首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Measured profiles of photosynthetic capacity in plant crowns typically do not match those of average irradiance: the ratio of capacity to irradiance decreases as irradiance increases. This differs from optimal profiles inferred from simple models. To determine whether this could be explained by omission of physiological or physical details from such models, we performed a series of thought experiments using a new model that included more realism than previous models. We used ray‐tracing to simulate irradiance for 8000 leaves in a horizontally uniform canopy. For a subsample of 500 leaves, we simultaneously optimized both nitrogen allocation (among pools representing carboxylation, electron transport and light capture) and stomatal conductance using a transdermally explicit photosynthesis model. Few model features caused the capacity/irradiance ratio to vary systematically with irradiance. However, when leaf absorptance varied as needed to optimize distribution of light‐capture N, the capacity/irradiance ratio increased up through the crown – that is, opposite to the observed pattern. This tendency was counteracted by constraints on stomatal or mesophyll conductance, which caused chloroplastic CO2 concentration to decline systematically with increasing irradiance. Our results suggest that height‐related constraints on stomatal conductance can help to reconcile observations with the hypothesis that photosynthetic N is allocated optimally.  相似文献   

2.
The present study investigated the interaction of growth irradiance (Qint) with leaf capacity for and kinetics of adjustment of the pool size of xanthophyll cycle carotenoids (sum of violaxanthin, antheraxanthin and zeaxanthin; VAZ) and photosynthetic electron transport rate (Jmax) after changes in leaf light environment. Individual leaves of lower‐canopy/lower photosynthetic capacity species Tilia cordata Mill. and upper canopy/higher photosynthetic capacity species Populus tremula L. were either illuminated by additional light of 500–800 µmol m?2 s?1 for 12 h photoperiod or enclosed in shade bags. The extra irradiance increased the total amount of light intercepted by two‐fold for the upper and 10–15‐fold for the lower canopy leaves, whereas the shade bags transmitted 45% of incident irradiance. In control leaves, VAZ/area, VAZ/Chl and Jmax were positively associated with leaf growth irradiance (Qint). After 11 d extra illumination, VAZ/Chl increased in all cases due to a strong reduction in foliar chlorophyll, but VAZ/area increased in the upper canopy leaves of both species, and remained constant or decreased in the lower canopy leaves of T. cordata. The slope for VAZ/area changes with cumulative extra irradiance was positively associated with Qint only in T. cordata, but not in P. tremula. Nevertheless, all leaves of P. tremula increased VAZ/area more than the most responsive leaves of T. cordata. Shading reduced VAZ content only in P. tremula, but not in T. cordata, again demonstrating that P. tremula is a more responsive species. Compatible with the hypothesis of the role of VAZ in photoprotection, the rates of photosynthetic electron transport declined less in P. tremula than in T. cordata after the extra irradiance treatment. However, foliar chlorophyll contents of the exposed leaves declined significantly more in the upper canopy of P. tremula, which is not consistent with the suggestion that the leaves with the highest VAZ content are more resistant to photoinhibition. This study demonstrates that previous leaf light environment may significantly affect the adaptation capacity of foliage to altered light environment, and also that species differences in photosynthetic capacity and acclimation potentials importantly alter this interaction.  相似文献   

3.
4.
Hemp (Cannabis sativa L.) may be a suitable crop for the bio‐economy as it requires low inputs while producing a high and valuable biomass yield. With the aim of understanding the physiological basis of hemp's high resource‐use efficiency and yield potential, photosynthesis was analysed on leaves exposed to a range of nitrogen and temperature levels. Light‐saturated net photosynthesis rate (Amax) increased with an increase in leaf nitrogen up to 31.2 ± 1.9 μmol m?2 s?1 at 25 °C. The Amax initially increased with an increase in leaf temperature (TL), levelled off at 25–35 °C and decreased when TL became higher than 35 °C. Based on a C3 leaf photosynthesis model, we estimated mesophyll conductance (gm), efficiency of converting incident irradiance into linear electron transport under limiting light (κ2LL), linear electron transport capacity (Jmax), Rubisco carboxylation capacity (Vcmax), triose phosphate utilization capacity (Tp) and day respiration (Rd), using data obtained from gas exchange and chlorophyll fluorescence measurements at different leaf positions and various levels of incident irradiance, CO2 and O2. The effects of leaf nitrogen and temperature on photosynthesis parameters were consistent at different leaf positions and among different growth environments except for κ2LL, which was higher for plants grown in the glasshouse than for those grown outdoors. Model analysis showed that compared with cotton and kenaf, hemp has higher photosynthetic capacity when leaf nitrogen is <2.0 g N m?2. The high photosynthetic capacity measured in this study, especially at low nitrogen level, provides additional evidence that hemp can be grown as a sustainable bioenergy crop over a wide range of climatic and agronomic conditions.  相似文献   

