首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Role of cytochrome P-450 in ochratoxin A-stimulated lipid peroxidation.   总被引:2,自引:0,他引:2  
The role of cytochrome P-450 in the stimulation of lipid peroxidation by the nephrotoxic mycotoxin ochratoxin A has been investigated. Ochratoxin A was previously shown to markedly stimulate lipid peroxidation in a reconstituted system consisting of phospholipid vesicles, NADPH-cytochrome P-450 reductase, Fe3+, ethylenediaminetetraacetic acid (EDTA), and reduced nicotinamide adenine dinucleotide phosphate (NADPH). We now show that purified cytochrome P-450IIB1 could effectively replace EDTA in stimulating lipid peroxidation suggesting that it could mediate the transfer of electrons from NADPH to Fe3+. Cobalt protoporphyrin is known to cause an extensive and long-lasting depletion of hepatic cytochrome P-450 in rats, and it has been used to evaluate the role of hepatic cytochrome P-450 in xenobiotic metabolism and toxicity. We have observed that microsomes isolated from livers of cobalt protoporphyrin-pretreated rats underwent ochratoxin A-dependent lipid peroxidation much more slowly than control microsomes. Also, the level of ethane exhaled (an index of in vivo lipid peroxidation) on ochratoxin A administration was much lower in cobalt protoporphyrin-pretreated rats than in control rats. Taken together, these results provide evidence for the stimulatory role of cytochrome P-450 in ochratoxin A-induced lipid peroxidation in a reconstituted system and strongly implicate its role in microsomal and in vivo ochratoxin A-induced lipid peroxidation.  相似文献   

2.
The role of cytochrome P-450 in the stimulation of lipid peroxidation by the nephrotoxic mycotoxin ochratoxin A has been investigated. Ochratoxin A was previously shown to markedly stimulate lipid peroxidation in a reconstituted system consisting of phospholipid vesicles, NADPH-cytochrome P-450 reductase, Fe3+, ethylenediaminetetra-acetic acid (EDTA), and reduced nicotinamide adenine dinucleotide phosphate (NADPH). We now show that purified cytochrome P-450IIB1 could effectively replace EDTA in stimulating lipid peroxidation suggesting that it could mediate the transfer of electrons from NADPH to Fe3+. Cobalt protoporphyrin is known to cause an extensive and long-lasting depletion of hepatic cytochrome P-450 in rats, and it has been used to evaluate the role of hepatic cytochrome P-450 in xenobiotic metabolism and toxicity. We have observed that microsomes isolated from livers of cobalt protoporphyrin-pretreated rats underwent ochratoxin A-dependent lipid peroxidation much more slowly than control microsomes. Also, the level of ethane exhaled (an index of in vivo lipid peroxidation) on ochratoxin A administration was much lower in cobalt protoporphyrin-pretreated rats than in control rats. Taken together, these results provide evidence for the stimulatory role of cytochrome P-450 in ochratoxin A-induced lipid peroxidation in a reconstituted system and strongly implicate its role in microsomal and in vivo ochratoxin A-induced lipid peroxidation.  相似文献   

