首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
D E Bradley 《Plasmid》1985,13(2):118-128
The conjugation systems of three K88-mobilizing plasmids were characterized for the morphology of their pili and type of mating system (surface only or surface + liquid). pREI had a typical IncI1 transfer system with both thick and thin pili. pVIDO determined aggregating thick flexible pili and pPLS nonaggregating thick flexible pili. All three transferred equally well in broth and on plates. pPLS alone was naturally transfer-depressed. pREI and pVIDO were tested for K88 mobilization efficiency, which was greater from their wild-type host strains to Escherichia coli K-12 than between E. coli K-12 strains. The K99 conjugative plasmid from strain B41 was repressed for transfer and determined thick flexible pili that were receptors for the filamentous phage fd.  相似文献   

2.
Eleven transfer-derepressed plasmids from incompatibility groups I1, I5, B, K and Z were constructed using the dnaG3 mutant Escherichia coli strain BW86. All were found to determine thin flexible and thick rigid pili constitutively. Immune electron microscopy was used to relate thick and thin pilus serotypes with incompatibility grouping. Mutant plasmids that determined only thick pili constitutively transferred efficiently on an agar surface but not in a liquid, whereas plasmids with both kinds of pili transferred equally well in both environments. A mutant of the IncI2 plasmid R721 determined thin pili constitutively, and thick pili at a repressed level, as indicated by electron microscopy. Experiments with this indicated that thin pili were apparently not involved directly in conjugation but were only used to stabilize mating aggregates.  相似文献   

3.
Representative plasmids for most incompatibility groups in Escherichia coli K-12 were transferred to a "bald" strain to compare transfer frequencies for liquid and solid media. Standard broth matings were used for a liquid environment, but for solid surface mating, conjugation was allowed to take place on nutrient plates before washing off the cells for transconjugant selection on plates containing appropriate drugs. Plasmids that determine rigid pili transferred at least 2,000x better on plates than in broth. Some plasmids that determine thick flexible pili transferred 45 to 470x better, whereas others transferred equally well in both environments, as did plasmids of the I complex, which determine thin flexible pili. These results clearly distinguished a number of surface mating systems where most plasmids were derepressed for transfer and determined conjugative pili constitutively. The temperature-independent IncH2 plasmid R831b transferred best on plates, but other IncH plasmids transferred equally well in broth. This inconsistency led to the reclassification of R831b as IncM.  相似文献   

4.
Donor bacteria containing JCFL39, a temperature-sensitive traD mutant of the F sex factor, were used at the nonpermissive temperature to accumulate stable mating pairs with recipient cells. At this stage in conjugation, extracellular F pili were removed by treatment with 0.01% sodium dodecyl sulfate. Upon then shifting to the permissive temperature for JCFL39, transfer of the F plasmid was observed. The mating pairs that were accumulated with JCFL39 at the nonpermissive temperature were readily observed by electron microscopy in wall-to-wall contact with the recipient bacteria. These results demonstrate that the traD product, which is known to be required in transferring DNA to a recipient bacterium, acts after the stage at which extracellular F pili are required. In addition, we concluded that DNA transfer takes place while donor and recipient cells are in surface contact and not necessarily through an extended F pilus as envisioned in some models of bacterial conjugation.  相似文献   

5.
Plasmid pHH502, of molecular weight 70 X 10(6), determined resistance to tetracycline, chloramphenicol, trimethoprim, sulphonamides and mercuric chloride and was incompatible with members of IncP and IncI alpha. It resembled other plasmids of IncI alpha in the following properties: it determined pili that were morphologically and serologically I alpha pili, whose production was repressed in established plasmid-carrying (R+) cultures; its transfer was equally efficient in liquid or on solid medium; it exerted surface exclusion against other IncI alpha plasmids; it was non-transferable to Proteus. In a reproducible, recA-independent event, pHH502 gave rise to pHH502-1, a plasmid of molecular weight 40 X 10(6), lacking determinants for resistance to tetracycline and chloramphenicol and all detectable IncI alpha characteristics. pHH502-1 was incompatible only with IncP plasmids and resembled other IncP plasmids in determining constitutive production of rigid pili, in its surface exclusion, in transferring at greater frequency on solid than in liquid medium and in being transmissible to Proteus mirabilis. It differed from other IncP plasmids in the morphology and serological type of its pili and in failing to transfer to Pseudomonas aeruginosa or Acinetobacter calcoaceticus. Small numbers of pHH502-1 rigid pili were present on bacteria carrying pHH502. Possible mechanisms for the generation of pHH502 and pHH502-1 are discussed.  相似文献   