5.
Xu CY  Griffin KL  Schuster WS 《Oecologia》2007,154(1):11-21
Early leafing and extended leaf longevity can be important mechanisms for the invasion of the forest understory. We compared the leaf phenology and photosynthetic characteristics of Berberis thunbergii, an early leafing invasive shrub, and two co-occurring native species, evergreen Kalmia latifolia and late leafing Vaccinium corymbosum, throughout the 2004 growing season. Berberis thunbergii leafed out 1 month earlier than V. corymbosum and approximately 2 weeks prior to the overstory trees. The photosynthetic capacity [characterized by the maximum carboxylation rate of Rubisco (V cmax) and the RuBP regeneration capacity mediated by the maximum electron transport rate (J max)] of B. thunbergii was highest in the spring open canopy, and declined with canopy closure. The 2003 overwintering leaves of K. latifolia displayed high V cmax and J max in spring 2004. In new leaves of K. latifolia produced in 2004, the photosynthetic capacity gradually increased to a peak in mid-September, and reduced in late November. V. corymbosum, by contrast, maintained low V cmax and J max throughout the growing season. In B. thunbergii, light acclimation was mediated by adjustment in both leaf mass per unit area and leaf N on a mass basis, but this adjustment was weaker or absent in K. latifolia and V. corymbosum. These results indicated that B. thunbergii utilized high irradiance in the spring while K. latifolia took advantage of high irradiance in the fall and the following spring. By contrast, V. corymbosum generally did not experience a high irradiance environment and was adapted to the low irradiance understory. The apparent success of B. thunbergii therefore, appeared related to a high spring C subsidy and subsequent acclimation to varying irradiance through active N reallocation and leaf morphological modifications.  相似文献   

6.
Environmental controls on carbon dynamics operate at a range of interacting scales from the leaf to landscape. The key questions of this study addressed the influence of water and nitrogen (N) availability on Pinus palustris (Mill.) physiology and primary productivity across leaf and canopy scales, linking the soil‐plant‐atmosphere (SPA) model to leaf and stand‐scale flux and leaf trait/canopy data. We present previously unreported ecophysiological parameters (e.g. Vcmax and Jmax) for P. palustris and the first modelled estimates of its annual gross primary productivity (GPP) across xeric and mesic sites and under extreme drought. Annual mesic site P. palustris GPP was ~23% greater than at the xeric site. However, at the leaf level, xeric trees had higher net photosynthetic rates, and water and light use efficiency. At the canopy scale, GPP was limited by light interception (canopy level), but co‐limited by nitrogen and water at the leaf level. Contrary to expectations, the impacts of an intense growing season drought were greater at the mesic site. Modelling indicated a 10% greater decrease in mesic GPP compared with the xeric site. Xeric P. palustris trees exhibited drought‐tolerant behaviour that contrasted with mesic trees' drought‐avoidance behaviour.  相似文献   

7.
A model to evaluate photon transport within leaves and the implications for photosynthesis are investigated. A ray tracing model, Raytran, was used to produce absorption profiles within a virtual dorsiventral plant leaf oriented in two positions (horizontal/vertical) and illuminated on one of its two faces (adaxial/abaxial). Together with chlorophyll profiles, these absorption profiles feed a simple photosynthesis model that calculates the gross photosynthetic rate as a function of the incident irradiance. The differences observed between the four conditions are consistent with the literature: horizontal‐adaxial leaves, which are commonly found in natural conditions, have the greatest light use efficiency. The absorption profile obtained with horizontal‐abaxial leaves lies below this, but above those obtained for vertical leaves. The latter present similar gross photosynthetic rates when irradiated on either the adaxial or abaxial surfaces. Vertical profiles of photosynthetic rates across the leaf confirm that carbon fixation occurs mainly in the palisade parenchyma, that the leaf anatomy is integral to its function and that leaves cannot be considered as a single homogeneous unit. Finally, the relationships between leaf structure, orientation and photosynthesis are discussed.  相似文献   

