首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An Mr 21 000 polypeptide, designated APPG, has been purified by reverse-phase, high-performance liquid chromatography (RP-HPLC), from acid extracts of porcine anterior pituitary glands. This acidic protein possesses an isoelectric point of 4.9. Amino acid analysis shows that it is not a glycoprotein and estimates it to contain about 173 amino acids. NH2-terminal sequence analysis allowed the determination of the first 50 residues unambiguously. A computer data bank search using a mutation data matrix and comparison with 269 012 protein segments indicated that this is a novel polypeptide sequence. However, this search revealed suggestive sequence homologies to a number of peptides of known sequence, including duck proinsulin (30%), Rous sarcoma virus transforming protein TVFV60 (24%) and pig secretin (26%).  相似文献   

2.
Methods are described to classify nucleotide binding sites of the mitochondrial coupling factor F1 from yeast on the basis of their affinities and stability properties. High affinity sites or states for ATP and related adenine analogs and low affinity sites or states which bind a broad range of different nucleotide triphosphates are found. The results are discussed in terms of a two site, two cycle scheme, where binding of nucleotide at one site facilitates the release of nucleotide at a second site.  相似文献   

3.
The properties of the nucleotides tightly bound with mitochondrial F1-ATPase were examined. One of three bound nucleotide molecules is localized at the site with Kd approximately 10(-7) M and released with koff approximately 0.1 s-1. The second nucleotide molecule is bound with the enzyme with Kd approximately 10(-8) M and koff for its dissociation is 3 X 10(-4) s-1. The third is never released even in the presence of 1 mM ATP or ADP. The last two nucleotides are believed to be bound at the noncatalytic sites of F1-ATPase. Pyrophosphate promotes liberation of two releasable nucleotide molecules, decreasing the affinity of the enzyme to AD(T)P. From the results obtained it follows that the only suitable criterion for localization of the nucleotide at the F1-ATPase catalytic site is the high rate (koff greater than or equal to 0.1 s-1) of its spontaneous release.  相似文献   

4.
The conformation of adenine nucleotides bound to bovine mitochondrial F1-ATPase was investigated using transfer nuclear Overhauser enhancement measurements. It is shown that all nucleotides investigated adopt a predominantly anti conformation when bound to the catalytic sites. Furthermore, the experiment suggests that 8-azido-ADP and 8-azido-ATP, which are predominantly in the syn conformation in solution, are in the anti conformation when bound to F1 catalytic sites.  相似文献   

5.
The effect of aurovertin on the binding parameters of ADP and ATP to native F1 from beef heart mitochondria in the presence of EDTA has been explored. Three exchangeable sites per F1 were titrated by ADP and ATP in the absence or presence of aurovertin. Curvilinear Scatchard plots for the binding of both ADP and ATP were obtained in the absence of aurovertin, indicating one high affinity site (Kd for ADP = 0.6-0.8 microM; Kd for ATP = 0.3-0.5 microM) and two lower affinity sites (Kd for ADP = 8-10 microM; Kd for ATP = 7-10 microM). With a saturating concentration of aurovertin capable of filling the three beta subunits of F1, the curvilinearity of the Scatchard plots was decreased for ATP binding and abolished for ADP binding, indicating homogeneity of ADP binding sites in the F1-aurovertin complex (Kd for ADP = 2 microM). When only the high affinity aurovertin site was occupied, maximal enhancement of the fluorescence of the F1-aurovertin complex was attained with 1 mol of ADP bound per mol of F1 and maximal quenching for 1 mol of ATP bound per mol of F1. When the F1-aurovertin complex was incubated with [3H]ADP followed by [14C]ATP, full fluorescence quenching was attained when ATP had displaced the previously bound ADP. In the case of the isolated beta subunit, both ADP and ATP enhanced the fluorescence of the beta subunit-aurovertin complex. The Kd values for ADP and ATP in the presence of EDTA were 0.6 mM and 3.7 mM, respectively; MgCl2 decreased the Kd values to 0.1 mM for both ADP and ATP. It is postulated that native F1 possesses three equivalent interacting nucleotide binding sites and exists in two conformations which are in equilibrium and recognize either ATP (T conformation) or ADP (D conformation). The negative interactions between the nucleotide binding sites of F1 are strongest in the D conformation. Upon addition of aurovertin, the site-site cooperativity between the beta subunits of F1 is decreased or even abolished.  相似文献   

