SARS-CoV-2 polyprotein cleavage sequences. We then assessed the suitability of these substrates for high-throughput screening. Guided by our assessment of these substrates, we developed an improved 5-carboxyfluorescein-based FRET substrate, which is better suited for high-throughput screening and is less susceptible to interference and false positives than existing substrates. This study provides a useful framework for the design of coronavirus Mpro enzyme assays to facilitate the discovery and development of therapies targeting Mpro.  相似文献   

7.
Coronavirus disease 2019 (COVID-19) has emerged from China and globally affected the entire population through the human-to-human transmission of a newly emerged virus called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The genome of SARS-CoV-2 encodes several proteins that are essential for multiplication and pathogenesis. The main protease (Mpro or 3CLpro) of SARS-CoV-2 plays a central role in its pathogenesis and thus is considered as an attractive drug target for the drug design and development of small-molecule inhibitors. We have employed an extensive structure-based high-throughput virtual screening to discover potential natural compounds from the ZINC database which could inhibit the Mpro of SARS-CoV-2. Initially, the hits were selected on the basis of their physicochemical and drug-like properties. Subsequently, the PAINS filter, estimation of binding affinities using molecular docking, and interaction analyses were performed to find safe and potential inhibitors of SARS-CoV-2 Mpro. We have identified ZINC02123811 (1-(3-(2,5,9-trimethyl-7-oxo-3-phenyl-7H-furo[3,2-g]chromen-6-yl)propanoyl)piperidine-4-carboxamide), a natural compound bearing appreciable affinity, efficiency, and specificity towards the binding pocket of SARS-CoV-2 Mpro. The identified compound showed a set of drug-like properties and preferentially binds to the active site of SARS-CoV-2 Mpro. All-atom molecular dynamics (MD) simulations were performed to evaluate the conformational dynamics, stability and interaction mechanism of Mpro with ZINC02123811. MD simulation results indicated that Mpro with ZINC02123811 forms a stable complex throughout the trajectory of 100 ns. These findings suggest that ZINC02123811 may be further exploited as a promising scaffold for the development of potential inhibitors of SARS-CoV-2 Mpro to address COVID-19.  相似文献   

8.
Xue X  Yu H  Yang H  Xue F  Wu Z  Shen W  Li J  Zhou Z  Ding Y  Zhao Q  Zhang XC  Liao M  Bartlam M  Rao Z 《Journal of virology》2008,82(5):2515-2527
Coronaviruses (CoVs) can infect humans and multiple species of animals, causing a wide spectrum of diseases. The coronavirus main protease (Mpro), which plays a pivotal role in viral gene expression and replication through the proteolytic processing of replicase polyproteins, is an attractive target for anti-CoV drug design. In this study, the crystal structures of infectious bronchitis virus (IBV) Mpro and a severe acute respiratory syndrome CoV (SARS-CoV) Mpro mutant (H41A), in complex with an N-terminal autocleavage substrate, were individually determined to elucidate the structural flexibility and substrate binding of Mpro. A monomeric form of IBV Mpro was identified for the first time in CoV Mpro structures. A comparison of these two structures to other available Mpro structures provides new insights for the design of substrate-based inhibitors targeting CoV Mpros. Furthermore, a Michael acceptor inhibitor (named N3) was cocrystallized with IBV Mpro and was found to demonstrate in vitro inactivation of IBV Mpro and potent antiviral activity against IBV in chicken embryos. This provides a feasible animal model for designing wide-spectrum inhibitors against CoV-associated diseases. The structure-based optimization of N3 has yielded two more efficacious lead compounds, N27 and H16, with potent inhibition against SARS-CoV Mpro.  相似文献   

