首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have identified monoclonal antibodies that inhibit human cell adhesion to collagen (P1H5), fibronectin (P1F8 or P1D6), and collagen and fibronectin (P1B5) that react with a family of structurally similar glycoproteins referred to as extracellular matrix receptors (ECMRs) II, VI, and I, respectively. Each member of this family contains a unique alpha subunit, recognized by the antibodies, and a common beta subunit, each of approximately 140 kD. We show here that ECMR VI is identical to the fibronectin receptor (FNR), very late antigen (VLA) 5, and platelet glycoproteins Ic-IIa and shall be referred to as FNR. Monoclonal antibodies to FNR inhibit lymphocyte, fibroblast, and platelet adhesion to fibronectin-coated surfaces. ECMRs I, II, and FNR were differentially expressed in platelets, resting or activated lymphocytes, and myeloid, epithelial, endothelial, and fibroblast cell populations, suggesting a functional role for the receptors in vascular emigration and selective tissue localization. Tissue staining of human fetal skin localized ECMRs I and II to the basal epidermis primarily, while monoclonal antibodies to the FNR stained both the dermis and epidermis. Experiments carried out to investigate the functional roles of these receptors in mediating cell adhesion to complex extracellular matrix (ECM) produced by cells in culture revealed that complete inhibition of cell adhesion to ECM required antibodies to both the FNR and ECMR II, the collagen adhesion receptor. These results show that multiple ECMRs function in combination to mediate cell adhesion to complex EMC templates and predicts that variation in ECM composition and ECMR expression may direct cell localization to specific tissue domains.  相似文献   

2.
3.
Delayed wound healing in many chronic wounds has been linked to the degradation of fibronectin (FN) by abnormally high protease levels. We sought to develop a proteolytically stable and functionally active form of FN. For this purpose, we conjugated 3.35 kDa polyethylene glycol diacrylate (PEGDA) to human plasma fibronectin (HPFN). Conjugation of PEGDA to HPFN or HPFN PEGylation was characterized by an increase of approximately 16 kDa in the average molecular weight of PEGylated HPFN compared to native HPFN in SDS‐PAGE gels. PEGylated HPFN was more resistant to α chymotrypsin or neutrophil elastase digestion than native HPFN: after 30 min incubation with α chymotrypsin, 56 and 90% of native and PEGylated HPFN respectively remained intact. PEGylated HPFN and native HPFN supported NIH 3T3 mouse fibroblast adhesion and spreading, migration and focal adhesion formation in a similar manner. Fluorescence microscopy showed that both native and PEGylated HPFN in the culture media were assembled into extracellular matrix (ECM) fibrils. Interestingly, when coated on surfaces, native but not PEGylated HPFN was assembled into the ECM of fibroblasts. The proteolytically stable PEGylated HPFN developed herein could be used to replenish FN levels in the chronic wound bed and promote tissue repair. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29: 493–504, 2013  相似文献   

4.
Site-directed mutagenesis studies have suggested that additional peptide information in the central cell-binding domain of fibronectin besides the minimal Arg-Gly-Asp (RGD) sequence is required for its full adhesive activity. The nature of this second, synergistic site was analyzed further by protein chemical and immunological approaches using biological assays for adhesion, migration, and matrix assembly. Fragments derived from the cell-binding domain were coupled covalently to plates, and their specific molar activities in mediating BHK cell spreading were compared with that of intact fibronectin. A 37-kD fragment purified from chymotryptic digests of human plasma fibronectin had essentially the same specific molar activity as intact fibronectin. In contrast, other fragments such as an 11.5-kD fragment lacking NH2-terminal sequences of the 37-kD fragment had only poor spreading activity on a molar basis. Furthermore, in competitive inhibition assays of fibronectin-mediated cell spreading, the 37-kD fragment was approximately 325-fold more active than the GRGDS synthetic peptide on a molar basis. mAbs were produced using the 37-kD protein as an immunogen and their epitopes were characterized. Two separate mAbs, one binding close to the RGD site and the other to a site approximately 15 kD distant from the RGD site, individually inhibited BHK cell spreading on fibronectin by greater than 90%. In contrast, an antibody that bound between these two sites had minimal inhibitory activity. The antibodies found to be inhibitory in cell spreading assays for BHK cells also inhibited both fibronectin-mediated cell spreading and migration of human HT-1080 cells, functions which were also dependent on function of the alpha 5 beta 1 integrin (fibronectin receptor). Assembly of endogenously synthesized fibronectin into an extracellular matrix was not significantly inhibited by most of the anti-37-kD mAbs, but was strongly inhibited only by the antibodies binding close to the RGD site or the putative synergy site. These results indicate that a second site distant from the RGD site on fibronectin is crucial for its full biological activity in diverse functions dependent on the alpha 5 beta 1 fibronectin receptor. This site is mapped by mAbs closer to the RGD site than previously expected.  相似文献   