8.
CO2 fixation in mosses saturates at moderate irradiances. Relative electron transport rate (RETR) inferred from chlorophyll fluorescence saturates at similar irradiance in shade species (e.g. Plagiomnium undulatum, Trichocolea tomentella), but many species of unshaded habitats (e.g. Andreaea rothii, Schistidium apocarpum, Sphagnum spp. and Frullania dilatata) show non‐saturating RETR at high irradiance, with high non‐photochemical quenching (NPQ). In P. undulatum and S. apocarpum, experiments in different gas mixtures showed O2 and CO2 as interchangeable electron sinks. Nitrogen + saturating CO2 gave high RETR and depressed NPQ. In S. apocarpum, glycolaldehyde (inhibiting photosynthesis and photorespiration) depressed RETR in air more at low than at high irradiance; in CO2‐free air RETR was maintained at all irradiances. Non‐saturating electron flow was not suppressed in ambient CO2 with 1% O2. The results indicate high capacity for oxygen photoreduction when CO2 assimilation is limited. Non‐saturating light‐dependent H2O2 production, insensitive to glycolaldehyde, suggests that electron transport is supported by oxygen photoreduction, perhaps via the Mehler‐peroxidase reaction. Consistent with this, mosses were highly tolerant to paraquat, which generates superoxide at photosystem I (PSI). Protection against excess excitation energy in mosses involves high capacity for photosynthetic electron transport to oxygen and high NPQ, activated at high irradiance, alongside high reactive oxygen species (ROS) tolerance.  相似文献   

9.
Mathematical models of light attenuation and canopy photosynthesis suggest that crop photosynthesis increases by more uniform vertical irradiance within crops. This would result when a larger proportion of total irradiance is applied within canopies (interlighting) instead of from above (top lighting). These irradiance profiles can be generated by Light Emitting Diodes (LEDs). We investigated the effects of interlighting with LEDs on light interception, on vertical gradients of leaf photosynthetic characteristics and on crop production and development of a greenhouse‐grown Cucumis sativus‘Samona’ crop and analysed the interaction between them. Plants were grown in a greenhouse under low natural irradiance (winter) with supplemental irradiance of 221 µmol photosynthetic photon flux m?2 s?1 (20 h per day). In the interlighting treatment, LEDs (80% Red, 20% Blue) supplied 38% of the supplemental irradiance within the canopy with 62% as top lighting by High‐Pressure Sodium (HPS)‐lamps. The control was 100% top lighting (HPS lamps). We measured horizontal and vertical light extinction as well as leaf photosynthetic characteristics at different leaf layers, and determined total plant production. Leaf mass per area and dry mass allocation to leaves were significantly greater but leaf appearance rate and plant length were smaller in the interlighting treatment. Although leaf photosynthetic characteristics were significantly increased in the lower leaf layers, interlighting did not increase total biomass or fruit production, partly because of a significantly reduced vertical and horizontal light interception caused by extreme leaf curling, likely because of the LED‐light spectrum used, and partly because of the relatively low irradiances from above.  相似文献   

10.
Infection of bean leaves by Colletotrichum lundemuthianum causes vein necrosis and subsequent localized wilting of the blade. The effect of infection on photosynthesis was investigated by imaging leaf chlorophyll fluorescence as a means of mapping stomatal and metabolic inhibition of photosynthesis. During infection, CO2 assimilation (An), stomatal conductance to water vapour, and photosynthetic electron transport rate (Jt) decreased, whereas dark respiration increased. An decreased more than was expected from the reduction in green leaf area, showing that photosynthesis was inhibited in apparently healthy areas. Under subsaturating irradiance, images of Jt in air showed that photosynthesis decreased gradually, with this effect shifting from green to necrotic areas. Sudden increase in CO2 concentration to 0·74% in the atmosphere around the leaf only partially reversed this inhibition, showing that both stomatal and metabolic inhibition occurred. Under limiting irradiance, decreases in Jt and in maximal Jt during high CO2 exposure as leaf damage severity increased suggested that metabolic inhibition was mediated through an inhibition of Ribulose 1·5‐bisphosphate (RuBP) regeneration. Finally, the importance of our data in terms of assessing the loss of photosynthetic yield from visible symptoms – as is currently performed in epidemiology – is discussed.  相似文献   

