首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Of 12 stylet-bearing nematodes used for inoculations, Pratylenchus penetrans, P. brachyurus, P. vulnus, Ditylenchus destructor, Meloidogyne incognita, M. javanica, and M. hapla reproduced on Pinus ponderosa, while Xiphinema index, Aphelenchus avenae, Paratylenehus neoamblycephalus, Tylenchulus semipenetrans, and Macroposthonia xenoplax did not. P. vulnus, P. brachyurus, P. penetrans, A. avenae, D. destructor, T. semipenetrans, and P. neoamblycephalus significantly suppressed both the shoot and root wet weights of ponderosa pine seedlings obtained from stands in five different locations. X. index significantly suppressed root wet weights, M. xenoplax siguificantly suppressed shoot wet weight, and M. incognita, M. javanica, and M. hapla suppressed neither at the inoculation levels used. Injurious nematodes tended to suppress root growth more than shoot growth. Seedlings from two locations produced greater shoot growth wet weight than did seedlings from the other three locations. The more injurious nematodes tended to cause an increase in the water content of shoots. Frequency analyses of seedling population shoot-root ratios indicated that ponderosa pine seedlings could be selected for better shoot-root ratios as well as for resistance to several pathogenic nematodes.  相似文献   

2.
Elimination of Criconemoides xenoplax from a prune orchard soil by fumigation with ethylene dibromide at the rate of 42 μliter/liter of soil (equivalent to about 13 gal/acre) improved the growth of Myrobalan plum, Addition of this nematode to Myrobalan seedlings or young ''Marianna 2624'' plants propagated from cuttings resulted in destruction of cortical root tissue, darkening of roots, alteration of water stress, lowering of nutrient levels in leaves, and reduction in plant weight. C. xenoplax increased on all nine Prunus cerasifera varieties and hybrids tested, including those used commonly as rootstocks for prunes and plums. Rhizoctonia solani isolated from Myrobalan seedlings infected with C. xenoplax caused lesions on the hypocotyls of young Myrobalan seedlings in the laboratory, but had no effect on older seedlings in the greenhouse, and did not alter the effect of C. xenoplax.  相似文献   

3.
Wilt-susceptible cultivar ''Rowden'' cotton was inoculated wilh Meloidogyne incognita (N), Trichoderma harzianum (T), and Fusarium oxysporum f. sp. vasinfectum (F) alone and in all combinations in various time sequences. Plants inoculated with F alone or in combination with T did not develop wilt, Simultaneous inoculation of 7-day-old seedlings with all three organisms (NTF) produced earliest wilt. However, plants receiving nematodes at 7 days and Fusarium and Trichoderma at 2 or 4 weeks later (N-T-F, N-TF) developed the greatest wilt between 49-84 days after initial nematode inoculation. During the same period, Fusarium added 4 weeks after initial nematode inoculation (N-F) and Fusarium added 4 weeks after initial simultaneous inoculation of nematode and Trichoderma (NT-F) produced the least wilt. The addition of Fusarium inhibited nematode reproduction. Simultaneous inoculation with nematodes and Trichoderma (NT-) resulted in the greatest root gall development, whereas nematodes alone produced the greatest number of larvae. In comparison with noninoculated controls (CK), treatments involving all three organisms inhibited plant growth, plants inoculated with the nematode alone (N-) or with nematodes and Trichoderma (NT-) simultaneously had greatest root weight. Any treatment involving the nematode resulted in fewer bolls per plant and greater necrosis on roots than the noninoculated checks.  相似文献   

4.
The effect of a Paratrichodorus sp. (close to P. tunisiensis) on the growth of wheat (Triticum durum Desf.) was investigated in pots containing different nematode densities and maintained in a growth chamber at 20 C for 40 days. The relation between fresh weight of tops and initial nematode density was according to the equation y = m + (1 - m)zP⁻T. This suggests a tolerance limit of 1.4 nematodes/cm³ of soil under the conditions of the experiment; taking into account the effect of the great nematode mortality, it is estimated to be between 0.15 and 0.35 nematodes/cm³ soil. Models of the growth of the plants and the multiplication of the nematodes (assuming a constant mortality of the nematodes in the absence of roots) which explain the relation between initial and tinal nematodes densities at initial densities greater than 1 nematode/cm³ soil are described in an appendix. Sections of nematode infested roots showed disorganization of root structure clue to abnormal proliferation of lateral roots. Nematode feeding on the root cap and apical meristem caused cessation of root elongation and induced abnormal production of lateral root primordia.  相似文献   