5.
Helicobacter pylori vacuolating cytotoxin VacA causes multiple effects on epithelial cell function and morphology, but the effects of VacA on signal transduction pathways and the cytoskeleton have not been investigated in detail. In this study, we analyzed the effects of native VacA on HeLa and AGS cell adhesion to fibronectin and laminin under serum-free conditions. Confocal microscopic examination revealed increased number of cells with rounded morphology and inhibition of actin fiber formation, in the presence of VacA. VacA binds to fibronectin in vitro in a dose-dependent manner. This interaction was partly inhibited by a peptide containing an arginine-glycine-aspartic acid motif. The adhesion of HeLa cells to fibronectin, but not to laminin, was decreased in the presence of VacA. Thus, VacA may interact with fibronectin and influence integrin receptor-induced cell signaling and cytoskeleton-dependent cell functions.  相似文献   

6.
The fibronectin receptor, alpha 5 beta 1, has been shown to be required for fibronectin matrix assembly and plays an important role in cell migration on fibronectin. However, it is not clear whether other fibronectin binding integrins can take the place of alpha 5 beta 1 during matrix assembly and cell migration. To test this, we expressed the human alpha v subunit in the CHO cell line CHO-B2 that lacks the alpha 5 subunit. We found that the human alpha v combined with CHO cell beta 1 to form the integrin alpha v beta 1. Cells that expressed alpha v beta 1 attached to and spread well on fibronectin-coated dishes, but did so less well on vitronectin-coated dishes. This, along with other data, indicated that alpha v beta 1 functions as a fibronectin receptor in CHO-B2 cells. The alpha v beta 1-expressing cells failed to produce a fibronectin matrix or to migrate on fibronectin, although the same cells transfected with alpha 5 do produce a matrix and migrate on fibronectin. The affinity of the alpha v beta 1-expressing cells for fibronectin was fourfold lower than that of the alpha 5 beta 1- expressing cells. In addition, alpha v beta 1 was distributed diffusely throughout the cell surface, whereas alpha 5 beta 1 was localized to focal adhesions when cells were seeded onto fibronectin-coated surfaces. Thus, of the two fibronectin receptors, alpha v beta 1 and alpha 5 beta 1, only alpha 5 beta 1 supports fibronectin matrix assembly and promotes cell migration on fibronectin in the CHO-B2 cells. Possible reasons for this difference in the activities of alpha v beta 1 and alpha 5 beta 1 include the lower affinity of alpha v beta 1 for fibronectin and the failure of this integrin to localize in adhesion plaques on a fibronectin substrate. These results show that two integrins with similar ligand specificities and cell attachment functions may be quite different in their ability to support fibronectin matrix assembly and cell motility on fibronectin.  相似文献   

