首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of NO in ischemia/reperfusion injury in isolated rat heart   总被引:5,自引:0,他引:5  
Nitric oxide (NO) is an important regulator of myocardial function and vascular tone under physiological conditions. However, its role in the pathological situations, such as myocardial ischemia is not unequivocal, and both positive and negative effects have been demonstrated in different experimental settings including human pathology. The aim of the study was to investigate the role of NO in the rat hearts adapted and non-adapted to ischemia. Isolated Langendorff-perfused hearts were subjected to test ischemic (TI) challenge induced by 25 min global ischemia followed by 35 min reperfusion. Short-term adaptation to ischemia (ischemic preconditioning, IP) was evoked by 2 cycles of 5 min ischemia and 5 min reperfusion, before TI. Recovery of function at the end of reperfusion and reperfusion-induced arrhythmias served as the end-points of injury. Coronary flow (CF), left ventricular developed pressure (LVDP), and dP/dt(max) (index of contraction) were measured at the end of stabilization and throughout the remainder of the protocol until the end of reperfusion. The role of NO was investigated by subjecting the hearts to 15 min perfusion with NO synthase (NOS) inhibitor L-NAME (100 mmol/l), prior to sustained ischemia. At the end of reperfusion, LVDP in the controls recovered to 29.0 +/- 3.9 % of baseline value, whereas preconditioned hearts showed a significantly increased recovery (LVDP 66.4 +/- 5.7 %, p < 0.05). Recovery of both CF and dP/dt(max) after TI was also significantly higher in the adapted hearts (101.5 +/- 5.8 % and 83.64 +/- 3.92 % ) as compared with the controls (71.9 +/- 6.3 % and 35.7 +/- 4.87 %, respectively, p < 0.05). NOS inhibition improved contractile recovery in the non-adapted group (LVDP 53.8 +/- 3.1 %; dP/dt(max) 67.5 +/- 5.92 %) and increased CF to 82.4 +/- 5.2 %. In contrast, in the adapted group, it abolished the protective effect of IP (LVDP 31.8 +/- 3.1 %; CF 70.3 +/- 3.4 % and dP/dt(max) 43.25 +/- 2.19 %). Control group exhibited 100 % occurrence of ventricular tachycardia (VT), 57 % incidence of ventricular fibrillation (VF) - 21 % of them was sustained VF (SVF); application of L-NAME attenuated reperfusion arrhythmias (VT 70 %, VF 20 %, SVF 0 %). Adaptation by IP also reduced arrhythmias, however, L-NAME in the preconditioned hearts increased the incidence of arrhythmias (VT 100 %, VF 58 %, SVF 17 %). In conclusion: our results indicate that administration of L-NAME might be cardioprotective in the normal hearts exposed to ischemia/reperfusion (I/R) alone, suggesting that NO contributes to low ischemic tolerance in the non-adapted hearts. On the other hand, blockade of cardioprotective effect of IP by L-NAME points out to a dual role of NO in the heart: a negative role in the non-adapted myocardium subjected to I/R, and a positive one, due to its involvement in the mechanisms of protection triggered by short-term cardiac adaptation by preconditioning.  相似文献   

2.
Ischemic preconditioning (IP) triggers cardioprotection via a signaling pathway that converges on mitochondria. The effects of the inhibition of carnitine palmitoyltransferase I (CPT-I), a key enzyme for transport of long chain fatty acids (LCFA) into the mitochondria, on ischemia/reperfusion (I/R) injury are unknown. Here we investigated, in isolated perfused rat hearts, whether sub-chronic CPT-I inhibition (5 days i.p. injection of 25 mg/kg/day of Etomoxir) affects I/R-induced damages and whether cardioprotection by IP can be induced after this inhibition. Effects of global ischemia (30 min) and reperfusion (120 min) were examined in hearts harvested from Control (untreated), Vehicle- or Etomoxir-treated animals. In subsets of hearts from the three treated groups, IP was induced by three cycles of 3 min ischemia followed by 10 min reperfusion prior to I/R. The extent of I/R injury under each condition was assessed by changes in infarct size as well as in myocardial contractility. Postischemic contractility, as indexed by developed pressure and dP/dt(max), was similarly affected by I/R, and was similarly improved with IP in Control, Vehicle or Etomoxir treated animals. Infarct size was also similar in the three subsets without IP, and was significantly reduced by IP regardless of CPT-I inhibition. We conclude that CPT-I inhibition does not affect I/R damages. Our data also show that IP affords myocardial protection in CPT-I inhibited hearts to a degree similar to untreated animals, suggesting that a long-term treatment with the metabolic anti-ischemic agent Etomoxir does not impede the possibility to afford cardioprotection by ischemic preconditioning.  相似文献   

