首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The same number of SH groups reduces ferricyanide in surface films of egg albumin as in albumin denatured by urea, guanidine hydrochloride, Duponol, or heat, provided the ferricyanide reacts with films while they still are at the surface and with the denatured proteins while the denaturing agent (urea, heat, etc.) is present. 2. The SH groups of a suspension of egg albumin made by clumping together many surface films react with ferricyanide in the same sluggish and incomplete manner as do the groups in egg albumin denatured by concentrated urea when the urea is diluted or in albumin denatured by heat when the solution is allowed to cool off. 3. The known change in configuration of the egg albumin molecule when it forms part of a surface film explains why SH groups in the film react with ferricyanide whereas those in native egg albumin do not. In the native egg albumin molecule groups in the interior are inaccessible to certain reagents. A film is so thin that there are no inaccessible groups. 4. Because of the marked resemblance in the properties of egg albumin in surface films and of egg albumin after denaturation by the recognized denaturing agents, it may be supposed that the same fundamental change takes place in denaturation as in film formation—indeed, that film formation is one of the numerous examples of denaturation. This would mean that in general the SH groups of denatured egg albumin reduce ferricyanide and react with certain other reagents because they are no longer inaccessible to these reagents.  相似文献   

2.
1. The reaction between ferricyanide and egg albumin in solutions of urea, guanidine hydrochloride, and Duponol has been investigated. 2. In neutral medium ferricyanide oxidizes all the SH groups of egg albumin that give a color reaction with nitroprusside. In neutral medium ferricyanide appears to react only with the SH groups of egg albumin. The quantity of ferrocyanide formed can accordingly be considered the equivalent of the number of SH groups in egg albumin detectable with nitroprusside. 3. In solutions of urea, guanidine hydrochloride, and Duponol sufficiently concentrated so that all the egg albumin present is denatured, the same number of SH groups are found—equivalent to a cysteine content of 0.96 per cent. 4. In denaturation of egg albumin loss of solubility (solubility not in presence of the denaturing agent, but solubility examined in water at the isoelectric point) and appearance of reactive SH groups are integral parts of the same process. As denaturation proceeds in urea, SH groups are liberated only in the egg albumin with altered solubility and in this albumin the maximum number of SH groups is liberated. In a molecule of egg albumin either all of its SH groups that give a test with nitroprusside are liberated or none of them are.  相似文献   

3.
Hemoglobin and the proteins of the crystalline lens contain active SH groups while in the native state, the number of active groups increasing as the pH rises. All the SH groups of denatured globin and of the denatured lens proteins are active at a pH so low that practically none of the SH groups of native hemoglobin and of native lens protein are active. The effect of denaturation on the SH groups of a protein is to extend towards the acid side the pH range of their activity. It is possible to oxidize the iron-porphyrin and the SH groups of hemoglobin independently of each other.  相似文献   

4.
The following experimental results have been obtained. 1. Native egg albumin treated with iodine and then denatured no longer gives a nitroprusside test or reduces dilute ferricyanide in neutral Duponol PC solution. 2. More iodine is needed to abolish the ferricyanide reduction if the reaction between native egg albumin and iodine is carried out at pH 6.8 than if the reaction is carried out at pH 3.2. At pH 6.8 iodine reacts with tyrosine as well as with cysteine. 3. Cysteine and tryptophane are the only amino acids with reducing groups which are known to react with dilute iodine at pH 3.2 The reducing power of cysteine is abolished by the reaction with iodine, whereas the reducing power of tryptophane remains intact. Pepsin and chymotrypsinogen which contain tryptophane but not cysteine, do not react at all with dilute iodine at pH 3.2. 4. Native egg albumin treated with iodoacetamide at pH 9.0 and then denatured by Duponol PC reduces only 60 per cent as much dilute ferricyanide as egg albumin which has not been treated with iodoacetamide. 5. The SH group is the only protein reducing group which is known to react with iodoacetamide. The simplest explanation of the new observation that the SH groups of egg albumin can be modified by reactions with the native form of the protein is that the native egg albumin has free and accessible but relatively unreactive SH groups which can react with iodine and iodoacetamide despite the fact that they do not react with ferricyanide, porphyrindin, or nitroprusside. Preliminary experiments suggested by the results with egg albumin indicate that the tobacco mosaic virus is modified by iodine at pH 2.8 without being inactivated and that the tobacco mosaic and rabbit papilloma viruses are not inactivated by iodoacetamide at pH 8.0.  相似文献   