7.
Post-translational modifications are used by cells to link additional information to proteins. Most modifications are subtle and concern small moieties such as a phosphate group or a lipid. In contrast, protein ubiquitylation entails the covalent attachment of a full-length protein such as ubiquitin. The protein ubiquitylation machinery is remarkably complex, comprising more than 15 Ubls (ubiquitin-like proteins) and several hundreds of ubiquitin-conjugating enzymes. Ubiquitin is best known for its role as a tag that induces protein destruction either by the proteasome or through targeting to lysosomes. However, addition of one or more Ubls also affects vesicular traffic, protein-protein interactions and signal transduction. It is by now well established that ubiquitylation is a component of most, if not all, cellular signalling pathways. Owing to its abundance in controlling cellular functions, ubiquitylation is also of key relevance to human pathologies, including cancer and inflammation. In the present review, we focus on its role in the control of cell adhesion, polarity and directional migration. It will become clear that protein modification by Ubls occurs at every level from the receptors at the plasma membrane down to cytoskeletal components such as actin, with differential consequences for the pathway's final output. Since ubiquitylation is fast as well as reversible, it represents a bona fide signalling event, which is used to fine-tune a cell's responses to receptor agonists.  相似文献   

8.
Vav family proteins act as guanine nucleotide exchange factors for Rho family proteins, which are known to orchestrate cytoskeletal changes and cell migration in response to extracellular stimuli. Using mice deficient for Vav1, Vav2 and/or Vav3, overlapping and isoform-specific functions of the three Vav proteins have been described in various hematopoietic cell types, but their roles in regulating cell morphology and migration have not been studied in detail. To investigate whether Vav isoforms have redundant or unique functions in regulating adhesion and migration, we investigated the properties of Vav1-deficient and Vav2-deficient macrophages. Both Vav1-deficient and Vav2-deficient cells have a smaller adhesive area; yet, only Vav1-deficient cells have a reduced migration speed, which coincides with a lower level of microtubules. Vav2-deficient macrophages display a high level of constitutive membrane ruffling, but neither Vav1 nor Vav2 is required for colony stimulating factor-1-induced membrane ruffling and cell spreading. Our results suggest that the migration speed of macrophages is regulated independently of spread area or membrane ruffling and that Vav1 is selectively required to maintain a normal migration speed.  相似文献   

9.
The adipokine adiponectin circulates in high concentration, and activates the classical pathway of complement by binding C1q, leading to the activation of C3 and formation of the membrane attack complex. Such behaviour is potentially pathophysiological. However, we showed adiponectin captured the complement inhibitor Factor H both as a pure protein and from human serum. Both heparin and a homologue of C3b, substrates binding to the C-terminus of Factor H, were inhibitory of the interaction, as was EDTA. Factor H bound equivalently to high and low molecular weight serum adiponectin, and to an N-terminal 16 kDa cyanogen bromide cleavage product of adiponectin. The binding of Factor H inhibited both the C3 and C5 convertases generated from complement activation by adiponectin, so reducing potentially pathophysiological consequences such as the deposition of C5b-9, while allowing opsonisation of target molecules with C3b.  相似文献   

10.
Cells in culture reveal high levels of protein tyrosine phosphorylation in their focal adhesions, the regions where cells adhere to the underlying substratum. We have examined the tyrosine phosphorylation of proteins in response to plating cells on extracellular matrix substrata. Rat embryo fibroblasts, mouse Balb/c 3T3, and NIH 3T3 cells plated on fibronectin-coated surfaces revealed elevated phosphotyrosine levels in a cluster of proteins between 115 and 130 kD. This increase in tyrosine phosphorylation was also seen when rat embryo fibroblasts were plated on laminin or vitronectin, but not on polylysine or on uncoated plastic. Integrin mediation of this effect was suggested by finding the same pattern of elevated tyrosine phosphorylation in cells plated on the cell-binding fragment of fibronectin and in cells plated on a synthetic polymer containing multiple RGD sequences. We have identified one of the proteins of the 115-130-kD cluster as pp125FAK, a tyrosine kinase recently localized in focal adhesions (Schaller, M. D., C. A. Borgman, B. S. Cobb, R. R. Vines, A. B. Reynolds, and J. T. Parsons. 1992. Proc. Natl. Acad. Sci. USA. 89:5192). A second protein that becomes tyrosine phosphorylated in response to extracellular matrix adhesion is identified as paxillin, a 70-kD protein previously localized to focal adhesions. Treatment of cells with the tyrosine kinase inhibitor herbimycin A diminished the adhesion-induced tyrosine phosphorylation of these proteins and inhibited the formation of focal adhesions and stress fibers. These results suggest a role for integrin-mediated tyrosine phosphorylation in the organization of the cytoskeleton as cells adhere to the extracellular matrix.  相似文献   

