首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The concentration of prostaglandin F (PGF) has been measured by radioimmunoassay in follicular fluid collected from follicles at various time intervals after treatment of prepuberal gilts with pregnant mare serum gonadotropin and human chorionic gonadotropin to induce ovulation. A high proportion of animals will ovulate 116 ± 8 hr after this treatment. Pre-ovulatory follicles can be identified on the basis of gross morphological appearance 10–12 hr before the predicted time of ovulation. The concentration of PGF in fluid from follicles judged not to be pre-ovulatory was relatively constant at about 0.45 ng per g and appeared to be independent of the time of sampling. An increase in the concentration of PGF was observed in fluid collected from follicles classified as destined to ovulate. This increase became more pronounced as the time of ovulation approached and reached a maximum at or about the time of follicle rupture.These data provide evidence in support of a role for prostaglandins in the ovulatory process in the pig.  相似文献   

2.
The concentration of prostaglandin F (PGF) has been measured by radioimmunoassay in follicular fluid collected from follicles at various time intervals after treatment of prepuberal gilts with pregnant mare serum gonadotropin and human chorionic gonadotropin to induce ovulation. A high proportion of animals will ovulate 116 +/- 8 hr after treatment. Pre-ovulatory follicles can be identified on the basis of gross morphological apperance 10-12 hr before the predicted time of ovulation. The concentration of PGF in fluid from follicles judged not to be pre-ovulatory was relatively constant at about 0.45 ng per g and appeared to be independent of the time of sampling. An increase in the concentration of PGF was observed in fluid collected from follicles classified as destined to ovulate. This increase became more pronounced as the time of ovulation approached and reached a maximum at or about the time of follicle rupture. These data provide evidence in support of a role for prostaglandins in the ovulatory process in the pib.  相似文献   

3.
The concentrations of cyclic adenosine 3′,5′-monophosphate (cyclic AMP) and prostaglandins E and F (PGE and PGF) were determined in follicular fluid collected from follicles of prepubertal gilts at various times after treatment with pregnant mare serum gonadotropin (PMSG) and human chorionic gonadotropin (hCG) to induce ovulation. The concentrations of cyclic AMP, PGE and PGF in the follicular fluid after PMSG treatment but prior to hCG injection were about 1 pmol/ml, 1 ng/ml and 0.2 ng/ml, respectively. After hCG administration, the follicular fluid levels of cyclic AMP increased markedly, reaching a peak (400-fold increase) about 4 h after injection and then declined gradually to pre-hCG levels. A second rise (2.5- to 5-fold increase) occurred about 30 h after hCG with the levels being sustained up to the expected time of ovulation. In contrast, the levels of PGE and PGF remained relatively constant until 28–30 h after hCG treatment. Thereafter, the concentrations of both prostaglandins began to rise with the increases becoming more pronounced and reaching maximal values as the expected time of ovulation approached. These data provide further evidence for a physiological role of follicular prostaglandins in the process of ovulation but do not support an obligatory role for prostaglandins in the acute gonadotropin stimulation of cyclic AMP formation.  相似文献   

4.
The concentrations of cyclic adenosine 3', 5'-monophosphate (cyclic AMP) and prostaglandins E and F (PGE and PGF) were determined in follicular fluid collected from follicles of prepubertal gilts at various times after treatment with pregnant mare serum gonadotropin (PMSG) and human chorionic gonadotropin (hCG) to induced ovulation. The concentrations of cyclic AMP, PGE and PGF in the follicular fluid after PMSG treatment but prior to hCG injection were about 1 pmol/ml, 1 ng/ml and 0.2 ng/ml, respectively. After hCG administration, the follicular fluid levels of cyclic AMP increased markedly, reaching a peak (400-fold increase) about 4 h after injection and then declined gradually to pre-hCG levels. A second rise (2.5- to 5-fold increase) occurred about 30 h after hCG with the levels being sustained up to the expected time of ovulation. In contrast, the levels of PGE and PGF remained relatively constant until 28-30 h after hCG treatment. Thereafter, the concentrations of both prostaglandins began to rise with the increases becoming more pronounced and reaching maximal values as the expected time of ovulation approached. These data provide further evidence for a physiological role of follicular prostaglandins in the process of ovulation but do not support an obligatory role for prostaglandins in the acute gonadotropin stimulation of cyclic AMP formation.  相似文献   