5.
The following facts have been established experimentally. 1. In the presence of the synthetic detergent, Duponol PC, there is a definite reaction between dilute ferricyanide and denatured egg albumin. 0.001 mM of ferrocyanide is formed by the oxidation of 10 mg. of denatured egg albumin despite considerable variation in the time, temperature, and pH of the reaction and in the concentration of ferricyanide. 2. If the concentration of ferricyanide is sufficiently high, then the reaction between ferricyanide and denatured egg albumin in Duponol solution is indefinite. More ferrocyanide is formed the longer the time of reaction, the higher the temperature, the more alkaline the solution, and the higher the concentration of ferricyanide. 3. Denatured egg albumin which has been treated with formaldehyde or iodoacetamide, both of which abolish the SH groups of cysteine, does not reduce dilute ferricyanide in Duponol PC solution. 4. Cysteine is the only amino acid which is known to have a definite reaction with ferricyanide or which is known to react with dilute ferricyanide at all. The cysteine-free proteins which have been tried do not reduce dilute ferricyanide in Duponol PC solution. 5. Concentrated ferricyanide oxidizes cystine, tyrosine, and tryptophane and proteins which contain these amino acids but not cysteine. The reactions are indefinite, more ferrocyanide being formed, the higher the temperature and the concentration of ferricyanide. 6. The amount of ferrocyanide formed from denatured egg albumin and a given amount of ferricyanide is less in the absence than in the presence of Duponol PC. 7. The amount of ferrocyanide formed when denatured egg albumin reacts with ferricyanide in the absence of Duponol PC depends on the temperature and ferricyanide concentration throughout the whole range of ferricyanide concentrations, even in the low range of ferricyanide concentrations in which ferricyanide does not react with amino adds other than cysteine. The foregoing results have led to the following conclusions which, however, have not been definitely proven. 1. The definite reaction between denatured egg albumin in Duponol PC solution and dilute ferricyanide is a reaction with SH groups whereas the indefinite reactions with concentrated ferricyanide involve other groups. 2. The SH groups of denatured egg albumin in the absence of Duponol PC react with iodoacetamide and concentrated ferricyanide but they do not all react rapidly with dilute ferricyanide. 3. Duponol PC lowers the ferricyanide concentration at which the SH groups of denatured egg albumin react with ferricyanide. The SH groups of denatured egg albumin, however, are free and accessible even in the absence of Duponol PC.  相似文献   

6.
1. In native egg albumin no SH groups are detectable, whereas in completely coagulated albumin as many groups are detectable as are found in the hydrolyzed protein. In egg albumin partially coagulated by heat the soluble fraction contains no detectable groups, and the insoluble fraction contains the number found after hydrolysis. 2. In the reversal of denaturation of serum albumin, when insoluble protein regains its solubility, S-S groups which have been detectable in the denatured protein, disappear. 3. When egg albumin coagulates at an air-water interface, all the SH groups in the molecule become detectable. 4. In egg albumin coagulated by irradiation with ultraviolet light, the same number of SH groups are detectable as in albumin coagulated by a typical denaturing agent. 5. When serum albumin is denatured by urea, there is no evidence that S-S groups appear before the protein loses its solubility. 6. Protein denaturation is a definite chemical reaction: different quantitative methods agree in estimates of the extent of denaturation, and the same changes are observed in the protein when it is denatured by different agents. A protein molecule is either native or denatured. The denaturation of some proteins can be reversed.  相似文献   