3.
This report demonstrates that mice deficient in Flt-1 failed to establish ischemic preconditioning (PC)-mediated cardioprotection in isolated working buffer-perfused ischemic/reperfused (I/R) hearts compared to wild type (WT) subjected to the same PC protocol. WT and Flt-1+/- mice were divided into four groups: (1) WT I/R, (2) WT + PC, (3) Flt-1+/- I/R, and (4) Flt-1+/- + PC. Group 1 and 3 mice were subjected to 30 min of ischemia followed by 2 h of reperfusion and group 2 and 4 mice were subjected to four episodes of 4-min global ischemia followed by 6 min of reperfusion before ischemia/reperfusion. For both wild-type and Flt-1+/- mice, the postischemic functional recovery for the hearts was lower than the baseline, but the recovery for the knockout mice was less compared to the WT mice even in preconditioning. The myocardial infarction and apoptosis were higher in Flt-1+/- compared to wild-type I/R. Flt-1+/- KO mice demonstrated pronounced inhibition of the expression of iNOS, p-AKT & p-eNOS. Significant inhibition of STAT3 & CREB were also observed along with the inhibition of HO-1 mRNA. Results demonstrate that Flt-1+/- mouse hearts are more susceptible to ischemia/reperfusion injury and also document that preconditioning is not as effective as found in WT and therefore suggest the importance of VEGF/Flt-1 signaling in ischemic/reperfused myocardium.  相似文献   

4.
The aim of this study was to determine whether changes in protein content and/or gene expression of Na+-K+-ATPase subunits underlie its decreased enzyme activity during ischemia and reperfusion. We measured protein and mRNA subunit levels in isolated rat hearts subjected to 30 min of ischemia and 30 min of reperfusion (I/R). The effect of ischemic preconditioning (IP), induced by three cycles of ischemia and reperfusion (10 min each), was also assessed on the molecular changes in Na+-K+-ATPase subunit composition due to I/R. I/R reduced the protein levels of the alpha2-, alpha3-, beta1-, and beta2-isoforms by 71%, 85%, 27%, and 65%, respectively, whereas the alpha1-isoform was decreased by <15%. A similar reduction in mRNA levels also occurred for the isoforms of Na+-K+-ATPase. IP attenuated the reduction in protein levels of Na+-K+-ATPase alpha2-, alpha3-, and beta2-isoforms induced by I/R, without affecting the alpha1- and beta1-isoforms. Furthermore, IP prevented the reduction in mRNA levels of Na+-K+-ATPase alpha2-, alpha3-, and beta1-isoforms following I/R. Similar alterations in protein contents and mRNA levels for the Na+/Ca2+ exchanger were seen due to I/R as well as IP. These findings indicate that remodeling of Na+-K+-ATPase may occur because of I/R injury, and this may partly explain the reduction in enzyme activity in ischemic heart disease. Furthermore, IP may produce beneficial effects by attenuating the remodeling of Na+-K+-ATPase and changes in Na+/Ca2+ exchanger in hearts after I/R.  相似文献   

5.
Although Ca(2+)/calmodulin-dependent protein kinase II (CaMK II) is known to modulate the function of cardiac sarcoplasmic reticulum (SR) under physiological conditions, the status of SR CaMK II in ischemic preconditioning (IP) of the heart is not known. IP was induced by subjecting the isolated perfused rat hearts to three cycles of brief ischemia-reperfusion (I/R; 5 min ischemia and 5 min reperfusion), whereas the control hearts were perfused for 30 min with oxygenated medium. Sustained I/R in control and IP groups was induced by 30 min of global ischemia followed by 30 min of reperfusion. The left ventricular developed pressure, rate of the left ventricular pressure, as well as SR Ca(2+)-uptake activity and SR Ca(2+)-pump ATPase activity were depressed in the control I/R hearts; these changes were prevented upon subjecting the hearts to IP. The beneficial effects of IP on the I/R-induced changes in contractile activity and SR Ca(2+) pump were lost upon treating the hearts with KN-93, a specific CaMK II inhibitor. IP also prevented the I/R-induced depression in Ca(2+)/calmodulin-dependent SR Ca(2+)-uptake activity and the I/R-induced decrease in the SR CaMK II activity; these effects of IP were blocked by KN-93. The results indicate that IP may prevent the I/R-induced alterations in SR Ca(2+) handling abilities by preserving the SR CaMK II activity, and it is suggested that CaMK II may play a role in mediating the beneficial effects of IP on heart function.  相似文献   