5.
Sugar beet (Beta vulgaris L. cv. Monogerm C.S.F. 1971) seeds sown into Vineland fine sandy loam, infested with 15,500 H. schachtii juveniles/pot, showed little growth during an 11-week test in the greenhouse. Seedlings transplanted at 2, 4, and 6 weeks of age had 32, 30, and 31% less top weight and 71, 68, and 59% less root weight, respectively, compared to controls grown in nematode-free soil. Nematode reproduction in both direct-seeded and transplanted sugar beets was limited and related to root weight. Shoot/root ratios were increased by the nematodes in all nematode-infected beets compared to those grown in soil without nematodes. In contrast to seeding or transplanting sugar beets into nematode-infested Vineland fine sandy loam, an inoculation of Beverly fine sandy loam supporting 0 (seeds), 2-, 4-, and 6-week-old sugar beet seedlings with 7,400 juveniles/pot, followed by 11 weeks of growth in the growth-room, resulted in top weight losses of only 13, 3, 18, and 15% and losses in root weight of 44, 38, 36, and 38%, respectively. Nematode reproduction was high and all shoot/root ratios were increased by the nematode compared to the noninoculated controls. These experiments have shown that sugar beets sown into nematode-infested soil are damaged much more heavily by H. schachtii juveniles than seeds inoculated with the nematode immediately following sowing. Results indicate that an increase in tolerance of sugar beets to attack by H. schachtii does not occur beyond the first 2 weeks of growth and that transplanting damage lowers the tolerance of seedlings to nematode attack.  相似文献   

6.
The effects of chicken litter on Meloidogyne arenaria in tomato plants cv. Rutgers were determined in the greenhouse. Tomato seedlings were transplanted into a sandy soil amended with five rates of chicken litter and inoculated with 2,000 M. arenaria eggs. After 10 days, total numbers of nematodes in the roots decreased with increasing rates of chicken litter. After 46 days, egg numbers also decreased with increasing litter rates. In another experiment, soil was amended with two litter types, N-P-K fertilizer, and the two primary constituents of chicken litter (manure and pine-shaving bedding). After 10 days, numbers of nematodes in roots were smaller in chicken-excrement treatments as compared to nonexcrement treatments. At 46 days, there were fewer nematode eggs in chicken-excrement treatments compared to nonexcrement treatments. Egg numbers also were smaller for fertilizer and pine-shaving amendments as compared to nonamended controls. Chicken litter and manure amendments suppressed plant growth by 10 days after inoculation but enhanced root weights at 46 days after inoculation. Amendment of soil with chicken litter suppressed M. arenaria and may provide practical control of root-knot nematodes as part of an integrated management system.  相似文献   

7.
Increased activities of peroxidase and indole 3-acetic acid (IAA) oxidase were detected on root surfaces of bean (Phaseolus vulgaris) seedlings colonized with a soil saprophytic bacterium, Pseudomonas putida. IAA oxidase activity increased over 250-fold and peroxidase 8-fold. Enhancement was greater for 6-day-old than for 4- or 8-day-old inoculated plants No IAA oxidase or peroxidase activities were associated with the bacterial cells. Native polyacrylamide gel electrophoresis demonstrated that washes of P. putida-inoculated roots contained two zones of peroxidase activity. Only the more anodic bands were detected in washes from noninoculated roots. Ion exchange and molecular sizing gel chromatography of washes from P. putida-colonized roots separated two fractions of peroxidase activity. One fraction corresponded to the anodic bands detected in washes of P. putida inoculated and in noninoculated roots. A second fraction corresponded to the less anodic zone of peroxidase, which was characteristic of P. putida-inoculated plants. This peroxidase had a higher IAA oxidase to peroxidase ratio than the more anodic, common enzyme. The changes in root surface peroxidases caused by colonization by a saprophytic bacterium are discussed with reference to plant-pathogen interactions.  相似文献   

8.

Background and aims

Phosphorus from phytate, although constituting the main proportion of organic soil P, is unavailable to plants. Despite the well-known effects of rhizosphere trophic relationships on N mineralization, no work has been done yet on P mineralization. We hypothesized that the interactions between phytate-mineralizing bacteria, mycorrhizal fungi and bacterial grazer nematodes are able to improve plant P use from phytate.

