首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cholinergic neurons have long been a model for biochemical studies of neurotransmission. The components responsible for cholinergic neurotransmission, such as choline acetyltransferase, vesicular acetylcholine transporter, nicotinic and muscarinic acetylcholine receptors, and acetylcholine esterase, have long been defined as functional units and then identified as molecular entities. Another essential component in the cholinergic synapses is the one responsible for choline uptake from the synaptic cleft, which is thought to be the rate-limiting step in acetylcholine synthesis. A choline uptake system with a high affinity for choline has long been assumed to be present in cholinergic neurons. Very recently, the molecular entity for the high-affinity choline transporter was identified and is designated CHT1. CHT1 mediates Na+- and Cl-dependent choline uptake with high sensitivity to hemicholinium-3. CHT1 has been characterized both at the molecular and functional levels and was confirmed to be specifically expressed in cholinergic neurons.  相似文献   

2.
The "ins" and "outs" of the high-affinity choline transporter CHT1   总被引:1,自引:0,他引:1  
Maintenance of acetylcholine (ACh) synthesis depends on the activity of the high-affinity choline transporter (CHT1), which is responsible for the reuptake of choline from the synaptic cleft into presynaptic neurons. In this review, we discuss the current understanding of mechanisms involved in the cellular trafficking of CHT1. CHT1 protein is mainly found in intracellular organelles, such as endosomal compartments and synaptic vesicles. The presence of CHT1 at the plasma membrane is limited by rapid endocytosis of the transporter in clathrin-coated pits in a mechanism dependent on a dileucine-like motif present in the carboxyl-terminal region of the transporter. The intracellular pool of CHT1 appears to constitute a reserve pool of transporters, important for maintenance of cholinergic neurotransmission. However, the physiological basis of the presence of CHT1 in intracellular organelles is not fully understood. Current knowledge about CHT1 indicates that stimulated and constitutive exocytosis, in addition to endocytosis, will have major consequences for regulating choline uptake. Future investigations of CHT1 trafficking should elucidate such regulatory mechanisms, which may aid in understanding the pathophysiology of diseases that affect cholinergic neurons, such as Alzheimer's disease.  相似文献   

3.
The high affinity neuronal choline transporter (CHT1) is responsible for the uptake of choline into the pre-synaptic terminal of cholinergic neurons. Considering our past experience with modeling the blood–brain barrier choline transporter (BBBCHT) as drug delivery vector to the CNS, we investigated the 3-D-quantitative structure–activity relationship of the neuronal choline transporter. Comparative molecular field analysis (CoMFA) and comparative similarity index analysis (CoMSIA) yielded cross-validated models with a q2 of 0.5, and a non-cross validated r2 of 0.8. The electrostatic results of the 3-D-QSAR models are corroborated with a docking study into the bacterial choline transporter. Using this electrostatic map, we propose a putative binding site in a homology model of the CHT1. Knowledge gained from this study is useful to better understand the CHT1 as well as can be used in medicinal chemistry programs targeting this transporter.  相似文献   

4.
CHT1 is a Na(+)- and Cl(-)-dependent, hemicholinium-3 (HC-3)-sensitive, high affinity choline transporter. Par-4 (prostate apoptosis response-4) is a leucine zipper protein involved in neuronal degeneration and cholinergic signaling in Alzheimer's disease. We now report that Par-4 is a negative regulator of CHT1 choline uptake activity. Transfection of neural IMR-32 cells with human CHT1 conferred Na(+)-dependent, HC-3-sensitive choline uptake that was effectively inhibited by cotransfection of Par-4. Mapping studies indicated that the C-terminal half of Par-4 was physically involved in interacting with CHT1, and the absence of Par-4.CHT1 complex formation precluded the loss of CHT1-mediated choline uptake induced by Par-4, indicating that Par-4.CHT1 complex formation is essential. Kinetic and cell-surface biotinylation assays showed that Par-4 inhibited CHT1-mediated choline uptake by reducing CHT1 expression in the plasma membrane without significantly altering the affinity of CHT1 for choline or HC-3. These results suggest that Par-4 is directly involved in regulating choline uptake by interacting with CHT1 and by reducing its incorporation on the cell surface.  相似文献   