6.
Bacterial conjugation normally involves the unidirectional transfer of DNA from donor to recipient. Occasionally, conjugation results in the transfer of DNA from recipient to donor, a phenomenon known as retrotransfer. Two distinct models have been generally considered for the mechanism of retrotransfer. In the two-way conduction model, no transfer of the conjugative plasmid is required. The establishment of a single conjugation bridge between donor and recipient is sufficient for the transfer of DNA in both directions. In the one-way conduction model, transfer of the conjugative plasmid to the recipient is required to allow the synthesis of a new conjugation bridge for the transfer of DNA from recipient to donor. We have tested these models by the construction of a mutant of the self-transmissible, IncP plasmid RK2lac that allows the establishement of the conjugation bridge but is incapable of self-transfer. Four nucleotides of the nic region of the origin of transfer (oriT) were changed directly in the 67-kb plasmid RK2lac by a simple adaptation of the vector-mediated excision (VEX) strategy for precision mutagenesis of large plasmids (E. K.Ayres, V. J. Thomson, G. Merino, D. Balderes, and D. H. Figurski, J. Mol. Biol. 230:174-185, 1993). The resulting RK2lac oriT1 mutant plasmid mobilizes IncQ or IncP oriT+ plasmids efficiently but transfers itself at a frequency which is 10(4)-fold less than that of the wild type. Whereas the wild-type RK2lac oriT+ plasmid promotes the retrotransfer of an IncQ plasmid from Escherichia coli or Pseudomonas aeruginosa recipients, the RK2lac oriT1 mutant is severely defective in retrotransfer. Therefore, retrotransfer requires prior transfer of the conjugative plasmid to the recipient. The results prove that retrotransfer occurs by two sequential DNA transfer events.  相似文献   

7.
An F lac pro mutant which was temperature sensitive for infection by the filamentous bacteriophage f1 but resistant to the F-specific icosahedral RNA phage f2 was isolated. Cells carrying the F' mutation failed to elaborate F pili at all temperatures. Mutant cells were able to pair with recipient cells during bacterial conjugation, but transfer of conjugal DNA occurred at a greatly reduced frequency. Complementation analyses showed the F' mutation to be in the traC gene. When a plasmid carrying traC was introduced into hosts harboring the F' mutation, phage sensitivity, the ability to elaborate F pili, and conjugation efficiency were restored. The mutation was named traC1044. The F lac pro traC1044 mutant appears to be unique among traC mutants in retaining host sensitivity to the filamentous phage f1 in the absence of expression of extended F pili. Phage f1 attachment sites appeared to be present at the cell surface in traC1044 mutants. The reduced accessibility of these sites may account for the reduced efficiency of phage f1 infection of traC1044 hosts, although the possibility that a defect was present in the receptor site itself was not eliminated. Membranes of hosts carrying the F' mutation contained a full complement of mature F-pilin subunits, so the product of traC is presumably required for pilus assembly but not for pilin processing. This, together with the deficiency in conjugal DNA transfer, suggests that traC may be part of a membrane-spanning tra protein complex responsible for pilus assembly and disassembly and conjugal DNA transmission.  相似文献   