6.
Reactive oxygen species (ROS) generated during ischemia-reperfusion (I/R) enhance myocardial injury, but brief periods of myocardial ischemia followed by reperfusion [ischemic preconditioning (IP)] induce cardioprotection. Ischemia is reported to stimulate glucose uptake through the translocation of GLUT-4 from the intracellular vesicles to the sarcolemma. In the present study we demonstrated involvement of ROS in IP-mediated GLUT-4 translocation along with increased expression of caveolin (Cav)-3, phospho (p)-endothelial nitric oxide synthase (eNOS), p-Akt, and decreased expression of Cav-1. The rats were divided into the following groups: 1) control sham, 2) N-acetyl-L-cysteine (NAC, free radical scavenger) sham (NS), 3) I/R, 4) IP + I/R (IP), and 5) NAC + IP (IPN). IP was performed by four cycles of 4 min of ischemia and 4 min of reperfusion followed by 30 min of ischemia and 3, 24, 48 h of reperfusion, depending on the protocol. Increased mRNA expression of GLUT-4 and Cav-3 was observed after 3 h of reperfusion in the IP group compared with other groups. IP increased expression of GLUT-4, Cav-3, and p-AKT and p-eNOS compared with I/R. Coimmunoprecipitation demonstrated decreased association of Cav-1/eNOS in the IP group compared with the I/R group. Significant GLUT-4 and Cav-3 association was also observed in the IP group. This association was disrupted when NAC was used in conjunction with IP. It clearly documents a significant role of ROS signaling in Akt/eNOS/Cav-3-mediated GLUT-4 translocation and association in IP myocardium. In conclusion, we demonstrated a novel redox mechanism in IP-induced eNOS and GLUT-4 translocation and the role of caveolar paradox in making the heart euglycemic during the process of ischemia, leading to myocardial protection in a clinically relevant rat ischemic model.  相似文献   

7.
Preconditioning with brief periods of ischemia-reperfusion (I/R) induces a delayed protection of coronary endothelial cells against reperfusion injury. We assessed the possible role of nitric oxide (NO) produced during prolonged I/R as a mediator of this endothelial protection. Anesthetized rats were subjected to 20-min cardiac ischemia/60-min reperfusion, 24 h after sham surgery or cardiac preconditioning (1 x 2-min ischemia/5-min reperfusion and 2 x 5-min ischemia/5-min reperfusion). The nonselective NO synthase (NOS) inhibitor l-NAME, the selective inhibitors of neuronal (7-nitroindazole) or inducible (1400W) NOS, or the peroxynitrite scavenger seleno-l-methionine were administered 10 min before prolonged ischemia. Preconditioning prevented the reperfusion-induced impairment of coronary endothelium-dependent relaxations to acetylcholine (maximal relaxation: sham 77 +/- 3; I/R 44 +/- 6; PC 74 +/- 5%). This protective effect was abolished by l-NAME (41 +/- 7%), whereas 7-NI, 1400W or seleno-l-methionine had no effect. The abolition of preconditioning by l-NAME, but not by selective nNOS or iNOS inhibition, suggests that NO produced by eNOS is a mediator of delayed endothelial preconditioning.  相似文献   

8.
Ischemic preconditioning (IP) protects the heart against subsequent prolonged ischemia. Whether the beta-adrenoceptor/adenylate cyclase pathway contributes to this cardioprotection is not yet fully known. Using enzyme catalytic cytochemistry we studied the adenylate cyclase activity and its distribution in the preconditioned rat heart. Adenylate cyclase activity was examined in Langendorff-perfused rat hearts subjected to the following conditions: control perfusion; 30 min regional ischemia; 5 min occlusion and 10 min reperfusion (IP); IP followed by ischemia. Ischemia-induced arrhythmias and the effect of ischemic preconditioning on the incidence of arrhythmias were analyzed. At the end of experiment the heart was shortly prefixed with glutaraldehyde. Tissue samples from the left ventricle were incubated in a medium containing the specific substrate AMP-PNP for adenylate cyclase and then routinely processed for electron microscopy. Adenylate cyclase activity was cytochemically demonstrated in the sarcolemma and the junctional sarcoplasmic reticulum (JSR) in control hearts, while it was absent after test ischemia. The highest activity of the precipitate was observed after ischemic preconditioning. In the preconditioned hearts followed by test ischemia, adenylate cyclase activity in the precipitate was preserved in sarcolemma and even more in JSR. Protective effect of ischemic preconditioning was manifested by the suppression of severe arrhythmias. These results indicate the involvement of the adenylate cyclase system in mechanisms underlying ischemic preconditioning.  相似文献   