Methods

We tested this hypothesis by growing Pinus pinaster seedlings in agar containing phytate as P source. The plants, whether or not ectomycorrhizal with the basidiomycete Hebeloma cylindrosporum, were grown alone or with a phytase-producing bacteria Bacillus subtilis and two bacterial-feeder nematodes, Rhabditis sp. and Acrobeloides sp. The bacteria and the nematodes were isolated from ectomycorrhizal roots and soil from P. pinaster plantations.

Results

Only the grazing of bacteria by nematodes enhanced plant P accumulation. Although plants increased the density of phytase-producing bacteria, these bacteria alone did not improve plant P nutrition. The seedlings, whether ectomycorrhizal or not, displayed a low capacity to use P from phytate.

Conclusions

In this experiment, the bacteria locked up the phosphorus, which was delivered to plant only by bacterial grazers like nematodes. Our results open an alternative route for better utilization of poorly available organic P by plants.  相似文献   

9.
The pinewood nematode, Bursaphelenchus xylophilus, was inoculated into established native jack and red pines (Pinus banksiana and P. resinosa) and exotic Austrian pine (P. nigra) in Minnesota and Wisconsin forests during summer 1981. The nematode isolates did not kill established nonstressed pine trees growing in the forest. However, the same nematode isolates killed pine seedlings under greenhouse conditions. Girdling the main stem of some trees to induce stress resulted in the death of the majority of inoculated and noninoculated branches of Austrian and jack pines, but no branch death was observed on red pine. Greater numbers of nematodes were extracted from branches of inoculated, girdled trees than from nongirdled trees. The mean number of nematodes extracted from branches of inoculated, nongirdled trees was 0.3 - 14 nematodes per gram of wood.  相似文献   

10.
We evaluated the ability of the nematode-pathogenic fungus Hirsutella rhossiliensis (Deuteromycotina: Hyphomycetes) to reduce root penetration and population increase of Pratylenchus penetrans on potato. Experiments were conducted at 24 C in a growth chamber. When nematodes were placed on the soil surface 8 cm from a 14-day-old potato cutting, the fungus decreased the number entering roots by 25%. To determine the effect of the fungus on population increase after the nematodes entered roots, we transplanted potato cuttings infected with P. penetrans into Hirsutella-infested and uninfested soil. After 60 days, the total number of nematodes (roots and soil) was 20 ± 4% lower in Hirsutella-infested than in uninfested soil.  相似文献   

11.
Phosphorus is the major nutrient limiting plant growth in a Costa Rican silvopastoral system located on an acid, high P-retaining, volcanic soil. We investigated plant responsiveness to vesicular-arbuscular mycorrhizal (VAM) inoculation using the leguminous tree species Erythrina berteroana Urban, and the two dominant grass species Paspalum conjugatum Berg and Homolepsis aturensis Chase of this silvopastoral system. We grew grass seedlings in the greenhouse for 15 weeks in a methyl bromide-sterilized study soil to which either mixed-species VAM inoculum (Theobroma cacao feeder roots) or autoclave-sterilized cacao roots (non-inoculated control) were added. E. berteroana was grown from both seedlings and vegetative stakes (40 cm long) for 30 and 19 weeks, respectively. Upon harvest, we measured above and below ground biomass, N and P content, rootshoot ratio, legume nodulation, and VAM infection levels. The total above-ground and root biomass of mycorrhizae-inoculated P. conjugatum seedlings were 2.5 and 2.8 times greater than those of noninoculated seedlings. In contrast, VAM-inoculated seedlings of H. aturensis produced 8.4 and 5.9 times more total above-ground and root mass than noninoculated seedlings. Mycorrhizae-inoculated E. berteroana seedlings produced 10.6 times greater shoot biomass for inoculated versus noninoculated seedlings, while E. berteroana vegetative stakes exhibited a negative growth response to VAM inoculation (an approximately 16% decrease in shoot biomass for VAM-inoculated cuttings). The difference in responsiveness between Erythrina growth forms is hypothesized to reflect the cost-benefit relationship between plant host and fungal symbiont for energy and nutrient reserves.  相似文献   

