首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Although various tissue macrophages possess high glucose-6-phosphate dehydrogenase (G6PD) activity, which is reported to be closely associated with their phagocytotic/bactericidal function, the fine subcellular localization of this enzyme in liver resident macrophages (Kupffer cells) has not been determined. We have investigated the subcellular localization of G6PD in Kupffer cells in rat liver, using a newly developed enzyme-cytochemical (copper-ferrocyanide) method. Electron-dense precipitates indicating G6PD activity were clearly visible in the cytoplasm and on the cytosolic side of the endoplasmic reticulum of Kupffer cells. Cytochemical controls ensured specific detection of the enzymatic activity. Rat Kupffer cells abundantly possessed enzyme-cytochemically detectable G6PD activity. Kupffer cell G6PD may play a role in liver defense by delivering NADPH to NADPH-dependent enzymes. G6PD enzyme-cytochemistry may be a useful tool for the study of Kupffer cell functions.  相似文献   

2.
The evidence that Kupffer cells are capable of controlling metastatic growth in the liver in vivo is largely circumstantial. The best approach when studying natural cytotoxicity activities of Kupffer cells is to investigate the effect of Kupffer cell elimination on tumour growth. Until now it has not been possible to eliminate Kupffer cells without affecting other cell populations. We have recently developed a new method to eliminate Kupffer cells selectively: intravenous injection of liposome-encapsulated (dichloromethylene)bisphosphonate (Cl2MDP-liposomes) leads to effective elimination of all Kypffer cells, without affecting non-phagocytic cells. Wag/Rij rats were injected with Cl2MDP-liposomes. After 48 h, rats were inoculated with syngeneic CC531 colon carcinoma cells by injection in the portal system. The results show a strongly enhanced tumour growth in the liver of the Cl2MDP-liposometreated rats. In these animals, livers were almost completely replaced by tumour and had increased in weight, whereas in the control groups only a few (four to eight) small (1-mm) tumour nodules were found. These data show that selective elimination of Kupffer cells results in enhanced tumour growth in the liver, implying that Kupffer cells play a crucial role in controlling tumour growth in the liver.  相似文献   

3.
Kupffer cells are resident macrophages in the liver and play a central role in the hepatic response to injury. Bile acids can impair macrophage function leading to decreased cytokine release. TGR5 is a novel, membrane-bound bile acid receptor, and it has been suggested that the immunosuppressive effect of bile acids can be mediated by TGR5. However, the function of TGR5 in Kupffer cells has not been studied and a direct link between TGR5 and cytokine production in macrophages has not been established. The present study demonstrates that TGR5 is localized in the plasma membrane of isolated Kupffer cells and is responsive to bile acids. Furthermore, bile acids inhibited LPS-induced cytokine expression in Kupffer cells via TGR5-cAMP dependent pathways. TGR5-immunoreactivity in Kupffer cells was increased in rat livers following bile-duct ligation, suggesting that TGR5 may play a protective role in obstructive cholestasis preventing excessive cytokine production thereby reducing liver injury.  相似文献   

4.
Upregulation of CD14 in Kupffer cells has been implicated in the pathogenesis of several forms of liver injury, including alcoholic liver disease. However, it remains unclear whether CD14 mediates lipopolysaccharide (LPS) signaling in this specialized liver macrophage population. In this series of experiments, we determined the role of CD14 in LPS activation of Kupffer cells by using several complementary approaches. First, we isolated Kupffer cells from human livers and studied the effects of anti-CD14 antibodies on LPS activation of these cells. Kupffer cells were incubated with increasing concentrations of LPS in the presence and absence of recombinant human LPS binding protein (LBP). With increasing concentrations of LPS, human Kupffer cell tumor necrosis factor-alpha (TNF-alpha) production (a marker for Kupffer cell activation) increased in a dose-dependent manner in the presence and absence of LBP. In the presence of anti-human CD14 antibodies, the production of TNF-alpha was significantly diminished. Second, we compared LPS activation of Kupffer cells isolated from wild-type and CD14 knockout mice. Kupffer cells from CD14 knockout mice produced significantly less TNF-alpha in response to the same amount of LPS. Together, these data strongly support a critical role for CD14 in Kupffer cell responses to LPS.  相似文献   