9.
Protein kinase C (PKC), p38 MAP kinase, and mitogen-activated protein kinase-activated kinases 2 and 3 (MAPKAPK2 and MAPKAPK3) have been implicated in ischemic preconditioning (PC) of the heart to reduce damage following a myocardial infarct. This study examined whether extracellular signal-regulated kinase (Erk) 1, p70 ribosomal S6 kinase (p70 S6K), casein kinase 2 (CK2), and other hsp27 kinases are also activated by PC, and if they are required for protection in rabbit hearts. CK2 and hsp27 kinase activities declined during global ischemia in control hearts, whereas PC with 5 min ischemia and 10 min reperfusion increased their activities during global ischemia. Resource Q chromatography resolved two distinct peaks of hsp27 phosphotransferase activities; the first peak (at 0.36 M NaCl) appeared to correspond to the 55-kDa MAPKAPK2. Erk1 activity was elevated in both control and PC hearts after post-ischemic reperfusion, but no change was observed in p70 S6K activity. Infarct size (measured by triphenyltetrazolium staining) in isolated rabbit hearts subjected to 30 min regional ischemia and 2 h reperfusion was 31.0+/-2.6% of the risk zone in controls and was 10.3+/-2.2% in PC hearts (p<0.001). Neither the CK2 inhibitor 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB) nor the Mek1/2 inhibitor PD98059 infused during ischemia blocked protection by PC. The activation of CK2 and Erk1 in ischemic preconditioned hearts appear to be epiphenomena and not required for the reduction of infarction from myocardial ischemia.  相似文献   

10.
The opening of mitochondrial ATP-sensitive K+ (mitoK(ATP)) channels has a significant role in delayed ischemic preconditioning, and nitric oxide (NO) is a well-known trigger for its activation. However, the source of NO remains unknown. Phosphorylation of endothelial NO synthase (eNOS) increases NO production and reduces apoptosis through the Akt signaling pathway. To elucidate the Akt signaling pathway involved in the opening and antiapoptotic effect of mitoKATP channel during delayed pharmacological preconditioning, the mitoKATP channel opener diazoxide (DE, 7 microg/kg i.p.) alone or DE plus Nomega-nitro-L-arginine methyl ester (L-NAME, 30 microg/kg i.v.), an inhibitor of NOS, or wortmannin (WTN, 15 microg/kg i.v.), an inhibitor of phosphatidylinositol 3'-kinase (PI3 kinase), was administered to wild-type (WT) or eNOS(-/-) mice during DE treatment. Twenty-four hours later, hearts were isolated and subjected to 40 min ischemia and 30 min reperfusion (I/R). The effect of DE and other interventions on hemodynamic, terminal dUTP nick-end labeling staining and biochemical changes during I/R was assessed in mouse hearts. Treatment with DE resulted in a 2.2-fold increase in phosphorylation of Akt and a significant increase in eNOS and inducible NOS (iNOS) proteins. Akt is upstream of NOS and the mitoKATP channel as simultaneous pretreatment of WTN with DE abolished phosphorylation of Akt, which was not affected by L-NAME and 5-hydroxydecanoate. In hearts treated with DE, cardiac function was significantly improved after I/R, and apoptosis was also significantly decreased. WTN abolished the antiapoptotic effect of DE. Similarly, S-methylisothiourea, a specific iNOS inhibitor, when given to eNOS(-/-) mice that were pretreated with DE completely abolished the beneficial effects of DE on reduction of apoptotic death. DE was partially effective in eNOS(-/-) mice against the ischemic injury. It is concluded that DE activates Akt through the PI3 kinase signaling pathway and iNOS and eNOS is downstream of Akt.  相似文献   