5.
In previous studies we have demonstrated that prior to hCG induced ovulation the levels of PGF and PGE in rabbit Graafian follicles increase markedly as ovulation approaches. We have now extended the study to include follicles obtained from animals at ovulation time and up to 48 hours after hCG injection. We have found that PGF reaches a maximum in ovulated follicles at the time of ovulation and then quickly decreases, whereas PGE continues to rise for several hours and then declines. The increase in both prostaglandins is limited to the follicles that actually ovulate. These data further document the proposed role for prostaglandins in the ovulatory process.  相似文献   

6.
A number of workers have studied the effect of follicular fluid (FF) on the secretion of follicular stimulating hormone (FSH) but little is known about its potential as a regulator of ovarian activity, including ovulation rate. This paper describes the effect of charcoal treated-buffalo follicular fluid (buFF) treatment on follicular growth and ovulation rate in guinea pigs. Eighteen guinea pigs in three groups of 6 each were given 0.2 ml buFF at 12 hr interval for 3 days at different stages of estrous cycle viz., early-luteal, mid-luteal or follicular phase. One control group received equal volume of saline. Estrus was monitored every morning and evening by inspection of the opening of vaginal membrane and its cytology. All animals were sacrificed at 24 hr after the onset of estrus. Both the ovaries were dissected out, weighed and number of ovulation points recorded. One ovary from each animal was processed for histological examination to determine the population of healthy and atretic follicles. In early-luteal and follicular phase-treated animals the onset of estrus was delayed (P < 0.01) and ovulation rate was not affected. However, estrus occurred at normal when the treatment was initiated at midluteal stage and 50% animals failed to ovulate in this group. The total follicle population at metestrus increased significantly in all treated animals because of increase in number of follicles of size class II (400 to < 600 microns diam.). Atresia was also declined due to treatment. These results demonstrated that the buFF contained some inhibitory substances that delayed the onset of estrus in guinea pigs.  相似文献   

7.
The purpose of this study was to evaluate the ovarian response of ewes to two treatments with PGF2alpha using transrectal ovarian ultrasonography and hormone measurements. Fifteen milligrams of PGF2alpha was given to six cyclic Western White Face (WWF) ewes early in the estrous cycle (Days 4 to 7) and to six late in the cycle (Days 10 to 12 after ovulation), and a second treatment was given 9 days after the first. Ultrasound scanning and blood sampling started 7 days prior to the first PGF2alpha treatment and ended 10 days (scanning) or 19 days (blood sampling) after the second PGF2alpha treatment, for both groups of ewes. Mean ovulation rate (2.6 +/- 0.7) did not differ significantly between the ewes first treated early or late in the cycle, or after the first or second treatments with PGF2alpha. The time from treatment to ovulation was longer in ewes first treated early (4.0 +/- 0.3 days) compared to late (2.8 +/- 0.4 days) in the cycle (P < 0.05). Both the number of ovulations (range: 0-7) and time from treatment to ovulation (range: 1-9 days) were highly variable. This variability appeared to be due to the extension of the life span of ovulating follicles that emerged prior to PGF2alpha administration and also ovulation of some follicles that emerged after treatment. When results for first and second treatments were pooled, the total number of follicles > 5 mm in diameter on the day of treatment that failed to ovulate in response to PGF2alpha was higher in ewes first treated early (0.8 +/- 0.2/ewe) compared to late (0.3 +/- 0.2/ewe) in the cycle (P < 0.05). The proportion of detected luteal structures relative to the number of ovulations was lower in ewes first treated early compared to late in the cycle (60 and 86%, respectively; P < 0.05). Disruption of ovulatory follicle dynamics and normal luteogenesis, and variability in the timing of ovulation after PGF2alpha treatments could all contribute to poor or variable fertility when prostaglandins are used for estrus synchronization.  相似文献   