11.
The neural crest provides a useful paradigm for cell migration and modulations in cell adhesion during morphogenesis. In the present review, we describe the major findings on the role of the extracellular matrix glycoprotein fibronectin and its corresponding integrin receptor in the locomotory behavior of neural crest cells. In vivo, fibronectin is associated with the migratory routes of neural crest cells and, in some cases, it disappears from the environment of the cells as they stop migrating. In vitro, neural crest cells show a great preference for fibronectin substrates as compared to other matrix molecules. Both in vivo and in vitro, neural crest cell migration can be specifically inhibited by antibodies or peptides that interfere with the binding of fibronectin to its integrin receptor. However, the migratory behavior of neural crest cells cannot result solely from the interaction with fibronectin. Thus, neural crest cells exhibit a particular organization of integrin receptors on their surface and develop a cytoskeletal network which differs from that of non-motile cells. These properties are supposed to permit rapid changes in the shape of cells and to favor a transient adhesion to the substratum. Recent findings have established that different forms of fibronectin may occur, which differ by short sequences along the molecule. The functions of most of these sequences are not known, except for 1 of them which carries a binding site for integrin receptors. We have demonstrated that this site is recognized by neural crest cells and plays a crucial role in their displacement. It is therefore possible that the forms of fibronectin carrying this sequence are not evenly distributed in the embryo, thus allowing migrating neural crest cells to orientate in the embryo. Fibronectin would then not only play a permissive role in embryonic cell motility, but have an instructive function in cell behavior.  相似文献   

12.
Summary The main form of fibronectin (FN) encountered by tumor cells in vivo is cellular FN (cFN), which differs structurally and functionally from the commonly used plasma FN (pFN). We compared the effects of cFN and pFN on the ovarian carcinoma lines OVCAR-3 and SKOV-3 and on cultures of normal ovarian surface epithelium, which is the precursor of the epithelial ovarian carcinomas. Ovarian surface epithelial cells and SKOV-3 cells attached and spread faster on cFN than on pFN. On cFN, SKOV-3 migration was enhanced compared with pFN or plastic. In a matrigel transfilter assay, cFN strongly inhibited SKOV-3 invasion, whereas pFN did not. In contrast to SKOV-3, OVCAR-3 cells adhered faster on FN than on plastic but did not discriminate between cFN and pFN, and they did not migrate or invade matrigel either with or without FN. In both carcinoma lines, proliferation was unaffected by either FN. The results show profound differences in the responses to cFN and pFN by two invasive ovarian carcinoma lines. Because cFN is the main type that cancer cells encounter in vivo, extrapolations from culture data to in vivo events should preferably be based on studies using this form of FN.  相似文献   

13.
Cultured neural crest cells which are freshly trypsinized require serum or purified fibronectin to attach to collagen substrates of types I–V. Furthermore, neural crest cells migrate in a Boyden chamber in response to fibronectin, and a “checkerboard” analysis demonstrates that fibronectin is both chemotactic and chemokinetic for these cells. It is proposed that collagen serves as a substrate for neural crest cells as they migrate in the early embryo. By mediating the cells' attachment to collagen, fibronectin may influence the movement of the cells. Local differences in fibronectin concentration or availability in the matrix could affect the degree of attachment of the cells to the collagen substrate and could also direct their migration by serving as a chemoattractant.  相似文献   