5.
Recently we have reported that bilirubin UDP-glucuronosyltransferase (UGT1A1) is induced in rat liver by chronic ethanol treatment. Several studies have shown that Kupffer cells play a central role in the mediation of various hepatic effects of chronic alcohol consumption. In the present work, the participation of Kupffer cells in the ethanol dependent induction of UGT1A1 was investigated. A group of rats was pretreated with gadolinium chloride, a known Kupffer-cell-depleting agent. We compared the effect of chronic ethanol ingestion on UGT1A1 expression in the liver of normal and gadolinium chloride treated rats. The effect of ethanol on bilirubin glucuronidation was completely prevented in Kupffer cell deficient rats. The western and northern blot analyses showed that the increase of both the protein and mRNA of UGT1A1 was prevented in these animals. These results suggest that Kupffer cells play a major role in the mediation of ethanol-stimulated induction of UGT1A1 in liver parenchymal cells.  相似文献   

6.
Ethanol exposure promotes the development of steatohepatitis, which can progress to end stage liver disease. Kupffer cells have been documented to play a key role in the genesis and progression of alcoholic liver disease with ethanol exposure enhancing Kupffer cell activation. In the present study, we identified the binding of hexokinase II to the mitochondria as a requirement for LPS-induced activation of Kupffer cells and its potentiation by ethanol. LPS and ethanol exposure induced a reduction in sirtuin-3 activity. In turn, the decline of sirtuin-3 activity led to the activation of cyclophilin-D, which mediated an increased binding of hexokinase II to the mitochondria. Suppression of cyclophilin-D expression or enforced detachment of hexokinase II from the mitochondria abrogated the LPS- and ethanol-induced stimulation of Kupffer cells, preventing NADPH oxidase and inflammasome activation. Moreover, activation of AMP-activated protein kinase restored sirtuin-3 activity, thereby preventing LPS and ethanol from stimulating the binding of hexokinase II to the mitochondria and precluding NADPH oxidase and inflammasome activation.  相似文献   

7.
Conditioned media of isolated Kupffer and endothelial liver cells were added to incubations of parenchymal liver cells, in order to test whether secretory products of Kupffer and endothelial liver cells could influence parenchymal liver cell metabolism. With Kupffer cell medium an average stimulation of glucose production by parenchymal liver cells of 140% was obtained, while endothelial liver cell medium stimulated with an average of 127%. The separation of the secretory products of Kupffer and endothelial liver cells in a low and a high molecular weight fraction indicated that the active factor(s) had a low molecular weight. Media, obtained from aspirin-pretreated Kupffer and endothelial liver cells, had no effect on the glucose production by parenchymal liver cells. Because aspirin blocks prostaglandin synthesis, it was tested if prostaglandins could be responsible for the effect of media on parenchymal liver cells. It was found that prostaglandin (PG) E1, E2, and D2 all stimulated the glucose production by parenchymal liver cells, PGD2 being the most potent. Kupffer and endothelial liver cell media as well as prostaglandins E1, E2, and D2 stimulated the activity of phosphorylase, the regulatory enzyme in glycogenolysis. The data indicate that prostaglandins, present in media from Kupffer and endothelial liver cells, may stimulate glycogenolysis in parenchymal liver cells. This implies that products of Kupffer and endothelial liver cells may play a role in the regulation of glucose homeostasis by the liver.  相似文献   

8.
In the past decade, one of the most intriguing subjects in understanding the mechanism of malaria infection has been explanation of the role of Kupffer cells. These liver cells, which play an important part in the body's defense against infection, seemed to have on essential supportive role in the homing o f sporozoites. Do Kupffer cells favor the establishment of primary malaria infection? Extensive research has revealed much, but still not everything we need to know about the sporozoite-Kupffer cell affair.  相似文献   