12.
Higher populations of Meloidogyne incognita larvae and Pratylenchus penetrans were recovered from soil treated with carbofuran 10 and 15 days after treatment, respectively, than were recovered from untreated control soil. The number of P. penetrans, however, was lower 50 days after treatment, and symptoms developed only occasionally on the root systems of host plants. Populations of Tylenchorhynchus claytoni inoculated at different distances from the base of corn seedlings growing in carbofuran-treated soil did not move toward the plant, whereas they were attracted in untreated soil from a distance of 12 cm. P. penetrans moved at random in treated agar medium when inoculations occurred 4 cm away from the root tips of tomato seedlings under aseptic conditions. Those nematodes that reached the roots were never observed feeding during a 20-day observation period. Specimens of P. penetrans placed on the developing roots moved at random and never penetrated. In contrast, numerous P. penetrans penetrated roots of seedlings growing in untreated medium.  相似文献   

13.
Apple seedlings of different ages (1, 3, and 5 weeks) were inoculated with 6,900 Pratylenchus penetrans per seedling in 10-cm-diam pots in a growth chamber. Rate of growth suppression and total growth suppression of seedlings by P. penetrans were inversely proportional to seedling age at time of nematode inoculation. Younger seedlings were found to contain a higher number of nematodes per gram root.  相似文献   

14.
Greenhouse tests were set up to evaluate the effects of the herbicide, cycloate (S-ethyl cydohexylethylthiocarbamate), oil development of Heterodera schachtii and growth of three Beta species. Cycloate added to infested soil enhanced cyst development/gm root on B. vulgaris and larvae/gm of root in B. patellaris and B. procumbens at 4, 16, and 16 μg(a.i.)/gm of soil, respectively. Total numbers of nematodes/individual root system decreased because of poor root growth of seedlings in cycloate-amended soil. Penetration and larval development through stage three did occur in the wild Beta species in any treatment. Thus, resistance of B. patellaris and B. pocumbens to development of H. schachtii was not altered by cycloate. Cycloate also retarded growth (P = 0.05) of the sugarbeet cultivars and B. patellaris at 4 μg(a.i.)/gm and B. procumbens at 16 μg(a.i.)/gm of soil. Higher concentrations of nematodes/gm root in plants growing in cycloate-amended soil may be attributed to factors such as fewer roots available for penetration, possible effects of cycloate on egg hatch, greater attraction of nematodes to roots, and increased susceptibility of roots to larval penetration. Suppression of seedling growth in cycloate-amended soil may be attributed in part to higher nematode density and in part to direct root damage from cycloate.  相似文献   

15.
Labile anion binding by roots of two plum clones   总被引:1,自引:0,他引:1  
The anion-exchange capacities (AEC) of roots of intact plants of two plum clones [Marianna 2624 (Prunus cerasifera × P. munsoniana) and Myrobalan 3-J (P. cerasifera)] were assessed with an anionic dye, eosin Y. The positively charged eosin-specific adsorption sites were metabolically dependent and also affected by nutrient status. Myrobalan 3-J roots adsorbed twice as much exchangeable NO3 as did Marianna 2624. Since we previously showed that net nitrate uptake by Myrobalan 3-J persisted at half the ambient nitrate concentration as that characteristic of Marianna 2624, the data provide circumstantial support for a functional role of labile anion binding in active uptake at dilute concentrations of ambient nitrate.  相似文献   

16.
Excised tomato roots were examined histologically for interactions of the fungus Paecilomyces lilacinus and Meloidogyne incognita race 1. Root galling and giant-cell formation were absent in tomato roots inoculated with nematode eggs infected with P. lilacinus. Few to no galls and no giant-cell formation were found in roots dipped in a spore suspension of P. lilacinus and inoculated with M. incognita. Numerous large galls and giant cells were present in roots inoculated only with M. incognita. P. lilacinus colonized the surface of epidermal cells as well as the internal cells of epidermis and cortex. The possibility of biological protection of plant surfaces with P. lilacinus against root-knot nematodes is discussed.  相似文献   