11.
We present a physiological model of isoprene (2-methyl-1,3-butadiene) emission which considers the cost for isoprene synthesis, and the production of reductive equivalents in reactions of photosynthetic electron transport for Liquidambar styraciflua L. and for North American and European deciduous temperate Quercus species. In the model, we differentiate between leaf morphology (leaf dry mass per area, MA, g m ? 2) altering the content of enzymes of isoprene synthesis pathway per unit leaf area, and biochemical potentials of average leaf cells determining their capacity for isoprene emission. Isoprene emission rate per unit leaf area ( μ mol m ? 2 s ? 1) is calculated as the product of MA, the fraction of total electron flow used for isoprene synthesis ( ? , mol mol ? 1), the rate of photosynthetic electron transport (J) per unit leaf dry mass (Jm, μ mol g ? 1 s ? 1), and the reciprocal of the electron cost of isoprene synthesis [mol isoprene (mol electrons ? 1)]. The initial estimate of electron cost of isoprene synthesis is calculated according to the 1-deoxy- D -xylulose-5-phosphate pathway recently discovered in the chloroplasts, and is further modified to account for extra electron requirements because of photorespiration. The rate of photosynthetic electron transport is calculated by a process-based leaf photosynthesis model. A satisfactory fit to the light-dependence of isoprene emission is obtained using the light response curve of J, and a single value of ? , that is dependent on the isoprene synthase activity in the leaves. Temperature dependence of isoprene emission is obtained by combining the temperature response curves of photosynthetic electron transport, the shape of which is related to long-term temperature during leaf growth and development, and the specific activity of isoprene synthase, which is considered as essentially constant for all plants. The results of simulations demonstrate that the variety of temperature responses of isoprene emission observed within and among the species in previous studies may be explained by different optimum temperatures of J and/or limited maximum fraction of electrons used for isoprene synthesis. The model provides good fits to diurnal courses of field measurements of isoprene emission, and is also able to describe the changes in isoprene emission under stress conditions, for example, the decline in isoprene emission in water-stressed leaves.  相似文献   

12.
The spatial variations in the stable carbon isotope composition (δ13C) of air and leaves (total matter and soluble sugars) were quantified within the crown of a well‐watered, 20‐year‐old walnut tree growing in a low‐density orchard. The observed leaf carbon isotope discrimination (Δ) was compared with that computed by a three‐dimensional model simulating the intracanopy distribution of irradiance, transpiration and photosynthesis (previously parameterized and tested for the same tree canopy) coupled to a biophysically based model of carbon isotope discrimination. The importance of discrimination associated with CO2 gradients encountered from the substomatal sites to the carboxylation sites was evaluated. We also assessed by simulation the effect of current irradiance on leaf gas exchange and the effect of long‐term acclimation of photosynthetic capacity and stomatal and internal conductances to light regime on intracanopy gradients in Δ. The main conclusions of this study are: (i) leaf Δ can exhibit important variations (5 and 8‰ in total leaf material and soluble sugars, respectively) along light gradients within the foliage of an isolated tree; (ii) internal conductance must be taken into account to adequately predict leaf Δ, and (iii) the spatial variations in Δ and water‐use efficiency resulted from the short‐term response of leaf gas exchange to variations in local irradiance and, to a much lesser extent, from the long‐term acclimation of leaf characteristics to the local light regime.  相似文献   

13.
Light is considered a non‐limiting factor for vascular epiphytes. Nevertheless, an epiphyte's access to light may be limited by phorophyte shading and the spatio‐temporal environmental patchiness characteristic of epiphytic habitats. We assessed the extent to which potential light interception in Rodriguezia granadensis, an epiphytic orchid, is determined by individual factors (plant size traits and leaf traits), or environmental heterogeneity (light patchiness) within the crown of the phorophyte, or both. We studied 104 adult plants growing on Psidium guajava trees in two habitats with contrasting canopy cover: a dry tropical forest edge, and isolated trees in a pasture. We recorded the number of leaves and the leaf area, the leaf position angles, and the potential exposure of the leaf surface to direct irradiance (silhouette area of the leaf blade), and the potential irradiance incident on each plant. We found the epiphytes experience a highly heterogeneous light environment in the crowns of P. guajava. Nonetheless, R. granadensis plants displayed a common light interception strategy typical of low‐light environments, resembling terrestrial, forest understory plants. Potential exposure of the total leaf surface to direct irradiance correlated positively with plant size and within‐plant variation in leaf orientation. In many‐leaved individuals, within‐plant variation in leaf angles produced complementary leaf positions that enhanced potential light interception. This light interception strategy suggests that, in contrast to current wisdom, enhancing light capture is important for vascular epiphytes in canopies with high spatio‐temporal heterogeneity in light environments.  相似文献   