9.
In three-dimensional domain swapping, two protein monomers exchange a part of their structures to form an intertwined homodimer, whose subunits resemble the monomer. Several viral proteins domain swap to increase their structural complexity or functional avidity. The main protease (Mpro) of the severe acute respiratory syndrome (SARS) coronavirus proteolyzes viral polyproteins and has been a target for anti-SARS drug design. Domain swapping in the α-helical C-terminal domain of Mpro (MproC) locks Mpro into a hyperactive octameric form that is hypothesized to promote the early stages of viral replication. However, in the absence of a complete molecular understanding of the mechanism of domain swapping, investigations into the biological relevance of this octameric Mpro have stalled. Isolated MproC can exist as a monomer or a domain-swapped dimer. Here, we investigate the mechanism of domain swapping of MproC using coarse-grained structure-based models and molecular dynamics simulations. Our simulations recapitulate several experimental features of MproC folding. Further, we find that a contact between a tryptophan in the MproC domain-swapping hinge and an arginine elsewhere forms early during folding, modulates the folding route, and promotes domain swapping to the native structure. An examination of the sequence and the structure of the tryptophan containing hinge loop shows that it has a propensity to form multiple secondary structures and contacts, indicating that it could be stabilized into either the monomer- or dimer-promoting conformations by mutations or ligand binding. Finally, because all residues in the tryptophan loop are identical in SARS-CoV and SARS-CoV-2, mutations that modulate domain swapping may provide insights into the role of octameric Mpro in the early-stage viral replication of both viruses.  相似文献   

10.
The main protease (Mpro) of severe acute respiratory syndrome coronavirus (SARS-CoV) plays an essential role in the extensive proteolytic processing of the viral polyproteins (pp1a and pp1ab), and it is an important target for anti-SARS drug development. SARS-CoV Mpro is composed of a catalytic N-terminal domain and an α-helical C-terminal domain linked by a long loop. Even though the N-terminal domain of SARS-CoV Mpro adopts a similar chymotrypsin-like fold as that of piconavirus 3C protease, the extra C-terminal domain is required for SARS-CoV Mpro to be enzymatically active. Here, we reported the NMR assignments of the SARS-CoV Mpro N-terminal domain alone, which are essential for its solution structure determination.  相似文献   

11.
12.
Boesenbergia rotunda (L.) Mansf., commonly known as fingerroot is a perennial herb in the Zingiberaceae family with anticancer, anti-leptospiral, anti-inflammatory, antioxidant, antiulcer, and anti-herpes viral activities. While the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) inhibitory activity of B. rotunda extract has been recently found, the active compounds contributing to this activity are yet unknown. The main protease (Mpro) enzyme is one of the most well established therapeutic targets among coronaviruses which plays a vital role in the maturation and cleavage of polyproteins during viral replication. The current work aims to identify active phytochemical substances from B. rotunda extract that can inhibit the replication of SARS-CoV-2 by using a combined molecular docking and dynamic simulation approaches. The virtual screening experiment revealed that fifteen molecules out of twenty-three major active compounds in the plant extract have acceptable drug-like characteristics. Alpinetin, Pinocembrin, and Pinostrobin have binding energies of ?7.51 kcal/mol, ?7.21 kcal/mol, and ?7.18 kcal/mol, respectively, and can suppress Mpro activity. The stability of the simulated complexes of the lead compounds with the drug-receptor is demonstrated by 100-ns MD simulations. The binding free energies study utilizing molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) and molecular mechanics generalized Born surface area (MM-GBSA) show that the compounds and Mpro enzyme have favourable thermodynamic interactions, which are majorly driven by van der Waals forces. Thus, the selected bioactive phytochemicals from B. rotunda might be used as anti-SARS-CoV-2 candidates that target the Mpro enzyme.  相似文献   

13.
Zhao Q  Li S  Xue F  Zou Y  Chen C  Bartlam M  Rao Z 《Journal of virology》2008,82(17):8647-8655
The newly emergent human coronavirus HKU1 (HCoV-HKU1) was first identified in Hong Kong in 2005. Infection by HCoV-HKU1 occurs worldwide and causes syndromes such as the common cold, bronchitis, and pneumonia. The CoV main protease (Mpro), which is a key enzyme in viral replication via the proteolytic processing of the replicase polyproteins, has been recognized as an attractive target for rational drug design. In this study, we report the structure of HCoV-HKU1 Mpro in complex with a Michael acceptor, inhibitor N3. The structure of HCoV-HKU1 provides a high-quality model for group 2A CoVs, which are distinct from group 2B CoVs such as severe acute respiratory syndrome CoV. The structure, together with activity assays, supports the relative conservation at the P1 position that was discovered by sequencing the HCoV-HKU1 genome. Combined with structural data from other CoV Mpros, the HCoV-HKU1 Mpro structure reported here provides insights into both substrate preference and the design of antivirals targeting CoVs.  相似文献   