6.
F1-ATPase was treated so that it contained three tightly bound nucleotides per molecule. One of these was bound at a catalytic site and was rapidly exchangeable, the two remaining nucleotides were nonexchangeable. Incubation of this preparation with ADP in the presence of Mg2+ results in 40-45% inhibition of the ATPase activity. With 2-azido-ADP instead of ADP, the ligand was covalently bound to F1 by illumination, in the presence or absence of turnover of the enzyme, and the site of binding was determined. In this way, one site could be identified, which induces the inhibition. The attachment of the covalently bound 2-nitreno-ADP is at Tyr-368 of a beta-subunit, characterized in the literature as a non-catalytic site. A second, non-catalytic site also binds 2-azido-ADP, but this binding is partially reversed by the addition of ATP and does not cause further inhibition of the ATPase activity. It is concluded that the slowly exchangeable non-catalytic site is the site of inhibition by ADP.  相似文献   

7.
Binding of ADP to beef-heart mitochondrial ATPase (F1)   总被引:1,自引:0,他引:1  
1. ADP binding to beef-heart mitochondrial ATPase (F1), in the absence of Mg2+, has been determined by separating the free ligand by ultrafiltration and determining it in the filtrate by a specially modified isotachophoretic procedure. 2. Since during the binding experiments the 'tightly' bound ADP (but not the ATP) dissociates, it is necessary to take this into account in calculating the binding parameters. 3. The binding data show that only one tight binding site (Kd about 0.5 microM) for ADP is present. 4. It is not possible to calculate from the binding data alone the number of or the dissociation constants for the weak binding sites. It can be concluded, however, that the latter is not less than about 50 microM.  相似文献   

8.
Pre-steady state nucleotide binding to the chloroplast F1-ATPase (CF1) was measured in a stopped-flow apparatus by monitoring the change of fluorescence intensity of TNP-ADP upon binding. The analysis of the time courses led to the proposal of a mechanism of nucleotide binding with the following characteristics. (a) It involves three sites binding nucleotides in a concerted manner. (b) Each binding site is able to undergo a conformational change from a loose binding state into a state refraining from any direct release of the bound nucleotide into the medium. Only the reverse reaction via the loose binding state enables release out of the tight binding state. (c) Due to very strong negative cooperativity, a maximum of two of the three sites can be found in the state of tight binding. (d) Cooperativity between the three sites leads to a slower nucleotide binding of the second nucleotide compared to the first nucleotide. Furthermore, the conformational change from the loose binding state to the tight binding state is slowed down if one of the other sites already is in the tight binding state. Three-sites mechanisms in which rotation leads to an exchange of the properties of the binding sites failed to simulate the observed time courses of nucleotide binding. However, as the experimental set up was designed to prevent catalysis taking place, our results entirely agree with the current finding that rotation requires catalytic turnover of the enzyme.  相似文献   

9.
BACKGROUND: The globular domain of the membrane-associated F(1)F(o)-ATP synthase complex can be detached intact as a water-soluble fragment known as F(1)-ATPase. It consists of five different subunits, alpha, beta, gamma, delta and epsilon, assembled with the stoichiometry 3:3:1:1:1. In the crystal structure of bovine F(1)-ATPase determined previously at 2.8 A resolution, the three catalytic beta subunits and the three noncatalytic alpha subunits are arranged alternately around a central alpha-helical coiled coil in the gamma subunit. In the crystals, the catalytic sites have different nucleotide occupancies. One contains the triphosphate form of the nucleotide, the second contains the diphosphate, and the third is unoccupied. Fluoroaluminate complexes have been shown to mimic the transition state in several ATP and GTP hydrolases. In order to understand more about its catalytic mechanism, F(1)-ATPase was inhibited with Mg(2+)ADP and aluminium fluoride and the structure of the inhibited complex was determined by X-ray crystallography. RESULTS: The structure of bovine F(1)-ATPase inhibited with Mg(2+)ADP and aluminium fluoride determined at 2.5 A resolution differs little from the original structure with bound AMP-PNP and ADP. The nucleotide occupancies of the alpha and beta subunits are unchanged except that both aluminium trifluoride and Mg(2+)ADP are bound in the nucleotide-binding site of the beta(DP) subunit. The presence of aluminium fluoride is accompanied by only minor adjustments in the surrounding protein. CONCLUSIONS: The structure appears to mimic a possible transition state. The coordination of the aluminofluoride group has many features in common with other aluminofluoride-NTP hydrolase complexes. Apparently, once nucleotide is bound to the catalytic beta subunit, no additional major structural changes are required for catalysis to occur.  相似文献   