8.
The sog gene of the conjugative plasmid ColIb-P9 specifies two sequence-related polypeptides with the N-terminal third of the larger product having DNA primase activity. To resolve the function of the C-terminal portion of the polypeptides, we constructed a ColIb mutant containing a Tn5 insertion in the 3' region of sog. The mutation truncated sog gene products without inactivating DNA primase and rendered the plasmid defective in conjugation. Tests for the presence of conjugative pili, for complementation by a sog+ recombinant, and for mobilization of small origin of transfer (oriT) recombinant plasmids indicated that the mutant ColIb allows conjugative aggregation of cells but it is defective in DNA transfer at some stage subsequent to its initiation at oriT. Physical evidence is given that normal sog polypeptides are among a group of proteins transferred selectively from the donor to the recipient cell by a conjugation-specific process. No transfer of the mutant sog proteins was detected. It is proposed that the C-terminal region of sog polypeptides facilitates transfer of single-stranded ColIb DNA between conjugating cells following initiation of transfer at the oriT site, and that in this role the proteins are transmitted to the recipient cell.  相似文献   

9.
L G Burman  R Ostensson 《Plasmid》1978,1(3):346-356
The conjugational transfer of R plasmids was demonstrated using a simple manually operated multipoint inoculator apparatus (MIP) allowing rapid inoculation and later dilution and plating of 25 mating mixtures simultaneously. Forty-five R plasmids belonging to groups F, I, N, and others originally recovered in Escherichia coli K-12 were studied in this as well as in other hosts. The semiquantitative MIP conjugation method was more efficient than conventional matings, particularly when performed in two steps employing E. coli K-12 as intermediate host. Both as donor and as recipient, E. coli K-12 was the most “suitable” general host of the set of plamids studied, although with many plasmids the degree of expression of their transfer functions varied with the host. The expression of fertility in parental bacteria as well as factors in the new host not studied appeared to be of greater importance for the conjugational transfer of a plasmid than the host-specified restriction of plasmid deoxyribonucleic acid by the recipient strain. The MIP conjugation method was successfully used also during screening for transferable R plasmids in gram-negative bacteria present in urine and fecal specimens of humans. The use of a restrictionless mutant instead of a restricting K-12 recipient enabled the detection of additional plasmids. The labor and media-saving MIP conjugation method thus also offers efficiency and is very practical for the performance of large numbers of plasmid matings, for example, in studies of compatibilty, host range, and mobilization of plasmids, as well as for screening purposes.  相似文献   

10.
Conjugation systems of IncT plasmids   总被引:3,自引:0,他引:3  
Four IncT plasmids were compared for various characters, in particular pilus synthesis and function at different temperatures. The prototype Rts1 differed in some respects from the others (R402, R394, pIN25). At 37 degrees C, the supposedly temperature-sensitive conjugation systems of the plasmids could still function efficiently on a surface, but not in a liquid. Long conjugative pili were synthesized at 30 degrees C, but only short ones (approx. 200 nm) were produced at 37 degrees C. The long pili converted two surface-obligatory conjugation systems to surface + liquid ones at 30 degrees C.  相似文献   

11.
12.
Dynamics of plasmid transfer on surfaces   总被引:4,自引:0,他引:4  
A protocol was developed to study the dynamics of growth and plasmid transfer in surface populations of bacteria. This method allows for quantitative estimates of cell population densities over time, as well as microscopic observations of colony growth and interactions. Using this 'surface slide system' (SSS), the dynamics of the plasmid R1 and its permanently derepressed mutant R1drd19 in surface cultures of Escherichia coli K12 was examined. In surface culture, the stationary-phase cell densities were constant over a wide range of initial cell density (= colony density) and comparable to those obtained in liquid culture. For high initial cell densities, where the cells formed a confluent layer at stationary phase, the kinetics of growth and plasmid transfer was similar to that obtained in liquid culture, and the relative yields of R1drd19 and R1 transconjugants were similar in the two habitats. In surface culture, however, R1drd19 transconjugant yield was profoundly affected, and R1 transfer to a lesser extent, by colony density. In contrast, liquid matings were virtually unaffected by initial cell density. The transfer advantage of the permanently depressed over the repressed plasmid was much less apparent for lower colony densities. I propose a hypothesis for plasmid transfer between colonies that explains these observations as a consequence of the geometry of the surface habitat and the effect of transitory derepression of the synthesis of pili.  相似文献   