17.
This study aims to investigate the effects of inoculation using Terfezia boudieri Chatin ascospores (ectomycorrhizal fungus) on growth, root colonization and nutrient status of Helianthemum sessiliflorum Desf. seedlings grown in pots on two-soil types (gypseous and sandy loam). Mycorrhizal seedlings had significantly increased their height and leaf number compared to non-mycorrhizal ones. Regardless of mycorrhizal inoculation treatments, the plants growing on gypseous soil showed higher growth as compared to sandy loam one. It appears that inoculation with T. boudieri changed root morphology, increasing branching of first-order lateral roots of H. sessiliflorum seedlings. The highest root mycorrhizal colonization was recorded in inoculated seedlings on sandy loam soil (89%) when compared to gypseous one (52%). N, P and K concentrations in mycorrhizal seedlings were significantly improved by fungal inoculation. It can be concluded that inoculation of H. sessiliflorum with T. boudieri increased growth attributes and improved plant nutritional status.  相似文献   

18.
Penetration of Crotalaria juncea (PI 207657 and cv. Tropic Sun) Dolichos lablab cv. Highworth, and Sesamum indicum by juveniles (J2) of Meloidogyne javanica was assessed to investigate the mechanism by which these plants may reduce nematode numbers in the field. Growth chamber experiments were conducted at 25 C, with vials containing 90 g sand infested with 450 J2; tomato (UC 204 C) was included as a susceptible host. Fifteen days after inoculation, roots were stained and the nematodes within stained roots were counted. Both C. juncea lines were highly resistant to penetration, as they contained significantly fewer nematodes per cm of root and per root system than the other plants. Although containing more nematodes per cm of root than C. juncea, S. indicum and D. lablab had significantly fewer nematodes per root system and per cm of root than tomato. Roots were significantly longer in the plants with the lowest nematode penetration. Although C. juncea, D. lablab, and S. indicum may have potential utility as cover or rotation crops in soil infested with M. javanica, further quantitative information on the reproduction of M. javanica and other nematodes in these plants is needed.  相似文献   

19.
Meloidogyne hapla, Pratylenchus penetrans, and Helicotylenchus dihystera, reduced the growth of ''Saranac AR alfalfa seedlings when applied at concentrations of 50 nematodes per plant. All except P. penetrans reduced seedling growth when applied at 25 per seedling. M. hapla reduced growth when applied at 12 per seedling. Nematodes interacted with three pseudomonads to produce greater growth reductions than were obtained with single pathogens, suggesting synergistic relationships. Ditylenchus dipsaci, applied at 25 or 50 nematodes per seedling, reduced plant weight compared with weights of control plants, but did not interact with test bacteria. All of the nematodes except D. dipsaci produced root wounds which were invaded by bacteria.  相似文献   

20.
以根结线虫侵染的文冠果一年生苗木为材料,观察分析苗木根系的形态和显微结构,植株生长发育以及主要矿质养分在苗木中的分布特性,并分析不同矿质元素与线虫侵染的关联关系,以揭示根结线虫对文冠果苗木生长发育的影响机制。结果表明:(1)受根结线虫侵染的文冠果苗木根系形成根结,依据根结发生程度分为0(对照,正常植株)、2、3、4级;与对照相比,具有根结的文冠果苗木根系解剖结构特征主要表现为皮层相对较厚,木质部排列扭曲,导管较少,射线数目较少且分布不均匀;韧皮细胞内含物明显较多;多个巨细胞及细胞空腔主要存在于韧皮部。(2)具根结的苗木株高和地径较对照均增加,且株高增幅达显著水平(P<0.05)。(3)具根结苗木根、茎、叶部位的N、P含量均较对照下降,根部降幅达显著水平(P<0.05),其中具2~4级根结的根部N含量分别较对照显著下降7.8%、16.0%和29.5%,P含量分别显著下降15.6%、7.1%和43.3%;根部Fe含量、Zn含量显著上升,2~4级根结根系中Fe含量较对照分别增加1.56倍、0.81倍和3倍,Zn含量分别增加1.11倍、1.56倍和1.78倍;具3和4级根结的苗木根系中K含量较对照显著增加(P<0.05),具2和4级根结的苗木叶片中K含量较对照分别显著下降61.5%和47.0%。(4)苗木根部、茎部N元素含量对于根结线虫侵染的响应最明显,且其含量随侵染程度的增大而降低,叶部Mg元素含量与根结线虫侵染率、K元素含量与整株苗木生物量均呈显著负相关关系(P<0.05)。该研究为根结线虫对文冠果苗木养分吸收利用及运转的影响提供了一定的理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号