11.
12.
目的:研究肢体缺血预处理对大鼠肝缺血/再灌注损伤是否具有保护作用。方法:雄性SD大鼠32只,随机分为对照组(S组);缺血/再灌注组(I/R组);经典缺血预处理组(IPC组);肢体缺血预处理组(远端缺血预处理组,RPC组)。S组仅行开腹,不作其他处理;IPC组以肝缺血5min作预处理;RPC组以双后肢缺血5min,反复3次作预处理,2个预处理组及I/R组均行肝缺血1h再灌注3h。取血用于血清谷丙转氨酶(ALT)与血清谷草转氨酶(AST)检测。切取肝组织用于测定湿干比(W/D)、中性粒细胞(PMN)计数及观察显微、超微结构的变化。结果:与I/R组比较,IPC组,RPC组ALT,AST,W/D值,及PMN计数均明显降低(P〈0.01),肝脏的显微及超微结构损伤减轻。结论:肢体缺血预处理对大鼠肝脏I/R损伤有明显的保护作用,强度与经典缺血预处理相当,其机制可能与抑制肝脏炎症反应、减轻肝脏水肿、改善肝组织微循环有关。  相似文献   

13.
The role of the proapototic Bax gene in ischemia-reperfusion (I/R) injury was studied in three groups of mice: homozygotic knockout mice lacking the Bax gene (Bax(-/-)), heterozygotic mice (Bax(+/-)), and wild-type mice (Bax(+/+)). Isolated hearts were subjected to ischemia (30 min, 37 degrees C) and then to 120 min of reperfusion. The left ventricular developed force of Bax-deficient vs. Bax(+/+) hearts at stabilization and at 120 min of reperfusion was 1,411 +/- 177 vs. 1,161 +/- 137 mg and 485 +/- 69 vs. 306 +/- 68 mg, respectively. Superior cardiac function of Bax(-/-) hearts after I/R was accompanied by a decrease in creatine kinase release, caspase 3 activity, irreversible ischemic injury, and the number of terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling-positive cardiomyocytes. Electron microscopic evaluation revealed reduced damage to mitochondria and the nuclear chromatin structure in Bax-deficient mice. In the Bax(+/-) hearts, the damage markers were moderate. The superior tolerance of Bax knockout hearts to I/R injury recommends this gene as a potential target for therapeutic intervention in patients with severe and intractable myocardial ischemia.  相似文献   

14.
Inhibition of Na+/H+ exchange with amiloride analogues has been shown to provide functional protection during ischemia and reperfusion and to reduce infarct size in isolated rat hearts. In rat hearts, treatment with ethylisopropyl-amiloride (EIPA, a selective Na+/H+ exchange inhibitor) was additive to the protection afforded by ischemic preconditioning. In addition, such compounds have been demonstrated to reduce infarct size in in situ rabbit hearts. The aim of the present study was to determine to what extent preischemic treatment with EIPA could reduce infarct size in an in situ rabbit model of regional ischemia and reperfusion. We also wished to determine if this effect was additive to the infarct reducing effect of ischemic preconditioning. Anaesthetized, open chest rabbits, were subjected to 45 min of regional ischemia and 150 min of reperfusion. The risk zone was determined by fluorescent particles and infarct size was determined by TTC staining. Four groups were investigated: control, ischemic preconditioned (IP) (5 min of ischemia followed by 10 min reperfusion), EIPA (0.65 mg/kg iv given preischemically) and EIPA + IP. The main results expressed as percent infarction of the risk zone ± S.E.M. for the different groups were: control 59.2 ± 3.3% (n = 6), IP 16.3 ± 2.1% (n = 6) (p < 0.001 vs. control), EIPA 16.9 ± 4.1% (n = 5) (p < 0.001 vs. control), EIPA + IP 22.5 ± 9.5% (n = 6) (p < 0.001 vs. control). In conclusion: EIPA, when administered prior to ischemia, caused a reduction in infarct size in the in situ rabbit heart which was similar to that seen with ischemic preconditioning, however, the effect was not additive to ischemic preconditioning.  相似文献   