3.
Degradation of intrinsic hepatic [(14)C]haem was analysed as (14)CO formation in living rats and in hepatic microsomal fractions prepared from these animals 16h after pulse-labelling with 5-amino[5-(14)C]laevulinic acid, a precursor that labels bridge carbons of haem in non-erythroid tissues. NADPH-catalysed peroxidation of microsomal lipids in vitro (measured as malondialdehyde) was accompanied by loss of cytochrome P-450 and microsome-associated [(14)C]haem (largely cytochrome P-450 haem), but little (14)CO formation. No additional (14)CO was formed when carbon tetrachloride and 2-allyl-2-isopropylacetamide were added to stimulate lipid peroxidation and increase loss of cytochrome P-450 [(14)C]haem. Because the latter effect persisted despite inhibition of lipid peroxidation with MnCl(2) or phenyl-t-butylnitrone(a spin-trapping agent for free radicals), it was concluded that carbon tetrachloride, as reported for 2-allyl-2-isopropylacetamide, may promote loss of cytochrome P-450 haem through a non-CO-forming mechanism independent of lipid peroxidation. By comparison with breakdown of intrinsic haem, catabolism of [(14)C]methaemalbumin by microsomal haem oxygenase in vitro produced equimolar quantities of (14)CO and bilirubin, although these catabolites reflected only 18% of the degraded [(14)C]haem. This value was increased to 100% by addition of MnCl(2), which suggests that lipid peroxidation may be involved in degradation of exogenous haem to products other than CO. Phenyl-t-butylnitrone completely blocked haem oxygenase activity, which suggests that hydroxy free radicals may represent a species of active oxygen used by this enzyme system. After administration of carbon tetrachloride or 2-allyl-2-isopropylacetamide to labelled rats, hepatic [(14)C]haem was decreased and haem oxygenase activity was unchanged; however, (14)CO excretion was either unchanged (carbon tetrachloride) or decreased (2-allyl-2-isopropylacetamide). These changes were unaffected by cycloheximide pretreatment. From the lack of parallel losses of cytochrome P-450 [(14)C]haem and (14)CO excretion, one may infer that an important fraction of hepatic [(14)C]haem in normal rats is degraded by endogenous pathways not involving CO. We conclude that carbon tetrachloride and 2-allyl-2-isopropylacetamide accelerate catabolism of cytochrome P-450 haem through mechanisms that do not yield CO as an end product, and that are insensitive to cycloheximide and independent of haem oxygenase activity.  相似文献   

4.
The hepatic porphyrias are inborn errors of porphyrin and haem biosynthesis characterized biochemically by excessive excretion of delta-aminolaevulinate (ALA), porphobilinogen and other intermediates in haem synthesis. Clinical evidence has implicated iron in the pathogenesis of several types of genetically transmitted diseases. We investigated the role of iron in haem metabolism as well as its relationship to drug-mediated induction of ALA synthase and haem oxygenase in acute and chronic iron overload. Acute iron overload in rats resulted in a marked increase in hepatic haem oxygenase that was associated with a decrease in cytochrome P-450 and an increase in ALA synthase activity. Aminopyrine N-demethylase and aniline hydroxylase activities, which are dependent on the concentration of cytochrome P-450, were also decreased. In contrast, in chronic-iron-overloaded rats, there was an adaptive increase in haem oxygenase activity and an increase in ALA synthase that was associated with normal concentrations of microsomal haem and cytochrome P-450. The induction of ALA synthase in chronic iron overload was enhanced by phenobarbital and allylisopropylacetamide, in spite of the fact that these agents did not increase haem oxygenase activity. Small doses of Co2+ were potent inducers of the haem oxygenase in chronic-iron-overloaded, but not in control, animals. We conclude that increased hepatic cellular iron may predispose certain enzymes of haem synthesis to induction by exogenous agents and thereby affect drug-metabolizing enzyme activities.  相似文献   

5.
S S Lau  T J Monks 《Life sciences》1988,42(13):1259-1269
The metabolism and toxicity of bromobenzene has been investigated for well over one hundred years. The urinary excretion of mercapturic acids was first reported in 1879, in animals treated with bromobenzene. Bromobenzene has since proven to be a valuable tool in efforts to unravel the complexities involved in chemical- induced toxicities. For example, the importance of metabolic activation via the cytochrome(s) P-450; the role of glutathione in the detoxification of reactive metabolites; and the toxicological significance of covalent binding, enzyme inactivation and lipid peroxidation have all been illustrated in studies with bromobenzene. Thus, many of the principles involved in chemical-induced toxicity have been exemplified in studies with bromobenzene. These studies have provided substantial insight into the role of chemically reactive metabolites in the genesis of xenobiotic-mediated cytotoxicity.  相似文献   