7.
1. 1 cc. of 0.001 M ferricyanide, tetrathionate, or p-chloromercuribenzoate is required to abolish the SH groups of 10 mg. of denatured egg albumin in guanidine hydrochloride or Duponol PC solution. Both the nitroprusside test and the ferricyanide reduction test are used to show that the SH groups have been abolished. 2. 1 cc. of 0.001 M ferrocyanide is formed when ferricyanide is added to 10 mg. of denatured egg albumin in neutral guanidine hydrochloride or urea solution. The amount of ferricyanide reduced to ferrocyanide by the SH groups of the denatured egg albumin is, within wide limits, independent of the ferricyanide concentration. 3. Ferricyanide and p-chloromercuribenzoate react more rapidly than tetrathionate with the SH groups of denatured egg albumin in both guanidine hydrochloride solution and in Duponol PC solution. 4. Cyanide inhibits the oxidation of the SH groups of denatured egg albumin by ferricyanide. 5. Some samples of guanidine hydrochloride contain impurities which bring about the abolition of SH groups of denatured egg albumin and so interfere with the SH titration and the nitroprusside test. This interference can be diminished by using especially purified guanidine hydrochloride, adding the titrating agent before the protein has been allowed to stand in guanidine hydrochloride solution, and carrying out the nitroprusside test in the presence of a small amount of cyanide. 6. The SH groups of egg albumin can be abolished by reaction of the native form of the protein with iodine. It is possible to oxidize all the SH groups with iodine without oxidizing many of the SH groups beyond the S-S stage and without converting many tyrosine groups into di-iodotyrosine groups. 7. p-chloromercuribenzoate combines with native egg albumin either not at all or much more loosely than it combines with the SH groups of denatured egg albumin or of cysteine. 8. The compound of mercuribenzoate and SH, like the compound of aldehyde and SH and like the SH in native egg albumin, does not give a nitroprusside test or reduce ferricyanide but does reduce iodine.  相似文献   

8.
We have used in vitro mutagenesis to examine in detail the roles of two modular protein domains, SH2 and SH3, in the regulation of the Abl tyrosine kinase. As previously shown, the SH3 domain suppresses an intrinsic transforming activity of the normally nontransforming c-Abl product in vivo. We show here that this inhibitory activity is extremely position sensitive, because mutants in which the position of the SH3 domain within the protein is subtly altered are fully transforming. In contrast to the case in vivo, the SH3 domain has no effect on the in vitro kinase activity of the purified protein. These results are consistent with a model in which the SH3 domain binds a cellular inhibitory factor, which in turn must physically interact with other parts of the kinase. Unlike the SH3 domain, the SH2 domain is required for transforming activity of activated Abl alleles. We demonstrate that SH2 domains from other proteins (Ras-GTPase-activating protein, Src, p85 phosphatidylinositol 3-kinase subunit, and Crk) can complement the absence of the Abl SH2 domain and that mutants with heterologous SH2 domains induce altered patterns of tyrosine-phosphorylated proteins in vivo. The positive function of the SH2 domain is relatively position independent, and the effect of multiple SH2 domains appears to be additive. These results suggest a novel mechanism for regulation of tyrosine kinases in which the SH2 domain binds to, and thereby enhances the phosphorylation of, a subset of proteins phosphorylated by the catalytic domain. Our data also suggest that the roles of the SH2 and SH3 domains in the regulation of Abl are different in several respects from the roles proposed for these domains in the closely related Src family of tyrosine kinases.  相似文献   

9.
1. Methods have been described for reducing protein S-S groups, for oxidizing protein SH groups, and for estimating protein S-S and SH groups. 2. It has been found necessary in estimating the cystine content of proteins by the Folin-Marenzi method to take into account any cysteine that may be present. 3. A method for estimating the cysteine content of proteins has been described. 4. With these methods, estimations have been made of the S-S and SH groups and of the cystine and cysteine contents of a number of proteins. 5. In a denatured, but unhydrolyzed protein, the number of S-S and SH groups is equivalent to the quantity of cystine and cysteine found in the protein after hydrolysis.  相似文献   