15.
Ischemic preconditioning (IPC) strongly protects against ischemia-reperfusion injury; however, its effect on subsequent myocardial oxygenation is unknown. Therefore, we determine in an in vivo mouse model of regional ischemia and reperfusion (I/R) if IPC attenuates postischemic myocardial hyperoxygenation and decreases formation of reactive oxygen/nitrogen species (ROS/RNS), with preservation of mitochondrial function. The following five groups of mice were studied: sham, control (I/R), ischemic preconditioning (IPC + I/R, 3 cycles of 5 min coronary occlusion/5 min reperfusion) and IPC + I/R N(G)-nitro-L-arginine methyl ester treated, and IPC + I/R eNOS knockout mice. I/R and IPC + I/R mice were subjected to 30 min regional ischemia followed by 60 min reperfusion. Myocardial Po(2) and redox state were monitored by electron paramagnetic resonance spectroscopy. In the IPC + I/R, but not the I/R group, regional blood flow was increased after reperfusion. Po(2) upon reperfusion increased significantly above preischemic values in I/R but not in IPC + I/R mice. Tissue redox state was measured from the reduction rate of a spin probe, and this rate was 60% higher in IPC than in non-IPC hearts. Activities of NADH dehydrogenase (NADH-DH) and cytochrome c oxidase (CcO) were reduced in I/R mice after 60 min reperfusion but conserved in IPC + I/R mice compared with sham. There were no differences in NADH-DH and CcO expression in I/R and IPC + I/R groups compared with sham. After 60 min reperfusion, strong nitrotyrosine formation was observed in I/R mice, but only weak staining was observed in IPC + I/R mice. Thus IPC markedly attenuates postischemic myocardial hyperoxygenation with less ROS/RNS generation and preservation of mitochondrial O(2) metabolism because of conserved NADH-DH and CcO activities.  相似文献   

16.
Endotoxemia produces hepatic vascular dysregulation resulting from inhibition of endothelin (ET)-stimulated NO production. Mechanisms include overexpression of caveolin-1 (Cav-1) and altered phosphorylation of endothelial nitric oxide (NO) synthase (NOS; eNOS) in sinusoidal endothelial cells. Since ischemia-reperfusion (I/R) also causes vascular dysregulation, we tested whether the mechanisms are the same. Rats were exposed to either mild (30 min) or moderate (60 min) hepatic ischemia in vivo followed by reperfusion (6 h). Livers were harvested and prepared into precision-cut liver slices for in vitro analysis of NOS activity and regulation. Both I/R injuries significantly abrogated both the ET-1 (1 microM) and the ET(B) receptor agonist (IRL-1620, 0.5 microM)-mediated stimulation of NOS activity. 30 min I/R resulted in overexpression of Cav-1 and loss of ET-stimulated phosphorylation of Ser1177 on eNOS, consistent with an inflammatory response. Sixty-minute I/R also resulted in loss of ET-stimulated Ser1177 phosphorylation, but Cav-1 expression was not altered. Moreover, expression of ET(B) receptors was significantly decreased. This suggests that the failure of ET to activate eNOS following 60-min I/R is associated with decreased protein expression consistent with ischemic injury. Thus hepatic vascular dysregulation following I/R is mediated by inflammatory mechanisms with mild I/R whereas ischemic mechanisms dominate following more severe I/R stress.  相似文献   

17.
Genetically engineered mice provide an excellent tool to study the role of a particular gene in biological systems and will be increasingly used as models to understand the signal transduction mechanisms involved in ischemic preconditioning (IP). However, the phenomenon of IP has not been well characterized in this species. We therefore attempted to examine whether IP could protect isolated mouse heart against global ischemia/reperfusion (GI/R) injury. Thirty adult mice hearts were perfused at constant pressure of 55 mmHg in Langendorff mode. Following 20 min equilibration, the hearts were randomized into three groups (n = 10/each): (1) Control Group; (2) IP2.5 Group: IP with two cycles of 2.5 min GI + 2.5 min R; (3) IP5 Group: IP with 5 min GI + 5 min R. All hearts were then subjected to 20 min of GI and 30 min R (37°C). Ventricular developed force was measured by a force transducer attached to the apex. Leakage of CK and LDH was measured in coronary efflux. Infarct size was determined by tetrazolium staining. Following sustained GI/R, infarct size was significantly reduced in IP2.5 (13.8 ± 2.3%), but not in IP5 (20.1 ± 4.0%), when compared with non-preconditioned control (23.6 ± 3.8%) hearts. CK and LDH release was also reduced in both IP2.5 and IP5 groups. No significant improvement in post-ischemic ventricular contractile function was observed in either IP groups. We conclude that IP with repetitive cycles of brief GI/R is able to reduce myocardial infarct size and intracellular enzyme leakage caused by a sustained GI/R in the isolated perfused mouse heart. This anti-necrosis cardioprotection induced by IP was not associated with the amelioration of post-ischemic ventricular dysfunction.  相似文献   

