首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 806 毫秒
1.
In recent years, a number of new protein structures that possess tandem repeats have emerged. Many of these proteins are comprised of tandem arrays of β-hairpins. Today, the amount and variety of the data on these β-hairpin repeat (BHR) structures have reached a level that requires detailed analysis and further classification. In this paper, we classified the BHR proteins, compared structures, sequences of repeat motifs, functions and distribution across the major taxonomic kingdoms of life and within organisms. As a result, we identified six different BHR folds in tandem repeat proteins of Class III (elongated structures) and one BHR fold (up-and-down β-barrel) in Class IV (“closed” structures). Our survey reveals the high incidence of the BHR proteins among bacteria and viruses and their possible relationship to the structures of amyloid fibrils. It indicates that BHR folds will be an attractive target for future structural studies, especially in the context of age-related amyloidosis and emerging infectious diseases. This work allowed us to update the RepeatsDB database, which contains annotated tandem repeat protein structures and to construct sequence profiles based on BHR structural alignments.  相似文献   

2.
We treated the high salt‐washed canine pancreatic rough ER (KRM) with 0.18% Triton X‐100, separated the extract from the residual membrane (0.18%Tx KRM), and processed the extract with SM‐2 beads to recover membrane proteins in proteoliposomes. To focus on integral membrane proteins, KRM, 0.18%Tx KRM and proteoliposomes were subjected to sodium carbonate treatment, and analyzed by 2‐D gel electrophoresis. Consequently we found that a distinct group of integral membrane protein of KRM preferentially extracted from the membrane and recovered in proteoliposomes did exist, while majority of KRM integral membrane proteins were fractionated in 0.18%Tx KRM, which retained the basic structure and functions of KRM. Protein identification showed that the former group was enriched with proteins exported from the ER and the latter group comprised mostly of ER resident proteins. This result will potentially affect the prevailing view of the ER membrane structure as well as protein sorting from the ER.  相似文献   

3.
Chloride intracellular channel proteins (CLICs) are distinct from most ion channels in that they have both soluble and integral membrane forms. CLICs are highly conserved in chordates, with six vertebrate paralogues. CLIC-like proteins are found in other metazoans. CLICs form channels in artificial bilayers in a process favoured by oxidising conditions and low pH. They are structurally plastic, with CLIC1 adopting two distinct soluble conformations. Phylogenetic and structural data indicate that CLICs are likely to have enzymatic function. The physiological role of CLICs appears to be maintenance of intracellular membranes, which is associated with tubulogenesis but may involve other substructures.  相似文献   

4.
Prenylation is a post-translational modification that increases the affinity of proteins for membranes and mediates protein-protein interactions. The retinal rod rhodopsin-sensitive cGMP 3′,5′-cyclic phosphodiesterase subunit delta (PDEδ) is a prenyl binding protein that is essential for the shuttling of small GTPases between different membrane compartments and, thus, for their proper functioning. Although the prenylome comprises up to 2% of the mammalian proteome, only few prenylated proteins are known to interact with PDEδ. A proteome-wide approach was employed to map the PDEδ interactome among the prenylome and revealed RAB23, CDC42 and CNP as novel PDEδ interacting proteins. Moreover, PDEδ associates with the lamin A mutant progerin in a prenyl-dependent manner. These findings shed new light on the role of PDEδ in binding (and regulating) prenylated proteins in cells.  相似文献   

5.
The first efforts to modify the terminal α-amino groups of proteins without reaction of the ?-amino groups of lysine residues made use of their lower pK values. A pH below 7 favors modification of weaker bases, since the stronger bases, although more reactive, are protected to an even greater extent by protonation. Unfortunately, this approach only favors modification of terminal over side-chain amino groups to a limited extent. N-Terminal serine and threonine residues may be selectively acylated on the amino group by an acyl transfer reaction after a peptide has been selectively acylated on its hydroxyl groups. This approach is severely limited by the need for the peptide to be stable to the acidic and anhydrous conditions necessary for selective O-acylation, and to the alkaline conditions necessary for removing the remaining O-acyl groups. Terminal serine and threonine residues may also be selectively oxidized by periodate, since this reaction is a thousand-fold faster than other oxidations of periodate, e.g., of 1,2-diols or disulfides. Further, it forms glyoxyloyl groups, which may be converted into terminal glycine residues by transamination. The last observation provided the basis for the one general modification of N-terminal residues, namely their conversion into 2-oxoacyl groups by reaction of the α-amino group with glyoxylate, a reaction catalysed by a bivalent cation, e.g., Cu2+, and a base, e.g., acetate. Participation of the neighboring peptide bond in the reaction ensures specificity of the reaction for the N-terminus. Scission of the N-terminal residue is possible after such a transamination; hence residues may be removed from the N-terminus under nondenaturing conditions. Other exploitations of transamination may be developed.  相似文献   