9.
Activated Kupffer cells and macrophages accumulate in necrotic areas in the liver. Osteopontin, an extracellular matrix with RGD sequence, has been shown to act as a chemokine that can induce monocyte migration. The possibility that osteopontin can play a role in infiltration of both cells into hepatic necrotic areas was investigated in rats. Northern blot analysis revealed that osteopontin mRNA expression was minimal in Kupffer cells and hepatocytes immediately after isolation from normal rats, but slight in hepatic stellate cells assumed nearly quiescent in function after 3 days of culture on plastic dishes. When rat received carbon tetrachloride, liver necrosis developed between 1 and 3 days following the intoxication. In these rats, osteopontin mRNA expression assessed by quantitative competitive RT-PCR was increased in the liver later than 1 day with its peak at 2 days following the intoxication. Kupffer cells and hepatic macrophages and hepatic stellate cells isolated from such liver showed marked expression of osteopontin mRNA on Northern blotting. Immunohistochemical examination disclosed that osteopontin was stained in macrophages including Kupffer cells and stellate cells in the necrotic areas. On electron microscopy, osteopontin stains were present in the Golgi apparatus in these cells. Recombinant human osteopontin promoted migration of Kupffer cells isolated from normal rats and cultured in a Transwell cell culture chamber in a dose-related manner. We conclude that activated Kupffer cells and hepatic macrophages and stellate cells express osteopontin. These cells might contribute to the infiltration of Kupffer cells and macrophages into hepatic necrotic areas by expressing osteopontin.  相似文献   

10.
The genetic sensitivity of mouse strains to mouse hepatitis virus 3 (MHV 3) has been related in vitro to a delay of virus replication in liver sinusoidal cells. In vivo immuno-histochemical studies of the liver from infected mice have demonstrated that mechanisms other than direct viral injury are in operation. To examine potential mechanisms, the interaction of lipopolysaccharide (LPS)-stimulated Kupffer cells with MHV 3 was studied. We first observed a dramatic inhibition in viral replication in LPS-treated Kupffer cells explanted from A/J resistant mice. Second, we demonstrated that MHV 3 induced a dose-dependent interleukin 1 (IL-1) activity in the supernatants of infected Kupffer cells of both strains. These results led us finally to examine the antigen-processing function of the Kupffer cells of both strains of mice. No striking differences were observed in the ability of Kupffer cells from resistant or sensitive mice to collaborate with immunocompetent lymphocytes. Our data suggest that Kupffer cells play a double role which is crucial in the pathogenesis of MHV 3-induced hepatitis. First, they act directly as the genetically determined sensitivity of mice to MHV 3 infection is correlated with the efficiency of the antiviral activity induced in Kupffer cells by LPS. Second, they act indirectly through the synthesis of different amounts of IL-1 induced by MHV 3. This hypothesis is further borne out by the effects of indomethacin treatment on the course of MHV 3 infection in A/J resistant mice in vivo.  相似文献   

11.
Glucose-6-phosphate dehydrogenase (G6PD) plays an important role in Kupffer cell function, especially in phagocytosis activity. Although it was suggested that Kupffer G6PD may be upregulated in Kupffer phagocytosis/activation, direct morphological evidence has been lacking. Acid phosphatase (ACP), a representative lysosomal enzyme, can be used as a cytochemical marker for phagocyte activation. Using an ultrastructural enzyme-cytochemical dual staining method, I simultaneously localized G6PD and ACP activity in mouse Kupffer cells on a cell-by-cell basis, and examined whether or not cytochemically detectable G6PD activity increases in phagocytosing/activated mouse Kupffer cells. Glucose-6-phosphate dehydrogenase labelings were observed in the cytoplasm and on the cytosolic side of the endoplasmic reticulum, and ACP labelings were seen in the lysosomes. In phagocytosing Kupffer cells, in which ACP deposits were observed not only in the lysosomes but also on the phagosomal membranes and phagosomal contents, G6PD labelings were denser than dormant Kupffer cells. Enzyme-cytochemically detectable G6PD activity increases in phagocytosing/activated mouse Kupffer cells. Kupffer cell G6PD, activated in phagocytosing Kupffer cells, may play an important role not only in liver defense but also in liver disease pathogenesis/pathophysiology.  相似文献   