10.
Interactions between the high affinity binding sites on mitochondrial F1 were analysed by combined use of the nucleotide analogues 3'-O-(1-naphthoyl)-ADP (N-ADP) and 2'-3'-O-(2,4,6-trinitrophenyl)-ADP (TNP-ADP). The binding behaviour of F1 with respect to these ligands was studied by measuring the fluorescence of F1 and of TNP-ADP and the fluorescence anisotropy of N-ADP. A total of 3 high affinity binding sites can be occupied by TNP-ADP. By exchange experiments, it could be shown that binding of TNP-ADP to such a site considerably accelerates the dissociation of a ligand bound to a neighbouring site. These results support the notion that the functional behaviour of F1 is symmetric: during the catalytic cycle any individual site can successively assume different affinity states as has been predicted by hypotheses such as the binding change model.  相似文献   

11.
A monoclonal antibody, 7B3, specific to the alpha subunit of the mitochondrial ATPase-ATP synthase inhibited the rate of ATP hydrolysis by either soluble F1 or electron transport particles up to a maximum of 75%. However, 7B3 did not modify the rate of ITP hydrolysis. In addition, the apparent Km for MgATP extrapolated at high ATP concentrations had the same value in the absence as in the presence of 7B3. The antibody did not change the inactivation rate of F1-ATPase induced by dicyclohexylcarbodiimide or 4-chloro-7-nitro-2,1,3-benzoxadiazole. These observations indicate that 7B3 did not directly interfere with the catalytic sites of ATP or ITP hydrolysis. On the contrary, 7B3 modified the interaction between nucleotide sites and therefore the regulation of the rate of ATP hydrolysis. Indeed, 7B3 changed into a positive cooperativity the negative cooperativity observed when measuring the rate of ATP hydrolysis as a function of ATP concentration. 7B3 also increased the binding of ADP to F1. 7B3 prevented the rapid phase of inactivation of F1 by 5'-p-fluorosulfonylbenzoyladenosine. This phase has been correlated to the binding of 5'-p-fluorosulfonylbenzoyladenosine to regulatory sites (Di Pietro, A., Godinot, C., Martin, J. C., and Gautheron, D. C. (1979) Biochemistry 18, 1738-1745). The inhibition of ATP hydrolysis is concomitant with the binding of 1 mol of IgG or of 2 mol of Fab fragments per mol of F1. However, by further increasing the ratio Fab/F1, only 1 mol of Fab remained bound to F1 without change in inhibition of ATPase activity. All these experiments strongly support the suggestion that F1 conformational changes occurring upon binding of 7B3 to alpha subunit induce a modification of interactions between nucleotide sites. This modification would be consecutive to a change in the normal interaction between the alpha and beta subunits which is required to observe an active rate of ATP hydrolysis or synthesis. In conclusion, the use of this monoclonal antibody demonstrates for the first time in mammalian F1 the role of the conformation of the alpha subunit in the regulation of the ATPase activity.  相似文献   

12.
Menz RI  Walker JE  Leslie AG 《Cell》2001,106(3):331-341
The crystal structure of a novel aluminium fluoride inhibited form of bovine mitochondrial F(1)-ATPase has been determined at 2 A resolution. In contrast to all previously determined structures of the bovine enzyme, all three catalytic sites are occupied by nucleotide. The subunit that did not bind nucleotide in previous structures binds ADP and sulfate (mimicking phosphate), and adopts a "half-closed" conformation. This structure probably represents the posthydrolysis, pre-product release step on the catalytic pathway. A catalytic scheme for hydrolysis (and synthesis) at physiological rates and a mechanism for the ATP-driven rotation of the gamma subunit are proposed based on the crystal structures of the bovine enzyme.  相似文献   