6.
Summary Phylogenetic relationships were examined among 35 -crystallin-related heat-shock proteins from animals, plants, and fungi. Approximately one-third of the aligned amino acids in these proteins were conserved in 74% of the proteins, and three blocks of consensus sequence were identified. Relationships were established by maximum parsimony and distance matrix analyses of the aligned amino acid sequences. The inferred phylogeny trees show the plant proteins clearly divided into three major groups that are unrelated to taxonomy: the chloroplast-localized proteins and two groups that originate from a common ancestral plant protein. The animal proteins, in contrast, branch in accordance with taxonomy, the only clear exception being the -crystallin subgrouping of vertebrates. This analysis indicates that the small heat-shock proteins of animals have diverged more widely than have the plant proteins, one group of which is especially stable.Offprint requests to: N. Plesofsky-Vig  相似文献   

7.
M?ssbauer spectroscopy of haem proteins   总被引:2,自引:0,他引:2  
  相似文献   

8.
Gram-negative bacteria are enveloped by two membranes, the inner (cytoplasmic) (CM) and the outer (OM). The majority of integral outer membrane proteins are arranged in β-barrels of cylindrical shape composed of amphipathic antiparallel β-strands. In bacteria, β-barrel proteins function as water-filled pores, active transporters, enzymes, receptors, and structural proteins. Proteins of bacterial OM are synthesized in the cytoplasm as unfolded polypeptides with an N-terminal sequence that marks them for transport across the CM. Precursors of membrane proteins move through the aqueous medium of the cytosol and periplasm under the protection of chaperones (SecB, Skp, SurA, and DegP), then cross the CM via the Sec system composed of a polypeptide-conducting channel (SecYEG) and ATPase (SecA), the latter providing the energy for the translocation of the pre-protein. Pre-protein folding and incorporation in the OM require the participation of the Bam-complex, probably without the use of energy. This review summarizes current data on the biogenesis of the β-barrel proteins of bacterial OM. Data on the structure of the proteins included in the multicomponent system for delivery of the OM proteins to their destination in the cell and on their complexes with partners, including pre-proteins, are pre-sented. Molecular models constructed on the basis of structural, genetic, and biochemical studies that describe the mechanisms of β-barrel protein assembly by this molecular transport machinery are also considered.  相似文献   

9.
The K+, Na+ and Ca2+ form of excitable membranes of rat brain were investigated by infrared, ORD and CD spectroscopy. It is shown that with the K+ form the conformatio of relatively large parts of the membrane proteins occurs as an antiparallel β structure. No β structure is found with the Na+ and Ca2+ form. In the presence of these ions the proteins are largely helical. This suggests that during the action potential, membrane proteins change their conformation depending on the cations shifted.  相似文献   

10.
In vivo effects of thymopentin, an active fragment of the naturally occurring thymic hormone thymopoietin, on the production of cytokines, nitric oxide, heat shock proteins, and signaling proteins NF-κB, phNF-κB, and IκB-α in lymphoid cells of male NMRI mice was studied. Activation of production of several cytokines (IL-1α, IL-2, IL-6, IL-10, and IFN-γ), nitric oxide, and heat shock proteins (HSP70 and HSP90) was observed in peritoneal macrophages and spleen lymphocytes of mice that received intraperitoneal injections of thymopentin (15μg per 100 g body weight). Thymopentin apparently produces stress-like rather than damaging effects. A probable action mechanism of this hormone is activation of the NF-κB signaling pathway, which is most pronounced at the NF-κB phosphorylation stage.  相似文献   