12.
Endogenous gut-derived bacterial lipopolysaccharides have been implicated as important cofactors in the pathogenesis of liver injury. However, the molecular mechanisms by which lipopolysaccharides exert their effect are not entirely clear. Recent studies have pointed to proinflammatory cytokines such as tumor necrosis factor-alpha as mediators of hepatocyte injury. Within the liver, Kupffer cells are major sources of proinflammatory cytokines that are produced in response to lipopolysaccharides. This review will focus on three important molecular components of the pathway by which lipopolysaccharides activate Kupffer cells: CD14, Toll-like receptor 4, and lipopolysaccharide binding protein. Within the liver, lipopolysaccharides bind to lipopolysaccharide binding protein, which then facilitates its transfer to membrane CD14 on the surface of Kupffer cells. Signaling of lipopolysaccharide through CD14 is mediated by the downstream receptor Toll-like receptor 4 and results in activation of Kupffer cells. The role played by these molecules in liver injury will be examined.  相似文献   

13.
Abstract The genetic sensitivity of mouse strains to mouse hepatitis virus 3 (MHV 3) has been related in vitro to a delay of virus replication in liver sinusoidal cells. In vivo immuno-histochemical studies of the liver from infected mice have demonstrated that mechanisms other than direct viral injury are in operation. To examine potential mechanisms, the interaction of lipopolysaccharide (LPS)-stimulated Kupffer cells with MHV 3 was studied. We first observed a dramatic inhibition in viral replication in LPS-treated Kupffer cells explanted from A/J resistant mice. Second, we demonstrated that MHV 3 induced a dose-dependent interleukin 1 (IL-1) activity in the supernatants of infected Kupffer cells of both strains. These results led us finally to examine the antigen-proceesing function of the Kupffer cellsof both strains of mice. No striking differences were observed in the ability of Kupffer cells from resistant or sensitive mice to collaborate with immunocompetent lymphocytes. Our data suggest that Kupffer cells play a double role which is crucial in the pathogenesis of MHV 3-induced hepatitis. First, they act directly as the genetically determined sensitivity of mice to MHV 3 infection is correlated with the efficiency of the antiviral activity induced in Kupffer cells by LPS. Second, they act indirectly through the synthesis of different amounts of IL-1 induced by MHV 3. This hypothesis is further borne out by the effects of indomethacin treatment on the course of MHV 3 infection in A/J resistant mice in vivo.  相似文献   

14.
Endocytosis of [125I]iodixanol was studied in vivo and in vitro in rat liver cells to determine fluid phase endocytic activity in different liver cells (hepatocytes, Kupffer cells and endothelial cells). The Kupffer cells were more active in the uptake of [l25I]iodixanol than parenchymal cells or endothelial cells. Inhibition of endocytic uptake via clathrin-coated pits (by potassium depletion and hypertonic medium) reduced uptake of [125I]iodixanol much more in Kupffer cells and endothelial cells than in hepatocytes. To gain further information about the importance of clathrin-mediated fluid phase endocytosis, the expression of proteins known to be components of the endocytic machinery was investigated. Using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblotting, endothelial cells and Kupffer cells were found to express approximately fourfold more rab4, rab5 and rab7 than parenchymal cells, while clathrin was expressed at a higher level in endothelial cells than in Kupffer cells and hepatocytes. Using electron microscopy it was shown that liver endothelial cells contained approximately twice as many coated pits per membrane unit than the parenchymal and Kupffer cells, thus confirming the immunoblotting results concerning clathrin expression. Electron microscopy on isolated liver cells following fluid phase uptake of horseradish peroxidase (HRP) showed that HRP-containing organelles had a different morphology in the different cell types: In the liver endothelial cells HRP was in small, tubular endosomes, while in Kupffer cells HRP was mainly found in larger structures, reminiscent of macropinosomes. Parenchymal cells contained HRP in small vacuolar endosomes with a punctuated distribution. In conclusion, we find that the Kupffer cells and the endothelial cells have a higher pinocytic activity than the hepatocytes. The hepatocytes do, however, account for most of the total hepatic uptake. The fluid phase endocytosis in liver endothelial cells depends mainly on clathrin-mediated endocytosis, while the parenchymal cells have additional clathrin-independent mechanisms that may play an important role in the uptake of plasma membrane components. In the Kupffer cells the major uptake of fluid phase markers seems to take place via a macropinocytic mechanism.  相似文献   