5.
The high-affinity choline transporter CHT1 mediates choline uptake essential for acetylcholine synthesis in cholinergic nerve terminals. CHT1 belongs to the Na+/glucose cotransporter family (SLC5), which is postulated to have a common 13-transmembrane domain core; however, no direct experimental evidence for CHT1 transmembrane topology has yet been reported. We examined the transmembrane topology of human CHT1 using cysteine-scanning analysis. Single cysteine residues were introduced into the putative extra- and intracellular loops and probed for external accessibility for labeling with a membrane-impermeable, sulfhydryl-specific biotinylating reagent in intact cells expressing these mutants. The results provide experimental evidence for a topological model of a 13-transmembrane domain protein with an extracellular amino terminus and an intracellular carboxyl terminus. We also constructed a three-dimensional homology model of CHT1 based on the crystal structure of the bacterial Na+/galactose cotransporter, which supports our conclusion of CHT1 transmembrane topology. Furthermore, we examined whether CHT1 exists as a monomer or oligomer. Chemical cross-linking induces the formation of a higher molecular weight form of CHT1 on the cell surface in HEK293 cells. Two different epitope-tagged CHT1 proteins expressed in the same cells can be co-immunoprecipitated. Moreover, co-expression of an inactive mutant I89A with the wild type induces a dominant-negative effect on the overall choline uptake activity. These results indicate that CHT1 forms a homo-oligomer on the cell surface in cultured cells.  相似文献   

6.
The arterial vascular wall contains a non-neuronal intrinsic cholinergic system. The rate-limiting step in acetylcholine (ACh) synthesis is choline uptake. A high-affinity choline transporter, CHT1, has recently been cloned from neural tissue and has been identified in epithelial cholinergic cells. Here we investigated its presence in rat and human arteries and in primary cell cultures of rat vascular cells (endothelial cells, smooth muscle cells, fibroblasts). CHT1-mRNA was detected in the arterial wall and in all isolated cell types by RT-PCR using five different CHT1-specific primer pairs. Antisera raised against amino acids 29-40 of the rat sequence labeled a single band (50 kD) in Western blots of rat aorta, and an additional higher molecular weight band appeared in the hippocampus. Immunohistochemistry demonstrated CHT1 immunoreactivity in endothelial and smooth muscle cells in situ and in all cultured cell types. A high-affinity [3H]-choline uptake mechanism sharing characteristics with neuronal high-affinity choline uptake, i.e., sensitivity to hemicholinium-3 and dependence on sodium, was demonstrated in rat thoracic aortic segments by microimager autoradiography. Expression of the high-affinity choline transporter CHT1 is a novel component of the intrinsic non-neuronal cholinergic system of the arterial vascular wall, predominantly in the intimal and medial layers.  相似文献   

7.
The immunosuppressor cyclosporin A inhibits the peptidyl-prolyl-cis/trans-isomerase activity of cyclophilins and the resulting complex inhibits the phosphatase activity of calcineurin. Both enzymes were detected in peripheral nerve endings isolated from the electric organ of Torpedo and shown to be affected by 10 micro m cyclosporin A. Among the cholinergic properties studied, choline uptake was specifically inhibited by cyclosporin A to a maximum of 40%. Cyclosporin A decreased the rate of choline transport but not the binding of the non-transportable choline analogue hemicholinium-3, indicating that the number of membrane transporters was not affected. Through the use of two other immunosuppressors, FK506, which also inhibits calcineurin, and rapamycin, which does not, two different mechanisms of choline uptake inhibition were uncovered. FK506 inhibited the rate of choline transport, whereas rapamycin diminished the affinity for choline. The Torpedo homologue of the high affinity choline transporter CHT1 was cloned and its activity was reconstituted in Xenopus oocytes. Choline uptake by oocytes expressing tCHT1 was inhibited by all three immunosuppressors and also by microinjection of the specific calcineurin autoinhibitory domain A457-481, indicating that the phosphatase calcineurin regulates CHT1 activity and could be the common target of cyclosporin and FK506. Rapamycin, which changed the affinity of the transporter, may have acted through an immunophilin on the isomerization of critical prolines that are found in the tCHT1 sequence.  相似文献   