13.
The reaction of mitochondrial F1-ATPase with immobilized substrate was studied by using columns of agarose-hexane-ATP. Mg2+ was required for binding of the enzyme to the column matrix. The column-bound enzyme could be eluted fully by ATP and other nucleoside triphosphates. Nucleoside di- and mono-phosphates were less effective. At a fixed concentration of nucleotide the effectiveness of elution was proportional to the charge on the eluting molecule. The ATP of the column matrix was hydrolysed by the bound F1-ATPase to release phosphate, probably by a uni-site reaction mechanism. Thus the F1-ATPase was bound to the immobilized ATP by a catalytic site. Treatment of the bound F1-ATPase with 4-chloro-7-nitrobenzofurazan prevented complete release of the enzyme by ATP. Only one-third of the bound enzyme was now eluted by the nucleotide. The inhibition of release could be due either to the inhibitor blocking co-operative interactions between sites or to its increasing the tightness of binding of immobilized ADP at the catalytic site.  相似文献   

14.
15.
Cooperative interactions between nucleotide binding sites on beef heart mitochondrial F1-ATPase have been studied by measuring substrate-promoted release of 5'adenylyl-beta,gamma-imidodiphosphate (AMP-PNP) from a single high affinity site. The site is initially loaded by incubating F1 with an equimolar amount of the nonhydrolyzable ATP analog. When unbound [3H]AMP-PNP is removed and the complex diluted to a concentration below the Kd, release of ligand shows an apparent absolute requirement for medium ADP. Release is biphasic with the extent of release during the initial rapid phase dependent on the concentration of medium ADP. Although phosphate alone has no effect, it enhances the rapid phase of ADP-promoted release over 2-fold with a half-maximal effect at 60 micrometers P1. The binding of efrapeptin (A23871) to the F1.AMP-PNP complex completely prevents ADP-promoted dissociation. Although AMP-PNP release also occurs in the presence of medium ATP, the F1.AMP-PNP complex does not dissociate if an ATP-regenerating system of sufficient capacity to prevent accumulation of medium ADP is added. Consistent with an inability of nucleoside triphosphate to promote release is the failure of medium, nonradioactive AMP-PNP to affect retention of the 3H-labeled ligand. The stability of F1.AMP-PNP complex in the absence of medium nucleotide and the highly specific ability of ADP plus P1 to promote rapid release of the ATP analog are interpreted as support for an ATP synthesis mechanism that requires substrate binding at one catalytic site for product release from an adjacent interacting site.  相似文献   

16.
Recent studies on the IF(1) inhibitor protein of the mitochondrial F(1)F(0)-ATPase from molecular biochemistry to possible pathophysiological roles are reviewed. The apparent mechanism of IF(1) inhibition of F(1)F(0)-ATPase activity and the biophysical conditions that influence IF(1) activity are summarized. The amino acid sequences of human, bovine, rat and murine IF(1) are compared and domains and residues implicated in IF(1) function examined. Defining the minimal inhibitory sequence of IF(1) and the role of conserved histidines and conformational changes using peptides or recombinant IF(1) is reviewed. Luft's disease, a mitochondrial myopathy where IF(1) is absent, is described with respect to IF(1) relevance to mitochondrial bioenergetics and clinical observations. The possible pathophysiological role of IF(1) in conserving ATP under conditions where cells experience oxygen deprivation (tumor growth, myocardial ischemia) is evaluated. Finally, studies attempting to correlate IF(1) activity to ATP conservation in myocardial ischemic preconditioning are compared.  相似文献   