8.
Recently a protocol was developed that precisely synchronizes the time of ovulation in lactating dairy cows (Ovsynch; GnRH-7d-PGF2 alpha-2d-GnRH). We evaluated whether initiation of Ovsynch on different days of the estrous cycle altered the effectiveness of this protocol. The percentage of cows (n = 156) ovulating to the first GnRH was 64% and varied (P < 0.01) by stage of estrous cycle. Treatment with PGF2 alpha was effective, with 93% of cows having low progesterone at second GnRH. The overall percentage of cows that ovulated after second GnRH (synchronization rate) was 87% and varied by response to first GnRH (92% if ovulation to first GnRH vs 79% if no ovulation; P < 0.05). There were 6% of cows that ovulated before the second injection of GnRH and 7% with no detectable ovulation by 48 h after second GnRH. Maximal diameter of the ovulatory follicle varied by stage of estrous cycle, with cows in which Ovsynch was initiated at midcycle having the smallest follicles. In addition, milk production and serum progesterone concentration on the day of PGF2 alpha affected (P < 0.05) size of the ovulatory follicle. Using these results we analyzed pregnancy rate at Days 28 and 98 after AI for cows (n = 404) in which Ovsynch was initiated on known days of the estrous cycle. Pregnancy rate was lower for cows expected to ovulate larger follicles than those expected to ovulate smaller follicles (P < 0.05; 32 vs 42%). Thus, although overall synchronization rate with Ovsynch was above 85%, there were clear differences in response according to day of protocol initiation. Cows in which Ovsynch was initiated near midcycle had smaller ovulatory follicles and greater pregnancy rates.  相似文献   

9.
PGF2a has been proposed as a mediator of mammalian ovulation. To elucidate further the role of PGF2a in the process of ovulation, PGF and PGF2a metabolite were measured by radioimmunoassay in the perfusate of an perfused rabbit ovary preparation.Perfusion medium samples were collected over a 10 to 12 hour period from ovaries perfused with tissue culture M199 (total volume 150 ml, sample volume 3 ml) to which varying amounts of hCG had been added. [The PGF2a antisera a 40% cross reaction with PGF1a, hence total PGF was measured with this antisera.] Both PGF and PGF2a metabolite showed a linear increase with time and numbers of ovulations.PGF media accumulation was 575 pg/ovary/ovulation/hr and PGF2a metabolite accumulation was 367 pg/ovary/ ovulation/hr. Medium prostaglandin content could be correlated with numbers of ovulations, ovulatory efficiency (number of ovulations/total follicles) but total follicles. These data best fit a model of independent ovulatory units producing PFG2a without recruitment or interaction between them. We infer the PGF and PGF2a metabolites in this system can be used as a direct index of the ovulation process.  相似文献   