18.
The aims of the present study were to establish if myocardial ischemia/reperfusion is associated with altered eNOS activity and if myocardial eNOS detection depends on its activity. We determined detectable eNOS in (1) myocardium of isolated perfused rat hearts subjected to either global or regional ischemia and (2) in left ventricular biopsies from patients undergoing two different methods of myocardial protection (i.e., intermittent cold blood cardioplegia and continuous coronary perfusion with warm, beta-blocker-enriched blood) during coronary artery surgery. NOS detection was performed by NADPH-d staining and three eNOS-antibodies against different eNOS epitopes. In addition, activity dependent alteration of detectable eNOS was proofed by bradykinin treatment for 2 to 10 min. Ischemic and receptor mediated eNOS activation increased NADPH-d reactivity and eNOS immunoreaction as measured by antibodies against either amino acids of a central bovine eNOS domain or the human eNOS N-terminal end. In contrast, the antibody against the human eNOS C-terminal end exhibited no alteration of eNOS immunoreaction. The transient eNOS activation was associated with increased cGMP content. In human myocardium subjected to ischemia during cardiac surgery we found that early reperfusion increases eNOS activity. These data demonstrate a strong association between myocardial ischemia/reperfusion and increased eNOS activity as measured by immunocytochemical staining against specific eNOS epitopes. It appears that eNOS activation and subsequent NO release may act as a regulatory system to counter balance the potentially deleterious effects of myocardial ischemia/reperfusion.  相似文献   

19.
We tested whether the activation of proteolytic enzymes, calpain, and matrix metalloproteinases (MMPs) during ischemia-reperfusion (I/R) is mediated through oxidative stress. For this purpose, isolated rat hearts were subjected to a 30?min global ischemia followed by a 30?min reperfusion. Cardiac function was monitored and the activities of Na(+)/K(+)-ATPase, Mg(2+)-ATPase, calpain, and MMP were measured. Depression of cardiac function and Na(+)/K(+)-ATPase activity in I/R hearts was associated with increased calpain and MMP activities. These alterations owing to I/R were similar to those observed in hearts perfused with hypoxic medium, H(2)O(2) and xanthine plus xanthine oxidase. The I/R-induced changes were attenuated by ischemic preconditioning as well as by perfusing the hearts with N-acetylcysteine or mercaptopropionylglycine. Inhibition of MMP activity in hearts treated with doxycycline depressed the I/R-induced changes in cardiac function and Na(+)/K(+)-ATPase activity without affecting the calpain activation. On the other hand, inhibition of calpain activity upon treatment with leupeptin or MDL 28170 significantly reduced the MMP activity in addition to attenuating the I/R-induced alterations in cardiac function and Na(+)/K(+)-ATPase activity. These results suggest that the I/R-induced depression in Na(+)/K(+)-ATPase and cardiac function may be a consequence of the increased activities of both calpain and MMP because of oxidative stress in the heart.  相似文献   

20.
Long duration ischemia in hypothermic conditions followed by reperfusion alters membrane transport function and in particular Na,K-ATPase. We compared the protective effect of two well-described cardioplegic solutions on cardiac Na,K-ATPase activity during reperfusion after hypothermic ischemia. Isolated perfused rat hearts (n = 10) were arrested with CRMBM or UW cardioplegic solutions and submitted to 12 hr of ischemia at 4 degrees C in the same solution followed by 60 min of reperfusion. Functional recovery and Na,K-ATPase activity were measured at the end of reperfusion and compared with control hearts and hearts submitted to severe ischemia (30 min at 37 degrees C) followed by reflow. Na,K-ATPase activity was not altered after 12 hr of ischemia and 1 hr reflow when the CRMBM solution was used for preservation (55 +/- 2 micromolPi/mg prot/hr) compared to control (53 +/- 2 micromol Pi/mg prot/hr) while it was significantly altered with UW solution (44 +/- 2 micromol Pi/mg prot/hr, p < 0.05 vs control and CRMBM). Better preservation of Na,K-ATPase activity with the CRMBM solution was associated with higher functional recovery compared to UW as represented by the recovery of RPP, 52 +/- 12% vs 8 +/- 5%, p < 0.05 and coronary flow (70 +/- 2% vs 50 +/- 8%, p < 0.05). The enhanced protection provided by CRMBM compared to UW may be related to its lower K+ content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号