6.
1. NADPH-dependent iron and drug redox cycling, as well as lipid peroxidation process were investigated in microsomes isolated from human term placenta. 2. Paraquat and menadione were found to undergo redox cycling, catalyzed by NADPH:cytochrome P-450 reductase in placental microsomes. 3. The drug redox cycling was able to initiate microsomal lipid peroxidation in the presence of micromolar concentrations of iron and ethylenediaminetetraacetate (EDTA). 4. Superoxide was essential for the microsomal lipid peroxidation in the presence of iron and EDTA. 5. Drastic peroxidative conditions involving superoxide and prolonged incubation in the presence of iron were found to destroy flavin nucleotides, inhibit NADPH:cytochrome P-450 reductase and inhibit propagation step of lipid peroxidation. 6. Reactive oxo-complex formed between iron and superoxide is proposed as an ultimate species for the initiation of lipid peroxidation in microsomes from human term placenta as well as for the destruction of flavin nucleotides and inhibition of NADPH:cytochrome P-450 reductase as well as for impairment of promotion of lipid peroxidation under drastic peroxidative conditions.  相似文献   

7.
The NADPH-dependent lipid peroxidation in human placental mitochondria has been found to be inhibited strongly by amphenone B, aminoglutethimide and carbon monoxide, inhibitors of cytochrome P-450-mediated reactions, but was hardly affected by respiratory chain inhibitors. Cytochrome c, an exogenous electron acceptor which is known to compete with cytochrome P-450 for the reducing equivalents, showed an inhibitory effect on NADPH-dependent lipid peroxidation. The observed NADPH-dependent superoxide generation was also strongly inhibited by amphenone B and aminoglutethimide. Moreover, the lipid peroxidation in placental mitochondria was demonstrated to be stimulated by xanthine/xanthine oxidase added as superoxide generating system. This peroxidation was not affected by amphenone B and aminoglutethimide. On the other hand, the superoxide dismutase was found to inhibit both the xanthine oxidase- and NADPH-dependent lipid peroxidation. These data provide evidence that cytochrome P-450 is involved in NADPH-dependent mitochondrial lipid peroxidation. It is suggested that superoxide liberated from cytochrome P-450, in combination with iron, may be responsible for initiation of NADPH-dependent lipid peroxidation in human placental mitochondria.  相似文献   

8.
Both cytochrome P-450 and glutathione participate in the metabolism of xenobiotics. Their interrelationship is described here, as well as current findings indicating their mutual involvement in lipid peroxidation.  相似文献   

9.
Oxygen inhibition of CCl4 metabolism by different isoenzymes of cytochrome P-450 was assessed by studying liver microsomes isolated from control rats and rats treated with phenobarbital or isoniazid. Rates of CCl4 metabolism were similar for all microsomes under a nitrogen atmosphere. An air atmosphere inhibited metabolism by microsomes from control rats to 12% of the value under nitrogen and metabolism by microsomes from rats treated with phenobarbital to 5%. It inhibited metabolism by microsomes from rats treated with isoniazid only to 32%. Rats treated with phenobarbital, which increases hepatic cytochrome P-450 content, or isoniazid, which does not increase hepatic cytochrome P-450 content, both metabolized more CCl4 than control rats as indicated by exhalation of greater quantities of CCl4 metabolites and by an increase in CCl4 toxicity. These results indicate that some isoenzymes of cytochrome P-450 are more effective than others in metabolizing CCl4 when oxygen is present.  相似文献   

10.
The development of an oxidative stress condition in the liver by lindane intoxication is discussed as a possible hepatotoxic mechanism of the insecticide. Lindane is metabolized by liver microsomal enzymes to a variety of metabolites, which are susceptible of conjugation for proper elimination. In addition, the interaction of lindane with the liver tissue results in the induction of the microsomal cytochrome P-450 system, together with enhanced rates of superoxide radical generation and a significant increase in indicators of lipid peroxidation. Concomitantly, lindane intoxication induces a derangement of some antioxidant mechanisms of the liver cell, including decreased superoxide dismutase and catalase activities and alterations in reduced glutathione content leading to depressed GSH/GSSG ratios. The time course study of the changes in hepatic lipid peroxidation and antioxidant parameters are closely interrelated and coincide with the onset and progression of morphological lesions.  相似文献   