8.
Functional characterization of the human high-affinity choline transporter   总被引:6,自引:0,他引:6  
Okuda T  Haga T 《FEBS letters》2000,484(2):92-97
  相似文献   

9.
The rate-limiting step in neuronal acetylcholine (ACh) synthesis is the uptake of choline via a high-affinity transporter. We have generated antisera against the recently identified transporter CHT1 to investigate its distribution in rat motor neurons and skeletal muscle and have used these antisera in combination with (1) antisera against the vesicular acetylcholine transporter (VAChT) to identify cholinergic synapses and (2) Alexa-488-labelled alpha-bungarotoxin to identify motor endplates. In the motor unit, immunohistochemistry and RT-PCR have demonstrated that CHT1 is restricted to motoneurons and absent from the non-neuronal ACh-synthesizing elements, e.g. skeletal muscle fibres. In addition, CHT1 is also present in parasympathetic neurons of the tongue, as evidenced by immunohistochemistry and RT-PCR. CHT1 immunoreativity is principally found at all segments (perikaryon, dendrites, axon) of the motoneuron but is enriched at neuro-neuronal and neuro-muscular synapses. This preferential localisation matches well with its anticipated pivotal role in synaptic transmitter recycling and synthesis.  相似文献   

10.
11.
12.
Maintenance of acetylcholine synthesis depends on the effective functioning of a high-affinity sodium-dependent choline transporter (CHT1). Recent studies have shown that this transporter is predominantly localized inside the cell, unlike other neurotransmitter transporters, suggesting that the trafficking of CHT1 to and from the plasma membrane may play a crucial role in regulating choline uptake. Here we found that CHT1 is rapidly and constitutively internalized in clathrin-coated vesicles to Rab5-positive early endosomes. CHT1 internalization is controlled by an atypical carboxyl-terminal dileucine-like motif (L531, V532) which, upon replacement by alanine residues, blocks CHT1 internalization in both human embryonic kidney 293 cells and primary cortical neurons and results in both increased CHT1 cell surface expression and choline transport activity. Perturbation of clathrin-mediated endocytosis with dynamin-I K44A increases cell surface expression and transport activity to a similar extent as mutating the dileucine motif, suggesting that we have identified the motif responsible for constitutive CHT1 internalization. Based on the observation that the localization of CHT1 to the plasma membrane is transient, we propose that acetylcholine synthesis may be influenced by processes that lead to the attenuation of constitutive CHT1 endocytosis.  相似文献   

13.
Cholinergic neurons elaborate a hemicholinium-3 (HC-3) sensitive choline transporter (CHT) that mediates presynaptic, high-affinity choline uptake (HACU) in support of acetylcholine (ACh) synthesis and release. Homozygous deletion of CHT (-/-) is lethal shortly after birth (Ferguson et al. 2004), consistent with CHT as an essential component of cholinergic signaling, but precluding functional analyses of CHT contributions in adult animals. In contrast, CHT+/- mice are viable, fertile and display normal levels of synaptosomal HACU, yet demonstrate reduced CHT protein and increased sensitivity to HC-3, suggestive of underlying cholinergic hypofunction. We find that CHT+/- mice are equivalent to CHT+/+ siblings on measures of motor co-ordination (rotarod), general activity (open field), anxiety (elevated plus maze, light/dark paradigms) and spatial learning and memory (Morris water maze). However, CHT+/- mice display impaired performance as a result of physical challenge in the treadmill paradigm, as well as reduced sensitivity to challenge with the muscarinic receptor antagonist scopolamine in the open field paradigm. These behavioral alterations are accompanied by significantly reduced brain ACh levels, elevated choline levels and brain region-specific decreased expression of M1 and M2 muscarinic acetylcholine receptors. Our studies suggest that CHT hemizygosity results in adequate baseline ACh stores, sufficient to sustain many phenotypes, but normal sensitivities to physical and/or pharmacological challenge require full cholinergic signaling capacity.  相似文献   