14.
The SARS-CoV-2 coronavirus is the causal agent of the current global pandemic. SARS-CoV-2 belongs to an order, Nidovirales, with very large RNA genomes. It is proposed that the fidelity of coronavirus (CoV) genome replication is aided by an RNA nuclease complex, comprising the non-structural proteins 14 and 10 (nsp14–nsp10), an attractive target for antiviral inhibition. Our results validate reports that the SARS-CoV-2 nsp14–nsp10 complex has RNase activity. Detailed functional characterization reveals nsp14–nsp10 is a versatile nuclease capable of digesting a wide variety of RNA structures, including those with a blocked 3′-terminus. Consistent with a role in maintaining viral genome integrity during replication, we find that nsp14–nsp10 activity is enhanced by the viral RNA-dependent RNA polymerase complex (RdRp) consisting of nsp12–nsp7–nsp8 (nsp12–7–8) and demonstrate that this stimulation is mediated by nsp8. We propose that the role of nsp14–nsp10 in maintaining replication fidelity goes beyond classical proofreading by purging the nascent replicating RNA strand of a range of potentially replication-terminating aberrations. Using our developed assays, we identify drug and drug-like molecules that inhibit nsp14–nsp10, including the known SARS-CoV-2 major protease (Mpro) inhibitor ebselen and the HIV integrase inhibitor raltegravir, revealing the potential for multifunctional inhibitors in COVID-19 treatment.  相似文献   

15.
SARS coronavirus main protease (Mpro) plays an essential role in the extensive proteolytic processing of the viral polyproteins (pp1a and pp1ab), and it is an important target for anti-SARS drug development. We have reported that both the Mpro C-terminal domain alone (Mpro-C) and the N-finger deletion mutant of Mpro (Mpro-Δ7) exist as a stable dimer and a stable monomer (Zhong et al., J Virol 2008; 82:4227-4234). Here, we report structures of both Mpro-C monomer and dimer. The structure of the Mpro-C monomer is almost identical to that of the C-terminal domain in the crystal structure of Mpro. Interestingly, the Mpro-C dimer structure is characterized by 3D domain-swapping, in which the first helices of the two protomers are interchanged and each is enwrapped by four other helices from the other protomer. Each folding subunit of the Mpro-C domain-swapped dimer still has the same general fold as that of the Mpro-C monomer. This special dimerization elucidates the structural basis for the observation that there is no exchange between monomeric and dimeric forms of Mpro-C and Mpro-Δ7.  相似文献   

16.
SARS-CoV-2 main protease (Mpro) plays an essential role in proteolysis cleavage that promotes coronavirus replication. Thus, attenuating the activity of this enzyme represents a strategy to develop antiviral agents. We report inhibitory effects against Mpro of 40 synthetic chalcones, and cytotoxicity activities, hemolysis, and in silico interactions of active compounds. Seven of them bearing a (E)-3-(furan-2-yl)-1-arylprop-2-en-1-one skeleton ( 10 , 28 , and 35–39 ) showed enzyme inhibition with IC50 ranging from 13.76 and 36.13 μM. Except for 35 and 36 , other active compounds were not cytotoxic up to 150 μM against THP-1 and Vero cell lines. Compounds 10 , and 35–39 showed no hemolysis while 28 was weakly hemotoxic at 150 μM. Moreover, molecular docking showed interactions between compound 10 and Mpro (PDBID 5RG2 and 5RG3) with proximity to cys145 and His41, suggesting a covalent binding. Products of the reaction between chalcones and cyclohexanethiol indicated that this binding could be a Michael addition type.  相似文献   