11.
12.
This study has found that the Maltose binding protein Aβ42 fusion protein (MBP-Aβ42) forms soluble oligomers while the shorter MBP-Aβ16 fusion and control MBP did not. MBP-Aβ42, but neither MBP-Aβ16 nor control MBP, was toxic in a dose-dependent manner in both yeast and primary cortical neuronal cells. This study demonstrates the potential utility of MBP-Aβ42 as a reagent for drug screening assays in yeast and neuronal cell cultures and as a candidate for further Aβ42 characterization.  相似文献   

13.
Cation–π interaction is a non-covalent binding force that plays a significant role in protein stability and drug–receptor interactions. In this work, we have investigated the structural role of cation–π interactions in sugar-binding proteins (SBPs). We observed 212 cation–π interactions in 53 proteins out of 59 SBPs in dataset. There is an average one energetically significant cation–π interaction for every 66 residues in SBPs. In addition, Arg is highly preferred to form cation–π interactions, and the average energy of Arg-Trp is high among six pairs. Long-range interactions are predominant in the analyzed cation–π interactions. Comparatively, all interaction pairs favor to accommodate in strand conformations. The analysis of solvent accessible area indicates that most of the aromatic residues are found on buried or partially buried whereas cationic residues were found mostly on the exposed regions of protein. The cation–π interactions forming residues were found that around 43% of cation–π residues had highly conserved with the conservation score ≥6. Almost cationic and π-residues equally share in the stabilization center. Sugar-binding site analysis in available complexes showed that the frequency of Trp and Arg is high, suggesting the potential role of these two residues in the interactions between proteins and sugar molecules. Our observations in this study could help to further understand the structural stability of SBPs.  相似文献   

14.
Membrane proteins serve as cellular gatekeepers, regulators, and sensors. Prior studies have explored the functional breadth and evolution of proteins and families of particular interest, such as the diversity of transport-associated membrane protein families in prokaryotes and eukaryotes, the composition of integral membrane proteins, and family classification of all human G-protein coupled receptors. However, a comprehensive analysis of the content and evolutionary associations between membrane proteins and families in a diverse set of genomes is lacking. Here, a membrane protein annotation pipeline was developed to define the integral membrane genome and associations between 21,379 proteins from 34 genomes; most, but not all of these proteins belong to 598 defined families. The pipeline was used to provide target input for a structural genomics project that successfully cloned, expressed, and purified 61 of our first 96 selected targets in yeast. Furthermore, the methodology was applied (1) to explore the evolutionary history of the substrate-binding transmembrane domains of the human ABC transporter superfamily, (2) to identify the multidrug resistance-associated membrane proteins in whole genomes, and (3) to identify putative new membrane protein families.  相似文献   

15.
The molecular conformation of proteins is sensitive to the nature of the aqueous environment. In particular, the presence of ions can stabilize or destabilize (denature) protein secondary structure. The underlying mechanisms of these actions are still not fully understood. Here, we combine circular dichroism (CD), single-molecule Förster resonance energy transfer, and atomistic computer simulations to elucidate salt-specific effects on the structure of three peptides with large α-helical propensity. CD indicates a complex ion-specific destabilization of the α-helix that can be rationalized by using a single salt-free computer simulation in combination with the recently introduced scheme of ion-partitioning between nonpolar and polar peptide surfaces. Simulations including salt provide a molecular underpinning of this partitioning concept. Furthermore, our single-molecule Förster resonance energy transfer measurements reveal highly compressed peptide conformations in molar concentrations of NaClO4 in contrast to strong swelling in the presence of GdmCl. The compacted states observed in the presence of NaClO4 originate from a tight ion-backbone network that leads to a highly heterogeneous secondary structure distribution and an overall lower α-helical content that would be estimated from CD. Thus, NaClO4 denatures by inducing a molten globule-like structure that seems completely off-pathway between a fully folded helix and a coil state.  相似文献   

16.
《Trends in plant science》1999,4(11):439-445
Protein lipid modification, once thought to act as a stable membrane anchor for soluble proteins, is now attracting more widespread attention for its emerging role in diverse signaling pathways and regulatory mechanisms. Most multicellular organisms have recruited specific types of lipids and a suite of unique enzymes to catalyze the modification of a select number of proteins, many of which are evolutionarily conserved in plants, animals and fungi. Each of the three known types of lipid modification – palmitoylation, myristylation and prenylation – allows cells to target proteins to the plasma membrane, as well as to other subcellular compartments. Among the lipid modifications, protein prenylation might also function as a relay between cytoplasmic isoprene biosynthesis and regulatory pathways that control cell cycle and growth. Molecular and genetic studies of an Arabidopsis mutant that lacks farnesyl transferase suggest that the enzyme has a role in abscisic acid signaling during seed germination and in the stomata. It is becoming clear that lipid modifications are not just fat for the protein, but part of a highly conserved intricate network that plays a role in coordinating complex cellular functions.  相似文献   