14.
In this study, we examined steady-state and dynamic photosynthetic performance and leaf nitrogen (N) partitioning in the typical shade-demanding herb Panax notoginseng grown along a light gradient. Gas exchange on a leaf area basis was significantly reduced under low irradiance, with gas exchange on a leaf mass basis reaching a maximum value and then decreasing along the light gradient. Specific leaf area significantly increased with decreasing irradiance levels (P < 0.001), whereas carboxylation efficiency was decreased (P < 0.001). In addition, decreasing growth irradiance levels led to declines in maximum carboxylation rate (V cmax) and maximum electron transport rate (J max), although V cmax/mass and J max/mass were relatively less affected than V cmax/area and J max/area. Slow photosynthetic response to simulated sunflecks was observed under low levels of growth irradiance, with stomatal limitations only detected in leaves grown under low-light conditions. Chlorophyll content increased significantly with decreasing irradiance levels. N content on a leaf mass basis apparently increased, while N content on a leaf area basis markedly decreased. The fraction of leaf N allocated to light-harvesting components increased significantly with decreasing growth irradiance levels, whereas the fraction allocated to carboxylation and bioenergetics was significantly reduced. As an adaptation strategy to growth irradiance, we conclude that adjustments in specific leaf area may be more important than changes in leaf physiology and biochemistry in typical shade-demanding species such as P. notoginseng.  相似文献   

15.
The mechanisms responsible for photosynthetic acclimation are not well understood, effectively limiting predictability under future conditions. Least‐cost optimality theory can be used to predict the acclimation of photosynthetic capacity based on the assumption that plants maximize carbon uptake while minimizing the associated costs. Here, we use this theory as a null model in combination with multiple datasets of C3 plant photosynthetic traits to elucidate the mechanisms underlying photosynthetic acclimation to elevated temperature and carbon dioxide (CO2). The model‐data comparison showed that leaves decrease the ratio of the maximum rate of electron transport to the maximum rate of Rubisco carboxylation (Jmax/Vcmax) under higher temperatures. The comparison also indicated that resources used for Rubisco and electron transport are reduced under both elevated temperature and CO2. Finally, our analysis suggested that plants underinvest in electron transport relative to carboxylation under elevated CO2, limiting potential leaf‐level photosynthesis under future CO2 concentrations. Altogether, our results show that acclimation to temperature and CO2 is primarily related to resource conservation at the leaf level. Under future, warmer, high CO2 conditions, plants are therefore likely to use less nutrients for leaf‐level photosynthesis, which may impact whole‐plant to ecosystem functioning.  相似文献   

16.
The ability of silver fir ( Abies alba Mill.) to acclimate to different levels of irradiance was tested with 3-year-old seedlings, grown for 2 years in a nursery close to Nancy (eastern France) under 100, 48, 18 and 8% of incident irradiance (neutral shade nets). Growth, total nutrients in needles, maximal carboxylation rate ( V cmax), maximal light driven electron flow ( J max) and the relative amount of nitrogen allocated to photosynthetic processes (carboxylation, bioenergetics, light harvesting) were investigated. The sensitivity to drought stress was assessed among the phenotypes resulting from light acclimation. Leader-shoot and branch elongation were greatest under 18% irradiance. Total seedling biomass, root-to-total biomass ratio, total leaf area, leaf mass-to-area ratio and needle-area based nitrogen content responded positively to increasing irradiance while leaf area ratio decreased. Both V cmax and J max increased by a factor of 1.6 and 1.8, respectively, from the lowest to the highest irradiance but the ratio J max/ V cmax remained stable. All these parameters, expressed on a projected needle area basis, remained within the lower range of values measured for broadleaved trees. Relative allocation of needle N to the different components of the photosynthetic apparatus was very low: 12, 3 and 7% of total nitrogen were invested in carboxylation, bioenergetics and light harvesting, respectively. The relative allocation of nitrogen to carboxylation and bioenergetics remained stable while that to light harvesting decreased with increasing irradiance. During drought, seedlings pre-acclimated to shade closed their stomata at higher predawn needle water potential than those which were grown under higher irradiance. Critical temperature for PSII photochemistry in needles was unaffected by irradiance and was close to 47°C. Drought significantly increased the critical temperature up to 51°C. In general, the amplitude of responses of silver fir to changing irradiance (phenotypic plasticity) was smaller than that recorded in broadleaved species.  相似文献   