14.
Akt1 belongs to the three-gene Akt family and functions as a serine-threonine kinase regulating phosphorylation of an array of substrates and mediating cellular processes such as cell migration, proliferation, survival, and cell cycle. Our previous studies have established the importance of Akt1 in angiogenesis and absence of Akt1 resulted in impaired integrin activation, adhesion, migration, and extracellular matrix assembly by endothelial cells and fibroblasts. In this study, we identify the downstream signaling pathways activated by Akt1 in the regulation of these cellular events. We demonstrate here that Akt1 is necessary for the growth factor stimulated activation of 14-3-3beta-Rac1-p21 activated kinase (Pak) pathway in endothelial cells and fibroblasts. While activation of Akt1 resulted in translocation of Rac1 to membrane ruffles, enhanced Rac1 activity, Pak1 phosphorylation, and lamellipodia formation, resulting in enhanced adhesion and assembly of fibronectin, inhibition of Akt1 resulted in inhibition of these processes due to impaired Rac1-Pak signaling. Formation of lamellipodia, adhesion, and fibronectin assembly by myristoylated Akt1 expression in NIH 3T3 fibroblasts was inhibited by co-expression with either dominant negative Rac1 or dominant negative Pak1. In contrast, impaired lamellipodia formation, adhesion, and fibronectin assembly by dominant negative-Akt1 expression was rescued by co-expression with either constitutively active-Rac1 or -Pak1. Moreover, previously reported defects in adhesion and extracellular matrix assembly by Akt1(-/-) fibroblasts could be rescued by expression with either active-Rac1 or -Pak1, implying the importance of Rac1-Pak signaling in growth factor stimulated cytoskeletal assembly, lamellipodia formation and cell migration in endothelial cells and fibroblasts downstream of Akt1 activation.  相似文献   

15.
In addition to mediating cell adhesion, many cell adhesion molecules act as tumor suppressors. These proteins are capable of restricting cell growth mainly through contact inhibition. Alterations of these cell adhesion molecules are a common event in cancer. The resulting loss of cell-cell and/or cell-extracellular matrix adhesion promotes cell growth as well as tumor dissemination. Therefore, it is conventionally accepted that cell adhesion molecules that function as tumor suppressors are also involved in limiting tumor cell migration. Paradoxically, in 2005, we identified an immunoglobulin superfamily cell adhesion molecule hepaCAM that is able to suppress cancer cell growth and yet induce migration. Almost concurrently, CEACAM1 was verified to co-function as a tumor suppressor and invasion promoter. To date, the reason and mechanism responsible for this exceptional phenomenon remain unclear. Nevertheless, the emergence of these intriguing cell adhesion molecules with conflicting roles may open a new chapter to the biological significance of cell adhesion molecules.  相似文献   

16.
During amphibian gastrulation, mesodermal cell movements depend on both cell-cell and cell-matrix interactions. Ectodermal cells from the blastocoel roof use alpha5beta1 integrins to assemble a fibronectin-rich extracellular matrix on which mesodermal cells migrate using the same alpha5beta1 integrin. In this report, we show that the tyrosine phosphatase xPTP-PESTr can prevent fibronectin fibril formation when overexpressed in ectodermal cells resulting in delayed gastrulation. In addition, isolated ectodermal cells overexpressing xPTP-PESTr are able to spread on fibronectin using the alpha5beta1 integrin in the absence of activin-A induction and before the onset of gastrulation. We further show that while the inhibition of fibrillogenesis depends on the phosphatase activity of xPTP-PESTr, induction of cell spreading does not. Finally, while cell spreading is usually associated with cell migration, xPTP-PESTr promotes ectodermal cell spreading on fibronectin but also reduces cell migration in response to activin-A, suggesting an adverse effect on cell translocation. We propose that xPTP-PESTr overexpression adversely affect cell migration by preventing de-adhesion of cells from the substrate.  相似文献   