10.
W Zhi  P A Srere  C T Evans 《Biochemistry》1991,30(38):9281-9286
The conformational stabilities of native pig citrate synthase (PCS), a recombinant wild-type PCS, and six active-site mutant pig citrate synthases were studied in thermal denaturation experiments by circular dichroism and in urea denaturation experiments by using DTNB to measure the appearance of latent SH groups. His274 and Asp375 are conserved active-site residues in pig citrate synthase that bind to substrates and are implicated in the catalytic mechanism of the enzyme. By site-directed mutagenesis, His274 was replaced with Gly and Arg, while Asp375 was replaced with Gly, Asn, Glu, or Gln. These modifications were previously shown to result in 10(3)-10(4)-fold reductions in enzyme specific activities. The thermal unfolding of pig citrate synthase and the six mutants in the presence and absence of substrates showed large differences in the thermal stabilities of mutant proteins compared to the wild-type pig citrate synthase. The functions of His274 and Asp375 in ligand binding were measured by oxalacetate protection against urea denaturation. These data indicate that active-site mutations that decrease the specific activity of pig citrate synthase also cause an increase in the conformational stability of the protein. These results suggest that specific electrostatic interactions in the active site of citrate synthase are important in the catalytic mechanism in the chemical transformations as well as the conformational flexibility of the protein, both of which are important for the overall catalytic efficiency of the enzyme.  相似文献   

11.
The effect of lipid peroxidation on the protein conformation of the porcine intestinal brush-border membranes was studied using a fluorogenic thiol reagent, N-[7-dimethylamino-4-methylcoumarinyl]maleimide (DACM). By a kinetic analysis of the reaction of the membranes with DACM, it was shown that the reaction rate of the SH groups (SHf) of the membrane proteins, whose reaction with the dye is very fast, decreases in proportion to the extent of thiobarbituric acid-reactive substance formation. The difference in the rate of the reaction of the SHf groups for DACM between the control and peroxidized membranes completely disappeared after denaturation of the proteins by treatment with guanidine hydrochloride. The reaction of DACM with the SHf groups of the control membranes accelerated when the temperature was increased with an apparent transition temperature between 25 degrees C and 30 degrees C. On the other hand, no transition was observed in the peroxidized membranes over the temperature range 20-43 degrees C. These results suggest that the conformation around the SHf groups of the proteins in the peroxidized membranes is apparently different from that in the control membranes. A modification of the conformation around the SH groups in the membrane proteins associated with lipid peroxidation was further demonstrated by finding that the quenching efficiency of the fluorescence of the DACM-labeled membranes by Tl+ was markedly decreased after lipid peroxidation. Based on these results, changes in the protein conformation of the porcine intestinal brush-border membranes by lipid peroxidation are discussed.  相似文献   

12.
Freezing of spinach leaf discs ( Spinacia aleracea L. cv. Estivato) resulted in an irreversible and parallel loss of protein-sulfhydryl (SH) and water-soluble protein. This decrease was inversely related to the increase in freezing injury as determined by the loss of electrolytes from the tissue after thawing. Loss of proteins and protein-SH occurred during freezing of the tissue and was not enhanced by thawing. The parallel decreases in content of soluble proteins and SH groups make it impossible to determine whether oxidation of protein-SH groups is the primary step in decline of protein content. During freezing the content of non-protein-SH compounds, mainly glutathione (GSH), was decreased to a lesser extent than that of protein-SH. Contrary to protein-SH, the levels of non-protein-SH declined substantially after thawing. The data indicate that GSH is not directly involved in protection of soluble proteins against freezing-induced denaturation.  相似文献   

13.
1. Cyanide inhibits the oxidation of the SH groups of cysteine and denatured egg albumin by the uric acid reagent. 2. At pH 4.8 cysteine is oxidized by the uric acid reagent and by ferricyanide in the presence but not in the absence of added copper sulfate. 3. In neutral solution, the uric acid reagent oxidizes the SH groups of denatured egg albumin in the presence of urea but not in the presence of alkyl sulfate or in the absence of denaturing agents. 4. Ferricyanide oxidizes the SH groups of neutral denatured egg albumin even in the presence of alkyl sulfate or, if precautions are taken to avoid aggregation, in the absence of denaturing agents. 5. In acid solution, ferricyanide does not oxidize the SH groups of denatured egg albumin completely. The oxidation is more complete, however, in the presence of urea than in the presence of alkyl sulfate, and more complete in the presence of guanidine hydrochloride than in the presence of urea. 6. The uric acid reagent which does not oxidize the SH groups of neutral denatured but unhydrolyzed egg albumin in the absence of denaturing agents does, under the same conditions, oxidize the SH groups of egg albumin partially hydrolyzed by pepsin. 7. At pH 4.8 in alkyl sulfate solution ferricyanide oxidizes the SH groups of digested egg albumin more completely than the SH groups of denatured but undigested egg albumin.  相似文献   