14.
Uptake of choline by the high-affinity choline transporter CHT1 is the rate-limiting step in neuronal acetylcholine (ACh) synthesis. Here, we investigated by RT-PCR, in-situ hybridisation, immunohistochemistry, and Western blotting whether CHT1 is also expressed in cholinergic epithelia. CHT1-mRNA and -protein were detected in keratinocytes of human skin, rat skin and tongue, the human keratinocyte cell line HaCaT, and the ciliated cells of the rat tracheal epithelium. Immunohistochemically, CHT1 was predominantly localized to the epithelial cell membranes, in case of ciliated tracheal cells it was restricted to the apical membrane. This is the first study to demonstrate the expression of CHT1 in non-neuronal cells. The close apposition of CHT1 to reported sites of localization of choline acetyltransferase in these cells is strongly in favour of ACh synthesis being fuelled by choline uptake via CHT1 in these epithelia.  相似文献   

15.
Synthesis of acetylcholine depends on the plasma membrane uptake of choline by a high affinity choline transporter (CHT1). Choline uptake is regulated by nerve impulses and trafficking of an intracellular pool of CHT1 to the plasma membrane may be important for this regulation. We have generated a hemagglutinin (HA) epitope tagged CHT1 to investigate the organelles involved with intracellular trafficking of this protein. Expression of CHT1-HA in HEK 293 cells establishes Na+-dependent, hemicholinium-3 sensitive high-affinity choline transport activity. Confocal microscopy reveals that CHT1-HA is found predominantly in intracellular organelles in three different cell lines. Importantly, CHT1-HA seems to be continuously cycling between the plasma membrane and endocytic organelles via a constitutive clathrin-mediated endocytic pathway. In a neuronal cell line, CHT1-HA colocalizes with the early endocytic marker green fluorescent protein (GFP)-Rab 5 and with two markers of synaptic-like vesicles, VAMP-myc and GFP-VAChT, suggesting that in cultured cells CHT1 is present mainly in organelles of endocytic origin. Subcellular fractionation and immunoisolation of organelles from rat brain indicate that CHT1 is present in synaptic vesicles. We propose that intracellular CHT1 can be recruited during stimulation to increase choline uptake in nerve terminals.  相似文献   

16.
A cDNA encoding a high-affinity Na(+)-dependent choline transporter (TrnCHT) was isolated from the CNS of the cabbage looper Trichoplusia ni using an RT-PCR-based approach. The deduced amino acid sequence of the CHT cDNA predicts a 594 amino acid protein of 64.74 kDa prior to glycosylation. TrnCHT has 80%, 79%, 76%, and 58% amino acid identity to putative CHTs from Anopheles gambiae, Drosophila melanogaster and Apis mellifera, and a cloned CHT from Limulus polyphemus, respectively. In situ hybridization of TrnCHT cRNA in whole-mount preparations of caterpillar CNS revealed that TrnCHT mRNA is expressed by hundreds of presumably cholinergic neurons present in both the brain and cortex of all segmental ganglia. Na(+)-dependent [(3)H]-choline uptake was induced in Sf9 cells in vitro following infection with a TrnCHT-expressing recombinant baculovirus. Virally induced [(3)H]-choline uptake was found to approximately equal the endogenous rate of choline uptake in insect cells, seen either after infection with a control virus or in TrnCHT-infected cells exposed to [(3)H]-choline in the absence of Na(+). The Na(+)-dependent component of [(3)H]-choline uptake by TrnCHT-infected cells was saturable with a K(m) for choline transport of 8.4 microM. Several compounds reported to be potent blockers of [(3)H]-choline uptake by cloned vertebrate choline transporters proved to be relatively weak inhibitors of choline uptake by Sf9 cells expressing TrnCHT. Hemicholinium-3 (K(i)=4.1 microM) and two oxoquinuclidium analogues of choline, quireston-A (K(i) approximately 10 microM) and quireston (K(i) approximately 100 microM) inhibited 50% of control uptake only at micromolar concentrations. The endogenous low-affinity Na(+)-independent uptake of [(3)H]-choline was also inhibited by high micromolar concentrations of hemicholinium-3.  相似文献   