17.
Wound contraction can substantially reduce the amount of new tissue needed to reestablish organ integrity after tissue loss. Fibroblasts, rich in F-actin bundles, generate the force of wound contraction. Fibronectin-containing microfibrils link fibroblasts to each other and to collagen bundles and thereby provide transduction cables across the wound for contraction. The temporal relationships of F-actin bundle formation, collagen and fibronectin matrix assembly, and fibronectin receptor expression to wound contraction have not been determined. To establish these relationships, we used a cutaneous gaping wound model in outbred Yorkshire pigs. Granulation tissue filled approximately 80% of the wound space by day 5 after injury while wound contraction was first apparent at day 10. Neither actin bundles nor fibronectin receptors were observed in 5-d wound fibroblasts. Although fibronectin fibrils were assembled on the surfaces of 5-d fibroblasts, few fibrils coursed between cells. Day-7 fibroblasts stained strongly for nonmuscle-type F-actin bundles consistent with a contractile fibroblast phenotype. These cells expressed fibronectin receptors, were embedded in a fibronectin matrix that appeared to connect fibroblasts to the matrix and to each other, and were coaligned across the wound. Transmission EM confirmed the presence of microfilament bundles, cell-cell and cell-matrix linkages at day 7. Fibroblast coalignment, matrix interconnections, and actin bundles became more pronounced at days 10 and 14 coinciding with tissue contraction. These findings demonstrate that granulation tissue formation, F-actin bundle and fibronectin receptor expression in wound fibroblasts, and fibroblast-matrix linkage precede wound contraction.  相似文献   

18.
19.
We report that dermatopontin (DP), an abundant dermal extracellular matrix protein, is found in the fibrin clot and in the wound fluid, which comprise the provisional matrix at the initial stage of wound healing. DP was also found in the serum but at a lower concentration than that in wound fluid. DP co-localized with both fibrin and fibronectin on fibrin fibers and interacted with both proteins. Both normal fibroblast and HT1080 cell adhesion to the fibrin-fibronectin matrix were dose-dependently enhanced by DP, and the adhesion was mediated by α5β1 integrin. The cytoskeleton was more organized in the cells that adhered to the fibrin-fibronectin-DP complex. When incubated with DP, fibronectin formed an insoluble complex of fibronectin fibrils as visualized by electron microscopy. The interacting sites of fibronectin with DP were the first, thirteenth, and fourteenth type III repeats (III(1), III(13), and III(14)), with III(13) and III(14) assumed to be the major sites. The interaction between III(2-3) and III(12-14) was inhibited by DP, whereas the interaction between I(1-5) and III(12-14) was specifically and strongly enhanced by DP. Because the interaction between III(2-3) and III(12-14) is involved in forming a globular conformation of fibronectin, and that between I(1-5) and III(12-14) is required for forming fibronectin fibrils, DP promotes fibronectin fibril formation probably by changing the fibronectin conformation. These results suggest that DP has an accelerating role in fibroblast cell adhesion to the provisional matrix in the initial stage of wound healing.  相似文献   

20.
Adenoid cystic carcinoma (AdCC) cell lines (ACCS and ACCT) showed higher migration responses and adhesion to the extracellular matrix (ECM), especially types I and IV collagen, than did the oral squamous cell carcinoma (SCC) lines (NA and TF). The response to collagens was largely and exclusively inhibited by anti-alpha(2) integrin antibody. Moreover, AdCC cell lines expressed higher surface levels of urokinase-type plasminogen activator receptor (uPAR) than did SCC cell lines. When AdCC cells were plated on collagen, the surface level of uPAR was increased, and numerous focal adhesions consisting of uPAR, vinculin, and paxillin were assembled; whereas collagen-stimulated SCC cell counterparts or AdCC cells plated on other types of ECM, such as fibronectin, failed to assemble such definite focal adhesions. In order to elucidate the association of uPAR with collagen-induced events, an ACCS-AS cell line transfected with a vector expressing antisense uPAR RNA was established and shown to have reduced uPAR (about 10% that of parental ACCS at both the protein and mRNA levels). ACCS-AS showed a strong reduction of collagen-stimulated migration and focal adhesion assembly of alpha(2) integrin, vinculin, and paxillin. These findings suggest that AdCC has a proclivity for migrating to types I and IV collagens due to the overexpression of uPAR, which plays a key role in focal adhesion assembly and migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号