10.
In the ewe, a rise in circulating concentrations of FSH preceding follicular wave emergence begins in the presence of growing follicles from a previous wave. We hypothesized that prostaglandin F(2alpha) (PGF(2alpha)) given at the time of an endogenous FSH peak in cyclic ewes would result in synchronous ovulation of follicles from two consecutive waves, increasing ovulation rate. Twelve Western White Face (WWF) ewes received a single i.m. injection of PGF(2alpha) (15 mg/ewe) at the expected time of a peak in FSH secretion, from Days 9 to 12 after ovulation. The mean ovulation rate after PGF(2alpha) treatment (2.3+/-0.3) did not differ (P>0.05) from the pre-treatment ovulation rate (1.7+/-0.1). Five ewes ovulated follicles from follicular waves emerging before and after PGF(2alpha) injection (3.0+/-0.6 ovulations/ewe) and seven ewes ovulated follicles only from a wave(s) emerging before PGF(2alpha) treatment (2.0+/-0.3 ovulations/ewe; P>0.05). The mean interval from PGF(2alpha) to emergence of the next follicular wave (1.0+/-0.4 and 4.0+/-0.0 d, respectively; P<0.001) and the interval from PGF(2alpha) treatment to the next FSH peak (0 and 3.5+/-0.4d, respectively; P<0.05) differed between the two groups. Six ewes ovulated after the onset of behavioral estrus, with a mean ovulation rate of 1.7+/-0.2, and six ewes ovulated both before and after the onset of estrus (3.0+/-0.5 ovulations/ewe; P<0.05). None of the ovulations that occurred before estrus resulted in corpora lutea (CL) with a full life span. At 24h before ovulation, follicles ovulating before or after the onset of estrus differed in size (4.1+/-0.3 or 5.5+/-0.4mm, respectively; P<0.05) and had distinctive echotextural characteristics. In conclusion, the administration of PGF(2alpha) at the expected time of an FSH peak at mid-cycle in ewes may alter the endogenous rhythm of FSH secretion and was not consistently followed by ovulation of follicles from two follicular waves. In non-prolific WWF ewes, PGF(2alpha)-induced luteolysis disrupted the normal distribution of the source of ovulatory follicles and may be associated with untimely follicular rupture and luteal inadequacy.  相似文献   

11.
H Kaneko  K Taya  S Sasamoto 《Life sciences》1987,41(15):1823-1830
Sequential changes in the function of antral follicles during the period of follicular atresia were investigated after hypophysectomy (Hypox) at 1100 hr on proestrus. Within 6 hours after Hypox, concentrations of progesterone (P), testosterone (T) and estradiol-17 beta (E) decreased abruptly in ovarian venous plasma (OVP) and follicles showed a reduced ability to ovulate. Six hours after Hypox, ovulation was still induced by human chorionic gonadotropin (hCG) in all animals but with significantly fewer number of oocytes compared to the group given hCG at 1100 hr on the day of proestrus. Nine hours after Hypox, several granulosa cells of all large follicles (greater than 400 microns in diameter) exhibited morphological signs of atresia. Twelve hours after Hypox, all large and medium sized (200-400 microns in diameter) follicles showed advanced stages of atresia and almost all follicles failed to ovulate in response to hCG. Inhibin activity in OVP declined more slowly compared to the profiles of steroid hormones and 53% of the initial inhibin activity was still maintained at 18 hours after the operation. Inhibin activity further decreased to 7% of the initial level at 24 hours and was undetectable by 48 hours after Hypox. These results suggest that fully developed Graafian follicles gradually lose their ability to secrete inhibin in contrast to the rapid decrease in secretion of steroid hormone during the process of atresia.  相似文献   