15.
It has been reported that hepatocyte metabolism and function can be modulated by the activated Kupffer cell through the release of different biomolecules like cytokines, eicosanoids, oxygen free radicals and enzymes. In relation to these paracrine factors involved in circuits of intercellular communication, the existence of a hepatic oxygen sensor located in the Kupffer cell has been postulated. According to this postulate the oxygen metabolism of the liver parenchymal cells could be under the control of the Kupffer cells. In order to study the role of the Kupffer cell in the reperfusion syndrome of the liver, a lobular ischaemia–reperfusion model was performed in rats with or without previous treatment with gadolinium chloride to block Kupffer cell function. Spontaneous chemiluminescence of the liver surface, oxygen uptake by tissue slices and tert-butyl hydroperoxide-initiated chemiluminescence determinations were performed to evaluate the oxygen metabolism and the oxy-radical generation by the liver. The lower basal photoemission, in parallel with a lower basal oxygen uptake registered in the hepatic lobes from the animals pretreated with gadolinium chloride clearly indicates that the gadolinium chloride-dependent functional inhibition of Kupffer cell leads to a downregulation of oxygen metabolism by the liver. Moreover, the intensity of oxidative stress exhibited by the postischaemic lobes appears to be closely linked with the Kupffer cell activity. On the basis of the data obtained we propose that a paracrine circuit between activated Kupffer cell and hepatocytes is an early key event in the induction of postischaemic oxidative stress in the liver. Furthermore the interference with the mitochondrial electron flow by some biomolecules released from the activated Kupffer cell, such as tumour necrosis factor, interleukins, eicosanoids, etc., would increase the rate of generation of reactive oxygen species by the inhibited mitochondrial respiratory chain. © 1998 John Wiley & Sons, Ltd.  相似文献   

16.
TNF and Fas/FasL are vital components, not only in hepatocyte injury, but are also required for hepatocyte regeneration. Liver F4/80+Kupffer cells are classified into two subsets; resident radio-resistant CD68+cells with phagocytic and bactericidal activity, and recruited radio-sensitive CD11b+cells with cytokine-producing capacity. The aim of this study was to investigate the role of these Kupffer cells in the liver regeneration after partial hepatectomy (PHx) in mice. The proportion of Kupffer cell subsets in the remnant liver was examined in C57BL/6 mice by flow cytometry after PHx. To examine the role of CD11b+Kupffer cells/Mφ, mice were depleted of these cells before PHx by non-lethal 5 Gy irradiation with or without bone marrow transplantation (BMT) or the injection of a CCR2 (MCP-1 receptor) antagonist, and liver regeneration was evaluated. Although the proportion of CD68+Kupffer cells did not significantly change after PHx, the proportion of CD11b+Kupffer cells/Mφ and their FasL expression was greatly increased at three days after PHx, when the hepatocytes vigorously proliferate. Serum TNF and MCP-1 levels peaked one day after PHx. Irradiation eliminated the CD11b+Kupffer cells/Mφ for approximately two weeks in the liver, while CD68+Kupffer cells, NK cells and NKT cells remained, and hepatocyte regeneration was retarded. However, BMT partially restored CD11b+Kupffer cells/Mφ and recovered the liver regeneration. Furthermore, CCR2 antagonist treatment decreased the CD11b+Kupffer cells/Mφ and significantly inhibited liver regeneration. The CD11b+Kupffer cells/Mφ recruited from bone marrow by the MCP-1 produced by CD68+Kupffer cells play a pivotal role in liver regeneration via the TNF/FasL/Fas pathway after PHx.  相似文献   