17.
In this study, we present a minimal template design and accompanying methods to produce assayable quantities of custom sequence proteins within 24 hr from receipt of inexpensive gene fragments from a DNA synthesis vendor. This is done without the conventional steps of plasmid cloning or cell-based amplification and expression. Instead the linear template is PCR amplified, circularized, and isothermally amplified using a rolling circle polymerase. The resulting template can be used directly with cost-optimized, scalably-manufactured Escherichia coli extract and minimal supplement reagents to perform cell-free protein synthesis (CFPS) of the template protein. We demonstrate the utility of this template design and 24 hr process with seven fluorescent proteins (sfGFP, mVenus, mCherry, and four GFP variants), three enzymes (chloramphenicol acetyltransferase, a chitinase catalytic domain, and native subtilisin), a capture protein (anti-GFP nanobody), and 2 antimicrobial peptides (BP100 and CA(1–7)M(2–9)). We detected each of these directly from the CFPS reaction using colorimetric, fluorogenic, and growth assays. Of especial note, the GFP variant sequences were found from genomic screening data and had not been expressed or characterized before, thus demonstrating the utility of this approach for phenotype characterization of sequenced libraries. We also demonstrate that the rolling circle amplified version of the linear template exhibits expression similar to that of a complete plasmid when expressing sfGFP in the CFPS reaction. We evaluate the cost of this approach to be $61/mg sfGFP for a 4 hr reaction. We also detail limitations of this approach and strategies to overcome these, namely proteins with posttranslational modifications.  相似文献   

18.
The question of protein homology versus analogy arises when proteins share a common function or a common structural fold without any statistically significant amino acid sequence similarity. Even though two or more proteins do not have similar sequences but share a common fold and the same or closely related function, they are assumed to be homologs, descendant from a common ancestor. The problem of homolog identification is compounded in the case of proteins of 100 or less amino acids. This is due to a limited number of basic single domain folds and to a likelihood of identifying by chance sequence similarity. The latter arises from two conditions: first, any search of the currently very large protein database is likely to identify short regions of chance match; secondly, a direct sequence comparison among a small set of short proteins sharing a similar fold can detect many similar patterns of hydrophobicity even if proteins do not descend from a common ancestor. In an effort to identify distant homologs of the many ubiquitin proteins, we have developed a combined structure and sequence similarity approach that attempts to overcome the above limitations of homolog identification. This approach results in the identification of 90 probable ubiquitin-related proteins, including examples from the two prokaryotic domains of life, Archaea and Bacteria.  相似文献   

19.
The biochemical processes of living cells involve a numerous series of reactions that work with exceptional specificity and efficiency. The tight control of this intricate reaction network stems from the architecture of the proteins that drive the chemical reactions and mediate protein–protein interactions. Indeed, the structure of these proteins will determine both their function and interaction partners. A detailed understanding of the proximity and orientation of pivotal functional groups can reveal the molecular mechanistic basis for the activity of a protein. Together with X-ray crystallography and electron microscopy, NMR spectroscopy plays an important role in solving three-dimensional structures of proteins at atomic resolution. In the challenging field of membrane proteins, retinal-binding proteins are often employed as model systems and prototypes to develop biophysical techniques for the study of structural and functional mechanistic aspects. The recent determination of two 3D structures of seven-helical trans-membrane retinal proteins by solution-state NMR spectroscopy highlights the potential of solution NMR techniques in contributing to our understanding of membrane proteins. This review summarizes the multiple strategies available for expression of isotopically labeled membrane proteins. Different environments for mimicking lipid bilayers will be presented, along with the most important NMR methods and labeling schemes used to generate high-quality NMR spectra. The article concludes with an overview of types of conformational restraints used for generation of high-resolution structures of membrane proteins. This article is part of a Special Issue entitled: Retinal Proteins — You can teach an old dog new tricks.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号