17.
The high‐affinity choline transporter (CHT) is responsible for choline uptake into cholinergic neurons, with this being the rate‐limiting step for acetylcholine production. Altering CHT protein disposition directly impacts choline uptake activity and cholinergic neurotransmission. Amyloid precursor protein (APP) interacts with CHT proteins and increases their endocytosis from the cell surface. The goal of this study was to examine regulation of CHT trafficking and activity by wild‐type APP (APPwt) and determine if this differs with Swedish mutant APP (APPSwe) in SH‐SY5Y human neuroblastoma cells. APPSwe differs from APPwt in its trafficking from the cell surface through endosomes. We report for the first time that CHT interacts significantly less with APPSwe than with APPwt. Surprisingly, however, CHT cell surface levels and choline uptake activity are decreased to the same extent and CHT co‐localization to early endosomes increased similarly in cells expressing either APPwt or APPSwe. A critical observation is that CHT co‐immunoprecipitates with βCTF from APPSwe‐expressing cells. We propose that decreased CHT function is mediated differently by APPwt and APPSwe; APPwt interaction with CHT facilitates its endocytosis from the cell surface, whereas the effect of APPSwe on CHT is mediated indirectly potentially by binding to the βCTF fragment or by Aβ released from cells.

  相似文献   


18.
Choline transporters, cholinergic transmission and cognition   总被引:4,自引:0,他引:4  
Cholinergic projections to the cortex and hippocampus mediate fundamental cognitive processes. The capacity of the high-affinity choline uptake transporter (CHT) to import choline from the extracellular space to presynaptic terminals is essential for normal acetylcholine synthesis and therefore cholinergic transmission. The CHT is highly regulated, and the cellular mechanisms that modulate its capacity show considerable plasticity. Recent evidence links changes in CHT capacity with the ability to perform tasks that tax attentional processes and capacities. Abnormal regulation of CHT capacity might contribute to the cognitive impairments that are associated with neurodegenerative and neuropsychiatric disorders. Therefore, the CHT might represent a productive target for the development of new pharmacological treatments for these conditions.  相似文献   

19.
Trafficking of the vesicular acetylcholine transporter (VAChT) to synaptic vesicles has the potential to regulate storage and release of acetylcholine. We used the C-terminal tail of the vesicular acetylcholine transporter as bait for the screening of a brain cDNA library by yeast-two hybrids. Here we report an interaction uncovered in this screening with SEC14L1, a mammalian SEC14-like protein that may function as a phospholipid transfer protein. The interaction of VAChT and SEC14L1 occurred through the GOLD domain found in the latter and was confirmed in mammalian cells. In addition, we also found that SEC14L1 co-immunoprecipitates with the high affinity choline transporter (CHT1), but not with synaptophysin or synaptotagmin. In cultured cells SEC14L1 was predominantly found in the cytosol with little or no localization in defined organelles. In contrast, overexpression of VAChT or CHT1 with SEC14L1 recruited the latter to large intracellular organelles similar to vesicles or vesicle aggregates. Finally, we find that overexpression of SEC14L1 modestly decreases high affinity choline transport activity. We suggest that interaction of cholinergic transporters with proteins containing the GOLD domain may be relevant for transporter function.  相似文献   

20.
The present study was undertaken to elucidate the functional characteristics of choline uptake and deduce the relationship between choline uptake and the expression of organic cation transporters in the rat brain microvessel endothelial cell line RBE4. Confluent RBE4 cells were found to express a high affinity choline uptake system. The system is Na(+)-independent and shows a Michaelis-Menten constant of approx. 20 microM for choline. The choline analogue hemicholinium-3 inhibits choline uptake in these cells with an inhibition constant of approx. 50 microM. The uptake system is also susceptible for inhibition by various organic cations, including 1-methyl-4-phenylpyridinium, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, clonidine, procainamide, and tetramethylammonium. The prototypical organic cation tetraethylammonium shows very little affinity for the choline uptake system in these cells. The inhibition of choline uptake by hemicholinium-3 is competitive. Northern analysis and RT-PCR show that these cells do not express the organic cation transporters OCT2 and OCT3. These cells do express, however, low levels of OCT1, but the functional characteristics of choline uptake in these cells are very different from the known properties of choline uptake via OCT1. The Na(+)-coupled high affinity choline transporter CHT1 is not expressed in these cells as evidenced by RT-PCR. This corroborates the Na(+)-independent nature of choline uptake in these cells. It is concluded that RBE4 cells express an organic cation transporter that is responsible for choline uptake in these cells and that this transporter is not identical to any of the organic cation transporters thus far identified at the molecular level in mammalian cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号