11.
In an in vitro system consisting of human term placental mitochondria and an NADPH-generating system plus Fe2+, significant lipid peroxidation was observed along with a concomitant inhibition of progesterone biosynthesis. This inhibition could be markedly blocked by Mn2+, superoxide dismutase and dimethylfuran, inhibitors of NADPH-dependent lipid peroxidation. In addition, it has been found that malondialdehyde formation is accompanied by a corresponding decrease in placental mitochondrial cytochrome P-450 content. Inhibitors of lipid peroxidation also prevent the loss of cytochrome P-450, further demonstrating a direct relationship between NADPH-dependent lipid peroxidation and degradation of cytochrome P-450 in cell-free systems. These measurements provide the first evidence that the inhibition of progesterone biosynthesis by a NADPH-dependent lipid peroxidation in placental mitochondria is a consequence of cytochrome P-450 degradation due to lipid peroxidation.  相似文献   

12.
13.
During compensatory growth of kidney, microsomal lipid peroxidation is unchanged in the hypertrophy phase and is doubled in a period of hyperplasia. The maximum lipid peroxidation is preceded by a 2-fold increase in the content of cytochrome P-450. Both in microsomes and cytosol, intense peroxidation of lipids is accompanied by a decrease in glutathione content.  相似文献   

14.
The effects of specific xanthine oxidase induction and inhibition on glutathione antioxidant system activity, lipid peroxidation, cytochrome P-450 quantity and corticosteroids concentration in the rat liver were studied. It was dependence established that there was a straight between xanthine oxidase activity and the activity of glutathione antioxidant system, lipid peroxidation and the ascorbic acid formation. The reciprocal dependence was established between xanthine oxidase activity and the concentrations of cytochrome P-450 and corticosteroids.  相似文献   

15.
The ethanol-inducible form of cytochrome P-450 (P-450IIE1) has previously been shown to exhibit an unusually high rate of oxidase activity with the subsequent formation of reactive oxygen species, e.g., hydrogen peroxide, and to be the main contributor of microsomal oxidase activity in liver microsomes from acetone-treated rats [Ekstr?m & Ingelman-Sundberg (1989) Biochem. Pharmacol. (in press)]. The results here presented indicate that oxygen exposure of rats causes an about 4-fold induction of P-450IIE1 in rat liver and lung microsomes. The induction in liver was not accompanied by any measurable increase in the P-450IIE1 mRNA levels, but the enhanced amount of P-450IIE1 accounted for 60% of the net 50% increase in the level of hepatic P-450 as determined spectrophotometrically. The induction of P-450IIE1 was maximal after 60 h of O2 exposure, and concomitant increases in the rates of liver microsomal CCl4-dependent lipid peroxidation, O2 consumption, NADPH oxidation, O2- formation, H2O2 production, and NADPH-dependent microsomal lipid peroxidation were seen. Liver microsomes from oxygen-treated rats had very similar properties to those of microsomes isolated from acetone-treated rats with respect to the P-450IIE1 content and catalytic properties, but different from those of thyroxine-treated animals. Treatment of rats with the P-450IIE1 inducer acetone in combination with oxygen exposure caused a potentiation of the NADPH-dependent liver and lung microsomal lipid peroxidation and decreased the survival time of the rats. The results reached indicate a role for cytochrome P-450 and, in particular, for cytochrome P-450IIE1 in oxygen-mediated tissue toxicity.  相似文献   