14.
Entropy-enthalpy (SH) compensation occurs when a small change in DeltaG is caused by large, and nearly compensatory, changes in DeltaH and DeltaS. It is considered a ubiquitous property of reactions in water. Because water is intimately involved in protein stability, SH compensation among protein variants, if it exists, could lead to important knowledge about protein-water interactions. In light of recent theoretical work on SH compensation, we gathered thermodynamic data for >200 protein variants to seek evidence for the simplest quantitative model of SH compensation (i.e., The van't Hoff denaturation enthalpy divided by the van't Hoff denaturation entropy is a constant). We conclude that either the data are insufficient to support the idea that quantitative SH compensation is a general feature of variant proteins or that such compensation does not exist. This study reinforces the idea that DeltaH-versus-DeltaS plots should not be used to provide evidence for SH compensation.  相似文献   

15.
Human CRK protein is a homolog of the chicken v-crk oncogene product and consists mostly of src homology region 2 (SH2) and SH3, which are shared by many proteins, in particular those involved in signal transduction. SH2 has been shown to bind specifically to phosphotyrosine-containing peptides. We report here that both SH2 and SH3 are required for signaling from CRK protein. Microinjection of the CRK protein induced neurite formation of rat pheochromocytoma cell line PC12. This activity was abolished by mutation of the CRK protein in either SH2 or SH3. The neuronal differentiation induced by the CRK protein was blocked by an excess amount of peptides containing CRK SH3. Moreover, we identified three proteins, of 118, 125, and 136 kDa, which bound specifically to CRK SH3. The CRK-induced neuronal differentiation was also suppressed by monoclonal antibodies against either CRK SH2 or p21ras. These results suggest that both SH2 and SH3 of the CRK protein mediate specific protein-protein binding and that the resulting multimolecular complex generates a signal for neurite differentiation through activation of p21ras.  相似文献   

16.
Mercurials are considered as sulphydryl group specific reagents and one of them, sodium para-chloromercuribenzoate (PCMB), is currently used for SH titration. It has been shown that cellular steroid receptors are reversibly inactivated by mercurials even when the binding site is occupied by the steroid (Coty, W.A. (1980) J. Biol. Chem. 255, 8035-8037). This is a striking difference with alkylating SH reagents such as iodoacetic acid or N-ethylmaleimide, since these reagents inactivate only steroid-free receptors. In order to explain this discrepancy, we tested, in the present study, the specificity of PCMB on a blood plasma steroid binding protein: human transcortin. This protein presents the advantage, over cellular receptors, of being well characterized and to be available in a pure state. The transcortin-cortisol complex was also reversibly inactivated by PCMB when the reaction was carried out at a high excess of reagent over protein; such conditions are those previously used with steroid receptors. The reversibility was obtained not only with a reducing agent (dithiothreitol) but also with EDTA, which suggests a poor stability of the protein mercurial bond and therefore a nonspecific action. The decrease of activity was the result of a loss of binding sites and Scatchard plot analysis did not reveal any detectable decrease of the affinity constant for cortisol. Transcortin possesses two SH groups per molecule, one of these being buried in native conformation. After blockage of the accessible SH group by aminoethylation, transcortin kept the same activity, but when this aminoethylated transcortin was incubated with PCMB a loss of activity was obtained, although the residual buried SH group was again titrable with Ellman's reagent. Therefore, we can conclude that the action of PCMB on proteins must be interpreted with precaution, since it can induce an inactivation that is SH-independent.  相似文献   