17.
L Michel  J Garin  J P Issartel  P V Vignais 《Biochemistry》1989,28(26):10022-10028
4-Azido-2-nitrophenyl pyrophosphate (azido-PPi) labeled with 32P in the alpha position was prepared and used to photolabel beef heart mitochondrial F1. Azido-PPi was hydrolyzed by yeast inorganic pyrophosphatase, but not by mitochondrial F1-ATPase. Incubation of F1 with [alpha-32P]azido-PPi in the dark under conditions of saturation resulted in the binding of the photoprobe to three sites, two of which exhibited a high affinity (Kd = 2 microM), the third one having a lower affinity (Kd = 300 microM). Mg2+ was required for binding. As with PPi [Issartel et al. (1987) J. Biol. Chem. 262, 13538-13544], the binding of 3 mol of azido-PPi/mol of F1 resulted in the release of one tightly bound nucleotide. ADP, AMP-PNP, and PPi competed with azido-PPi for binding to F1, but Pi and the phosphate analogue azidonitrophenyl phosphate did not. The binding of [32P]Pi to F1 was enhanced at low concentrations of azido-PPi, as it was in the presence of low concentrations of PPi. Sulfite, which is thought to bind to an anion-binding site on F1, inhibited competitively the binding of both ADP and azido-PPi, suggesting that the postulated anion-binding site of F1 is related to the exchangeable nucleotide-binding sites. Upon photoirradiation of F1 in the presence of [alpha-32P]azido-PPi, the photoprobe became covalently bound with concomitant inactivation of F1. The plots relating the inactivation of F1 to the covalent binding of the probe were rectilinear up to 50% inactivation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
We have previously reported that carbohydrates and polyols protect different enzymes against thermal inactivation and deleterious effects promoted by guanidinium chloride and urea. Here, we show that these osmolytes (carbohydrates, polyols and methylamines) protect mitochondrial F(0)F(1)-ATPase against pressure inactivation. Pressure stability of mitochondrial F(0)F(1)-ATPase complex by osmolytes was studied using preparations of membrane-bound submitochondrial particles depleted or containing inhibitor protein (IP). Hydrostatic pressure in the range from 0.5 to 2.0 kbar causes inactivation of submitochondrial particles depleted of IP (AS particles). However, the osmolytes prevent pressure inactivation of the complex in a dose-dependent manner, remaining up to 80% of hydrolytic activity at the highest osmolyte concentration. Submitochondrial particles containing IP (MgATP-SMP) exhibit low ATPase activity and dissociation of IP increases the hydrolytic activity of the enzyme. MgATP-SMP subjected to pressure (2.2 kbar, for 1 h) and then preincubated at 42 degrees C to undergo activation did not have an increase in activity. However, particles pressurized in the presence of 1.5 M of sucrose or 3.0 M of glucose were protected and after preincubation at 42 degrees C, showed an activation very similarly to those kept at 1 bar. In accordance with the preferential hydration theory, we believe that osmolytes reduce to a minimum the surface of the macromolecule to be hydrated and oppose pressure-induced alterations of the native fold that are driven by hydration forces.  相似文献   

19.
The influence of the epsilon-subunit on the nucleotide binding affinities of the three catalytic sites of Escherichia coli F1-ATPase was investigated, using a genetically engineered Trp probe in the adenine-binding subdomain (beta-Trp-331). The interaction between epsilon and F1 was not affected by the mutation. Kd for binding of epsilon to betaY331W mutant F1 was approximately 1 nM, and epsilon inhibited ATPase activity by 90%. The only nucleotide binding affinities that showed significant differences in the epsilon-depleted and epsilon-replete forms of the enzyme were those for MgATP and MgADP at the high-affinity catalytic site 1. Kd1(MgATP) and Kd1(MgADP) were an order of magnitude higher in the absence of epsilon than in its presence. In contrast, the binding affinities for MgATP and MgADP at sites 2 and 3 were similar in the epsilon-depleted and epsilon-replete enzymes, as were the affinities at all three sites for free ATP and ADP. Comparison of MgATP binding and hydrolysis parameters showed that in the presence as well as the absence of epsilon, Km equals Kd3. Thus, in both cases, all three catalytic binding sites have to be occupied to obtain rapid (Vmax) MgATP hydrolysis rates.  相似文献   

20.
The physiological role of F(1)F(0)-ATPase inhibition in ischemia may be to retard ATP depletion although views of the significance of IF(1) are at variance. We corroborate here a method for measuring the ex vivo activity of F(1)F(0)-ATPase in perfused rat heart and show that observation of ischemic F(1)F(0)-ATPase inhibition in rat heart is critically dependent on the sample preparation and assay conditions, and that the methods can be applied to assay the ischemic and reperfused human heart during coronary by-pass surgery. A 5-min period of ischemia inhibited F(1)F(0)-ATPase by 20% in both rat and human myocardium. After a 15-min reperfusion a subsequent 5-min period of ischemia doubled the inhibition in the rat heart but this potentiation was lost after 120 min of reperfusion. Experiments with isolated rat heart mitochondria showed that ATP hydrolysis is required for effective inhibition by uncoupling. The concentration of oligomycin for 50% inhibition (I(50)) for oxygen consumption was five times higher than its I(50) for F(1)F(0)-ATPase. Because of the different control strengths of F(1)F(0)-ATPase in oxidative phosphorylation and ATP hydrolysis an inhibition of the F(1)F(0)-ATPase activity in ischemia with the resultant ATP-sparing has an advantage even in an ischemia/reperfusion situation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号