13.
H-pilus assembly kinetics determined by electron microscopy.   总被引:3,自引:3,他引:0       下载免费PDF全文
The kinetics of pilus outgrowth were examined for Escherichia coli containing pDT1942, a TnlacZ insertion derivative of the IncHI1 plasmid R27, which was derepressed for transfer. IncHI1 plasmids are thermosensitive for transfer. The pili specified by pDT1942 were examined by transmission electron microscopy after the pilus had been labeled with the H-pilus-specific bacteriophage Hgal, which had been inactivated with RNase A. H pili were extended by extrusion from the cell surface and not by the addition of pilin subunits to the pilus tip. After pili were removed by vortexing, the outgrowth of full-length pili (2 microns long) required 20 min. H pili expressed at the transfer optimal temperature (27 degrees C) remained stable after incubation at the transfer inhibitory temperature (37 degrees C), but the formation of mating aggregates was inhibited at 37 degrees C. Within 1 min of exposure of the host cell to a heat stimulus of 50 degrees C, pili vanished. Pili were observed in straight and flexible forms with a field emission scanning electron microscope, which may indicate a dynamic role for the pilus in conjugation.  相似文献   

14.
Bacterial conjugation results in the transfer of DNA of either plasmid or chromosomal origin between microorganisms. Transfer begins at a defined point in the DNA sequence, usually called the origin of transfer (oriT). The capacity of conjugative DNA transfer is a property of self-transmissible plasmids and conjugative transposons, which will mobilize other plasmids and DNA sequences that include a compatible oriT locus. This review will concentrate on the genes required for bacterial conjugation that are encoded within the transfer region (or regions) of conjugative plasmids. One of the best-defined conjugation systems is that of the F plasmid, which has been the paradigm for conjugation systems since it was discovered nearly 50 years ago. The F transfer region (over 33 kb) contains about 40 genes, arranged contiguously. These are involved in the synthesis of pili, extracellular filaments which establish contact between donor and recipient cells; mating-pair stabilization; prevention of mating between similar donor cells in a process termed surface exclusions; DNA nicking and transfer during conjugation; and the regulation of expression of these functions. This review is a compendium of the products and other features found in the F transfer region as well as a discussion of their role in conjugation. While the genetics of F transfer have been described extensively, the mechanism of conjugation has proved elusive, in large part because of the low levels of expression of the pilus and the numerous envelope components essential for F plasmid transfer. The advent of molecular genetic techniques has, however, resulted in considerable recent progress. This summary of the known properties of the F transfer region is provided in the hope that it will form a useful basis for future comparison with other conjugation systems.  相似文献   

15.
Supramembrane structures that connect conjugating agrobacterial cells were visualized for the first time by transmission electron microscopy. The primary contact of cells during conjugation was shown to occur through the formation of long pili containing no VirB1 protein. Pretreatment of agrobacterial cells with acetosyringone resulted in a six- to tenfold increase in the transfer frequency of the plasmid pTd33 at 19-25 degrees C and had almost no effect at 30 degrees C. The transfer of the plasmid pTd33 from A. tumefaciens strain GV3101 to plasmid-free A. tumefaciens strain UBAPF-2 was 16 times decreased after the centrifugation of cells. The transfer efficiency of the plasmid pTd33 from A. tumefaciens strain LBA2525 (virB2::lacZ) to plasmid-free A. tumefaciens strain UBAPF-2 was one order of magnitude lower than the transfer from the wild-type A. tumefaciens strain GV3101. Treatment of donor cells with 0.01% SDS before mating decreased the transfer efficiency by a factor of 26. The role of pili in the establishment of contact between conjugating cells of agrobacteria is discussed.  相似文献   