17.
There is presently no consensus about the factor(s) driving photosynthetic acclimation and the intra-canopy distribution of leaf characteristics under natural conditions. The impact was tested of local (i) light quality (red/far red ratio), (ii) leaf irradiance (PPFD(i)), and (iii) transpiration rate (E) on total non-structural carbohydrates per leaf area (TNC(a)), TNC-free leaf mass-to-area ratio (LMA), total leaf nitrogen per leaf area (N(a)), photosynthetic capacity (maximum carboxylation rate and light-saturated electron transport rate), and leaf N partitioning between carboxylation and bioenergetics within the foliage of young walnut trees grown outdoors. Light environment (quantity and quality) was controlled by placing individual branches under neutral or green screens during spring growth, and air vapour pressure deficit (VPD) was prescribed and leaf transpiration and photosynthesis measured at branch level by a branch bag technique. Under similar levels of leaf irradiance, low air vapour pressure deficit decreased transpiration rate but did not influence leaf characteristics. Close linear relationships were detected between leaf irradiance and leaf N(a), LMA or photosynthetic capacity, and low R/FR ratio decreased leaf N(a), LMA and photosynthetic capacity. Irradiance and R/FR also influenced the partitioning of leaf nitrogen into carboxylation and electron light transport. Thus, local light level and quality are the major factors driving photosynthetic acclimation and intra-canopy distribution of leaf characteristics, whereas local transpiration rate is of less importance.  相似文献   

18.
Oxygen evolution was measured from mesophyll tissues in spinach leaves using a photoacoustic technique. The photosynthetic capacity of individual cell layers was measured by directing microscopic beams of light, 40 μm wide, to cells exposed within a leaf cross section. The resulting profile for oxygen-evolution potential was relatively flat, indicating a uniform capacity for photosynthesis in leaf mesophyll tissues. Two experimental approaches were used to estimate the photosynthetic performance of individual mesophyll cell layers when white light was applied to the adaxial leaf surface. These experiments indicated that oxygen was produced relatively uniformly across the mesophyll and that oxygen evolution increased with irradiance of the white light applied to the leaf surface. The measured profiles for oxygen evolution and capacity are flatter than previous measurements of profiles of fixed carbon and estimates of profiles for absorbed light within spinach leaves.  相似文献   

19.
Very few studies have attempted to disentangle the respective role of ontogeny and water stress on leaf photosynthetic attributes. The relative significance of both effects on photosynthetic attributes has been investigated in leaves of field‐grown almond trees [Prunus dulcis (Mill.) D. A. Webb] during four growth cycles. Leaf ontogeny resulted in enhanced leaf dry weight per unit area (Wa), greater leaf dry‐to‐fresh weight ratio and lower N content per unit of leaf dry weight (Nw). Concomitantly, area‐based maximum carboxylation rate (Vcmax), maximum electron transport rate (Jmax), mesophyll conductance to CO2 diffusion (gm)′ and light‐saturated net photosynthesis (Amax) declined in both well‐watered and water‐stressed almond leaves. Although gm and stomatal conductance (gs) seemed to be co‐ordinated, a much stronger coordination in response to ontogeny and prolonged water stress was observed between gm and the leaf photosynthetic capacity. Under unrestricted water supply, the leaf age‐related decline of Amax was equally driven by diffusional and biochemical limitations. Under restricted soil water availability, Amax was mainly limited by gs and, to a lesser extent, by photosynthetic capacity and gm. When both ontogeny and water stress effects were combined, diffusional limitations was the main determinant of photosynthesis limitation, while stomatal and biochemical limitations contributed similarly.  相似文献   

20.
Rapid metabolite diffusion across the mesophyll (M) and bundle sheath (BS) cell interface in C4 leaves is a key requirement for C4 photosynthesis and occurs via plasmodesmata (PD). Here, we investigated how growth irradiance affects PD density between M and BS cells and between M cells in two C4 species using our PD quantification method, which combines three‐dimensional laser confocal fluorescence microscopy and scanning electron microscopy. The response of leaf anatomy and physiology of NADP‐ME species, Setaria viridis and Zea mays to growth under different irradiances, low light (100 μmol m?2 s?1), and high light (1,000 μmol m?2 s?1), was observed both at seedling and established growth stages. We found that the effect of growth irradiance on C4 leaf PD density depended on plant age and species. The high light treatment resulted in two to four‐fold greater PD density per unit leaf area than at low light, due to greater area of PD clusters and greater PD size in high light plants. These results along with our finding that the effect of light on M‐BS PD density was not tightly linked to photosynthetic capacity suggest a complex mechanism underlying the dynamic response of C4 leaf PD formation to growth irradiance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号