17.
It has been shown that the active dicyano derivative of creatine kinase (ATP:creatine N-phosphotransferase) obtained by cyanolysis of the 5,5'-dithiobis(2-nitrobenzoic acid)-modified and inactivated enzyme contains, as does the native enzyme, two reactive SH groups. Modification of these two SH groups leads to complete inactivation of the dicyano enzyme. Reaction with 4-iodoacetamido-1-naphthol introduces fluorescent labels at these reactive SH groups of the native and the dicyano enzymes. Following tryptic digestion, the respective fluorescent-labelled peptides have been separated by HPLC and the amino acid composition analysis of these peptides has shown that they are consistent with the sequence of the peptide segment containing the active-site SH of Cys-282 of creatine kinase for both the native and the dicyano enzymes, showing that the active SH groups are free in the dicyano enzyme. Upon mild denaturation in 3 M urea, it can be shown that two of the SH groups partially buried in the native enzyme have been cyanylated in the dicyano enzyme. The two reactive SH groups are therefore essential for the activity of creatine kinase and the two cyanylated SH groups are internal groups which probably contributes partially to the stabilization of an active conformation of the enzyme molecule.  相似文献   

18.
Src homology 3 (SH3) domains mediate protein-protein interactions necessary for the coupling of cellular proteins involved in intracellular signal transduction. We previously established solution-binding conditions that allow affinity isolation of Src SH3-binding proteins from cellular extracts (Z. Weng, J. A. Taylor, C. E. Turner, J. S. Brugge, and C. Seidel-Dugan, J. Biol. Chem. 268:14956-14963, 1993). In this report, we identified three of these proteins: Shc, a signaling protein that couples membrane tyrosine kinases with Ras; p62, a protein which can bind to p21rasGAP; and heterogeneous nuclear ribonucleoprotein K, a pre-mRNA-binding protein. All of these proteins contain proline-rich peptide motifs that could serve as SH3 domain ligands, and the binding of these proteins to the Src SH3 domain was inhibited with a proline-rich Src SH3 peptide ligand. These three proteins, as well as most of the other Src SH3 ligands, also bound to the SH3 domains of the closely related protein tyrosine kinases Fyn and Lyn. However, Src- and Lyn-specific SH3-binding proteins were also detected, suggesting subtle differences in the binding specificity of the SH3 domains from these related proteins. Several Src SH3-binding proteins were phosphorylated in Src-transformed cells. The phosphorylation of these proteins was not detected in cells transformed by a mutant variant of Src lacking the SH3 domain, while there was little change in tyrosine phosphorylation of other Src-induced phosphoproteins. In addition, the coprecipitation of v-Src with two tyrosyl-phosphorylated proteins with M(r)s of 62,000 and 130,000 was inhibited by incubation with a Src SH3 peptide ligand, suggesting that the binding of these substrate proteins is dependent on interactions with the SH3 domain. These results strongly suggest a role for the Src SH3 domain in the recruitment of substrates to this protein tyrosine kinase, either through direct interaction with the SH3 domain or indirectly through interactions with proteins that bind to the SH3 domain.  相似文献   

19.
pp60v-src is a nonreceptor protein tyrosine kinase that can transform both chicken and rodent fibroblasts. The src homology 2 (SH2) domain of this protein serves a critical role in the regulation of protein tyrosine kinase activity. The host range proteins pp60v-src-L, which contains a deletion of a highly conserved residue (Phe-172) in the SH2 domain, and pp60v-src-PPP, which contains a change from a Leu to a Phe at amino acid 186 in the SH2 domain, transform chicken but not rat cells and have slightly reduced kinase activity measured in vitro. The data presented here show that these altered proteins require autophosphorylation on Tyr-416 for high kinase activity and transforming ability. In the absence of autophosphorylation, there is a further decrease of at least threefold in in vitro kinase activity relative to the phosphorylated host range parental protein, no morphological transformation, a reduction in anchorage independent growth, and no disruption of the actin cytoskeleton. In addition, these SH2 mutations abolish the ability of the SH2 domain to bind a phosphorylated peptide that corresponds to the autophosphorylation site of pp60src. Thus, like mutant alleles of c-src encoding transformation competent proteins, and unlike v-src, transformation by pp60v-src-F172 delta and pp60v-src-L186F is dependent on phosphorylation of Y-416 for high kinase activity and transformation ability. The dependence of transformation on phosphotyrosine is not a reflection of an intramolecular interaction between the autophosphorylation site and the SH2 domains since purified SH2 domains are incapable of binding phosphorylated autophosphorylation site peptides in vitro.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号