16.
The conjugative plasmid R388 and a number of other plasmids carry an operon, stbABC, adjacent to the origin of conjugative transfer. We investigated the role of the stbA, stbB, and stbC genes. Deletion of stbA affected both conjugation and stability. It led to a 50-fold increase in R388 transfer frequency, as well as to high plasmid loss. In contrast, deletion of stbB abolished conjugation but provoked no change in plasmid stability. Deletion of stbC showed no effect, neither in conjugation nor in stability. Deletion of the entire stb operon had no effect on conjugation, which remained as in the wild-type plasmid, but led to a plasmid loss phenotype similar to that of the R388ΔstbA mutant. We concluded that StbA is required for plasmid stability and that StbA and StbB control conjugation. We next observed the intracellular positioning of R388 DNA molecules and showed that they localize as discrete foci evenly distributed in live Escherichia coli cells. Plasmid instability of the R388ΔΔstbA mutant correlated with aberrant localization of the plasmid DNA molecules as clusters, either at one cell pole, at both poles, or at the cell center. In contrast, plasmid molecules in the R388ΔΔstbB mutant were mostly excluded from the cell poles. Thus, results indicate that defects in both plasmid maintenance and transfer are a consequence of variations in the intracellular positioning of plasmid DNA. We propose that StbA and StbB constitute an atypical plasmid stabilization system that reconciles two modes of plasmid R388 physiology: a maintenance mode (replication and segregation) and a propagation mode (conjugation). The consequences of this novel concept in plasmid physiology will be discussed.  相似文献   

17.
The review deals with the supramembrane and membrane structures involved in the initial contact (attachment) of an agrobacterial cell with a bacterial or plant cell during the transfer of the agrobacterial genetic information. The relationships between the donor cell attachment to the recipient cell surface and the infection and conjugation processes are discussed. Experimental data on the recently found agrobacterial pili and surface protein rhicadhesin, which are involved in the conjugative transfer of the plasmid between agrobacteria, are considered. The role of adhesive and conjugative pili of E. coli in the initial and tight contacts is analyzed in the context of the recently proved similarity between the mechanisms of agrobacterial transformation in plants and conjugative transfer in bacteria. Possible involvement of the pilus in the conjugative transfer of agrobacterial DNA across the membranes of donor and recipient (bacterial and plant) cells is discussed.  相似文献   

18.
A study was made of the ability of reference plasmids of the 6 known Fin-groups to inhibit the functions of transfer genes (tra-genes) of the 4 derepressed F-like plasmids (pAP22-2, pAP38, pAP43, pAP53). It was shown that unlike the derepressed Flac plasmid, the conjugation transfer of pAP38 and pAP53 plasmids was inhibited only by, the FinV plasmid, whereas pAP22-2 plasmids by Fin V and Fin V plasmids. The formation of donor-specific pili in case of pAP38 plasmid was inhibited by Fin Q, Fin U and Fin V plasmids, in case of pAP43 plasmid by Fin U Fin V and Fin W plasmids.  相似文献   

19.
Abstract: Escherichia coli recipient and E. coli donor strains carrying streptothricin-resistance genes were inoculated together into different soil microcosms. These genes were localized on the narrow host range plasmids of incompatibility (Inc) groups FII, Il, and on the broad host range plasmids of IncP1, IncN, IncW3, and IncQ. The experiments were intended to study the transfer of these plasmids in sterile and non-sterile soil with and without antibiotic selective pressure and in planted soil microcosms. Transfer of all broad host range plasmids from the introduced E. coli donor into the recipient was observed in all microcosm experiments. These results indicate that broad host range plasmids encoding short and rigid pili might spread in soil environments by conjugative transfer. In contrast, transfer of the narrow host range plasmids of IncFII and IncI1, into E. coli recipients was not found in sterile or non-sterile soil. These plasmids encoded flexible pili or flexible and rigid pili, respectively. In all experiments highest numbers of transconjugants were detected for the IncP1-plasmid (pTH16). There was evidence with plasmids belonging to IncP group transferred by conjugation into a variety of indigenous soil bacteria at detectable frequencies. Significantly higher numbers of indigenous transconjugants were obtained for the IncP-plasmid under antibiotic selection pressure, and a greater diversity of transconjugants was detected. Availability of nutrients and rhizosphere exudates stimulated transfer in soil. Furthermore, transfer of the IncN-plasmid (pIE1037) into indigenous bacteria of the rhizosphere community could be detected. The transconjugants were determined by BIOLOG as Serratia liquefaciens . Despite the known broad host range of IncW3 and IncQ-plasmids, transfer into indigenous soil bacteria could not be detected.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号