17.
The COVID-19 pandemic continues to be a public health threat with emerging variants of SARS-CoV-2. Nirmatrelvir (PF-07321332) is a reversible, covalent inhibitor targeting the main protease (Mpro) of SARS-CoV-2 and the active protease inhibitor in PAXLOVID (nirmatrelvir tablets and ritonavir tablets). However, the efficacy of nirmatrelvir is underdetermined against evolving SARS-CoV-2 variants. Here, we evaluated the in vitro catalytic activity and potency of nirmatrelvir against the Mpro of prevalent variants of concern (VOCs) or variants of interest (VOIs): Alpha (α, B.1.1.7), Beta (β, B.1.351), Delta (δ, B1.617.2), Gamma (γ, P.1), Lambda (λ, B.1.1.1.37/C37), Omicron (ο, B.1.1.529), as well as the original Washington or wildtype strain. These VOCs/VOIs carry prevalent mutations at varying frequencies in the Mpro specifically for α, β, γ (K90R), λ (G15S), and ο (P132H). In vitro biochemical enzymatic assay characterization of the enzyme kinetics of the mutant Mpros demonstrates that they are catalytically comparable to wildtype. We found that nirmatrelvir has similar potency against each mutant Mpro including P132H that is observed in the Omicron variant with a Ki of 0.635 nM as compared to a Ki of 0.933 nM for wildtype. The molecular basis for these observations were provided by solution-phase structural dynamics and structural determination of nirmatrelvir bound to the ο, λ, and β Mpro at 1.63 to 2.09 Å resolution. These in vitro data suggest that PAXLOVID has the potential to maintain plasma concentrations of nirmatrelvir many-fold times higher than the amount required to stop the SARS-CoV-2 VOC/VOI, including Omicron, from replicating in cells.  相似文献   

18.
Middle East respiratory syndrome coronavirus (MERS-CoV) is a newly emerging human pathogen that was first isolated in 2012. MERS-CoV replication depends in part on a virus-encoded papain-like protease (PLpro) that cleaves the viral replicase polyproteins at three sites releasing non-structural protein 1 (nsp1), nsp2, and nsp3. In addition to this replicative function, MERS-CoV PLpro was recently shown to be a deubiquitinating enzyme (DUB) and to possess deISGylating activity, as previously reported for other coronaviral PLpro domains, including that of severe acute respiratory syndrome coronavirus. These activities have been suggested to suppress host antiviral responses during infection. To understand the molecular basis for ubiquitin (Ub) recognition and deconjugation by MERS-CoV PLpro, we determined its crystal structure in complex with Ub. Guided by this structure, mutations were introduced into PLpro to specifically disrupt Ub binding without affecting viral polyprotein cleavage, as determined using an in trans nsp3↓4 cleavage assay. Having developed a strategy to selectively disable PLpro DUB activity, we were able to specifically examine the effects of this activity on the innate immune response. Whereas the wild-type PLpro domain was found to suppress IFN-β promoter activation, PLpro variants specifically lacking DUB activity were no longer able to do so. These findings directly implicate the DUB function of PLpro, and not its proteolytic activity per se, in the inhibition of IFN-β promoter activity. The ability to decouple the DUB activity of PLpro from its role in viral polyprotein processing now provides an approach to further dissect the role(s) of PLpro as a viral DUB during MERS-CoV infection.  相似文献   

19.
20.
COVID-19 has become a global pandemic and there is an urgent call for developing drugs against the virus (SARS-CoV-2). The 3C-like protease (3CLpro) of SARS-CoV-2 is a preferred target for broad spectrum anti-coronavirus drug discovery. We studied the anti-SARS-CoV-2 activity of S. baicalensis and its ingredients. We found that the ethanol extract of S. baicalensis and its major component, baicalein, inhibit SARS-CoV-2 3CLpro activity in vitro with IC50’s of 8.52 µg/ml and 0.39 µM, respectively. Both of them inhibit the replication of SARS-CoV-2 in Vero cells with EC50’s of 0.74 µg/ml and 2.9 µM, respectively. While baicalein is mainly active at the viral post-entry stage, the ethanol extract also inhibits viral entry. We further identified four baicalein analogues from other herbs that inhibit SARS-CoV-2 3CLpro activity at µM concentration. All the active compounds and the S. baicalensis extract also inhibit the SARS-CoV 3CLpro, demonstrating their potential as broad-spectrum anti-coronavirus drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号