17.
Very few studies have been carried out on the role of liver macrophages (Kupffer cells) during the course of hepatic amoebiasis. The kinetics of phagocytic activity of Kupffer cells and blood monocytes was studied in guinea pigs intra-mesenterically infested with Entamoeba histolytica. The phagocytic capacity of blood monocytes of normal animals was comparatively lower than Kupffer cells for both latex and haemolysin coated sheep red blood cells. Significant decline in phagocytic response of Kupffer cells and blood monocytes of infected animals was observed right from 2nd post infection day and it kept on decreasing with the progress of infection. Depression in phagocytic response of Kupffer cells and blood monocytes was more marked in those animals who had higher grades of pathological lesions. Hence, an inverse correlation was obtained between the phagocytic capacity and severity of amoebic lesions (P less than 0.01). The significance of depression in phagocytic response of Kupffer cells and blood monocytes may be responsible for the development of hepatic lesions.  相似文献   

18.
Peng Y  Murr MM 《Cytokine》2007,37(3):185-191
BACKGROUND: Kupffer cells have been implicated in the pathogenesis of various liver diseases. Primary cultures of Kupffer cells have a very limited life span, tend to de-differentiate and become senescent, and therefore are not suitable for cell signaling studies. AIM: To establish immortalized rat Kupffer cell lines that facilitate mechanistic studies of cell signaling and signal transduction. METHODS: Rat Kupffer cells were sub-cultured with EGF to obtain rat Kupffer Cell line 1 (RKC1), and subsequently transfected with Simian Virus 40 Large T-antigen expression vector to obtain rat Kupffer Cell line 2 (RKC2). RESULTS: RKC1 and RKC2 are similar to primary Kupffer cells as they express the molecular markers ED1, ED2, ED3, and F4/80, and upregulate TNF-alpha, IL-6, IL-1beta, Fas /FasL, and NF-kappaB, as well as TLR4 in response to LPS or pancreatic elastase. Additionally, RKC1 and RKC2 maintain phagocytic properties of latex beads and exhibit increased telomerase and stabilized p53 activity. CONCLUSION: Immortalized RKC1 and RKC2 cells maintain properties of primary Kupffer cells and can be valuable tools in evaluating the role of Kupffer cells in immune diseases and in liver-cell based drug discovery.  相似文献   

19.
Soluble mediators elaborated by activated Kupffer cells have been implicated in the activation of liver fat-storing cells. In the present study some of these factors were identified as TGF beta and TGF alpha affecting disparate reactions in the activation process. TGF beta is secreted in an inactive, latent form by Kupffer cells. It is activated after addition to primary FSC cultures and stimulates dose-dependently sulfated proteoglycan synthesis especially that of chondroitin sulfate, whereas the incorporation of [3H] thymidine is reduced significantly. These effects were neutralized completely by anti-TGF beta antibodies which ultimately converted the proliferation inhibitory effect of Kupffer cell medium in a proliferation stimulatory action. The latter is at least partially due to TGF alpha. Both cytokines are preferentially expressed in activated Kupffer cells. We conclude that Kupffer cells modulate the mitogenic activity of FSC in culture depending on the ratio of activated TGF beta and TGF alpha and affect chondroitin sulfate synthesis mainly by TGF beta. The results suggest a paracrine activation of FSC in injured liver by both transforming growth factors secreted by activated Kupffer cells.  相似文献   

20.
The liver has recently been identified as a major organ for destruction of desialylated platelets. However, the underlying mechanism remains unclear. Kupffer cells, which are professional phagocytic cells in the liver, comprise the largest population of resident tissue macrophages in the body. Kupffer cells express a C-type lectin receptor, CLEC4F, that recognizes desialylated glycans with an unclear in vivo role in mediating platelet destruction. In this study, we generated a CLEC4F-deficient mouse model (Clec4f−/−) and found that CLEC4F was specifically expressed by Kupffer cells. Using the Clec4f−/− mice and a newly generated platelet-specific reporter mouse line, we revealed a critical role for CLEC4F on Kupffer cells in mediating destruction of desialylated platelets in the liver in vivo. Platelet clearance experiments and ultrastructural analysis revealed that desialylated platelets were phagocytized predominantly by Kupffer cells in a CLEC4F-dependent manner in mice. Collectively, these findings identify CLEC4F as a Kupffer cell receptor important for the destruction of desialylated platelets induced by bacteria-derived neuraminidases, which provide new insights into the pathogenesis of thrombocytopenia in disease conditions such as sepsis.Subject terms: Glycobiology, Cell death and immune response, Haematological diseases  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号