16.
The effects of cobaltic protoporphyrin IX (CPP) administration on hepatic microsomal drug metabolism, carbon tetrachloride activation and lipid peroxidation have been investigated using male Wistar rats. CPP (125 mumol/kg, 72 h before sacrifice) profoundly decreased the levels of hepatic microsomal heme, particularly cytochrome P-450. Consequently, the associated mixed-function oxidase systems were equally strongly depressed. An unexpected finding was that CPP administration also greatly decreased the activity of NADPH/cytochrome c reductase, a result not generally found with the administration of the more widely used cytochrome P-450 depleting agents, cobaltous chloride. Activation of carbon tetrachloride, measured as covalent binding of [14C] CCl4, spin-trapping of CCl3 and CCl4-stimulated lipid peroxidation, was much lower in liver microsomes from CPP-treated rats. Other microsomal lipid peroxidation systems, utilising cumene hydroperoxide or NADPH/ADP-Fe2+, were also depressed in parallel with the decrease in microsomal enzyme activities.  相似文献   

17.
The relationship between NADPH-dependent lipid peroxidation and the degradation of cytochrome P-450 has been studied in bovine adrenal cortex mitochondria. Malondialdehyde formation is accompanied by a corresponding decrease in total cytochrome P-450 content. Inhibitors of lipid peroxidation also prevent the loss of cytochrome P-450, further demonstrating a direct relationship between NADPH-dependent lipid peroxidation and degradation of P-450. To differentiate between cytochrome P-450(11)beta and P-450scc, steroid-induced difference spectra were used to evaluate P-450 degradation. These measurements provide the first evidence that both P-450's are degraded during NADPH-dependent lipid peroxidation with P-450(11)beta being much more susceptible to this process.  相似文献   

18.
2-Mercaptopropionylglycine, a synthetic thiol, significantly stimulated NADPH-dependent lipid peroxidation by rat liver microsomes, while the thiol inhibited the microsomal aminopyrine N-demethylase activity with an increase in lipid peroxidation. But, a strong inhibition of lipid peroxidation by EDTA could not abolish the inhibition of the N-demethylase activity by the thiol. Besides, the thiol markedly increased not only the Km value for aminopyrine N-demethylase but also the apparent Ks value for aminopyrine binding to the microsomal oxidized cytochrome P-450 by interacting with the cytochrome P-450.  相似文献   

19.
Hepatic changes during inflammation were studied in rats bearing a carrageenan induced granuloma. In spite of a decrease in the metabolic capacity of microsomes to induce lipid peroxidation during inflammation, the endogenous lipid peroxidation remained unchanged and unrelated with the hepatic activities measured. The continuous increase in hepatic cAMP observed during acute and chronic phases could be related to adenylate cyclase stimulation by mediators, and could be an initial step in the hepatocyte adaptation leading to the increased level of hepatic caeruloplasmin, to the reduction of cytochrome P-450 level and to the modifications of Ca(2+) sequestration by microsomes.  相似文献   

20.
Rat liver microsomal membranes contain a reduced-glutathione-dependent protein(s) that inhibits lipid peroxidation in the ascorbate/iron microsomal lipid peroxidation system. It appears to exert its protective effect by scavenging free radicals. The present work was carried out to assess the effect of this reduced-glutathione-dependent mechanism on carbon tetrachloride-induced microsomal injury and on carbon tetrachloride metabolism because they are known to involve free radicals. Rat liver microsomes were incubated at 37 degrees C with NADPH, EDTA and carbon tetrachloride. The addition of 1 mM-reduced glutathione (GSH) markedly inhibited lipid peroxidation and glucose 6-phosphatase inactivation and, to a lesser extent, inhibited cytochrome P-450 destruction. GSH also inhibited covalent binding of [14C]carbon tetrachloride-derived 14C to microsomal protein. These results indicate that a GSH-dependent mechanism functions to protect the microsomal membrane against free-radical injury in the carbon tetrachloride system as well as in the iron-based systems. Under anaerobic conditions, GSH had no effect on chloroform formation, carbon tetrachloride-induced destruction of cytochrome P-450 or covalent binding of [14C]carbon tetrachloride-derived 14C to microsomal protein. Thus, the GSH protective mechanism appears to be O2-dependent. This suggests that it may be specific for O2-based free radicals. This O2-dependent GSH protective mechanism may partly underlie the observed protection of hyperbaric O2 against carbon tetrachloride-induced lipid peroxidation and hepatotoxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号