12.
Two experiments were conducted to measure the quantity of follicular fluid entering the porcine oviduct following ovulation and to establish its influence on the sperm acrosome reaction in vivo. Prepubertal gilts treated with pregnant mare serum gonadotropin (PMSG) followed by human chorionic gonadotropin (hCG) were used in both experiments. In experiment 1, each of 64 gilts was assigned at random to one of four treatment groups (n = 16 per group): I (preovulatory), surgery 38 hr post-hCG; II (ovulatory), (surgery 42 hr post-hCG; III (postovulatory), surgery 46 hr post-hCG; IV (ovulation blocked), surgery 46 hr post-hCG but also treated with indomethacin (INDO) at 24 hr. At surgery, both follicular and oviductal fluid were collected for determination of volume and progesterone (P4) concentration. In experiment 2, sperm were recovered surgically from the uterine horn, isthmus, and ampulla of gilts at 46 hr post-hCG either 1) inseminated and non-INDO-treated controls (n = 5) or 2) inseminated and INDO-treated at 24 hr (n = 4). Using P4 as a marker, it was calculated that only 0.51% +/- 0.10% of the available follicular fluid was present in the oviduct near the time of ovulation and that this amount had decreased 10-12-fold 4 hr later. Mean sperm concentration at 46 hr post-hCG was higher in the uterine horn than in the other two regions (P less than 0.05) but the percentage of acrosome-reacted sperm was greater in the ampulla (P less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Estrous cycles of 10 postpartum cyclic Holstein cows were synchronized using prostaglandin f(2alpha) (PGF(2alpha)) given twice 12 d apart to study the relationship of the onset of estrus, body temperature, milk yield, luteinizing hormone (LH) and progesterone concentration to ovulation. Blood samples and body temperatures (vaginal and rectal) were taken every 4 h until ovulation, starting 4 h prior to the second PGF(2alpha) treatment. All cows were observed for estrus following the second administration of PGF(2alpha). Ultrasound scanning of the ovaries commenced at standing estrus and thereafter every 2 h until the disappearance of the fluid filled preovulatory follicle (ovulation). Two cows failed to ovulate and became cystic following the second PGF(2alpha) treatment. The remaining eight cows exhibited a decline in progesterone to <1.0 ng/ml within 28 h, standing estrus and a measurable rise (> 1.0 degrees C) in vaginal but not rectal temperature, and ovulated 90 +/- 10 h after the second PGF(2alpha) treatment. Onset of standing estrus, LH peak and vaginal temperature were highly correlated (P<0.05) with time of ovulation (0.82, 0.81 and 0.74, respectively). Intervals to ovulation tended to depend upon parity. Pluriparous (n = 4) and biparous (n = 4) cows ovulated within 24 and 30 +/- 3 h from the onset of standing estrus; 22 and 31 +/- 2 h from the LH peak; and 22 and 27 +/- 3 h from peak vaginal temperature (mean +/- standard error of the mean), respectively. The results indicated that the onset of standing estrus and rise in vaginal temperature are good practical parameters for predicting ovulation time in dairy cattle.  相似文献   

14.
To investigate the effects of prostaglandin (PGF 2alpha) plus GnRH at different stages of the luteal phase 13 ewes received PGF 2alpha on Day 9 of the synchronized cycle, followed 36 h later by GnRH. This control regimen resulted in ovulation and normal corpus luteum (CL) function. In the next cycle, the ewes were treated simultaneously with PGF 2alpha and GnRH either on Day 4 (early, n = 7) or Day 9 (late, n = 6). Ovarian activity was monitored daily by ultrasonography, and blood samples were obtained to monitor hormonal patterns. Size of the largest follicle present when GnRH was administered was similar in all groups, but the preceding growth rate was greatest for the early group. In the 36 h after injection of PGF 2alpha, serum progesterone (P4) had declined to basal levels in the control cycles when GnRH was administered, but P4 concentrations were higher in the early group and were highest in the late group when the GnRH was administered with PGF 2alpha. The LH surges induced by GnRH were highest in the control cycles, and were lower in the 2 treated groups. In the early group, 6 of 7 ewes demonstrated ovulation within 48 h of GnRH, resulting in the formation of normal CL. In the late group, ovulation was delayed for about 5 d in 4 of 6 ewes, and subsequent luteal function was normal; no ovulation was detected in the other 2 ewes of this group, but the follicles became luteinized, resulting in a normal P4 profile in one and subnormal in the other. These results suggest that follicles present during the early luteal phase are capable of ovulating and forming fully functional CL in response to exogenous GnRH. In contrast, follicles present during the late luteal phase fail to ovulate in response to GnRH while P4 levels are high, even though the LH stimulus is adequate; however, these follicles persist and subsequently ovulate after P4 levels have decreased. Therefore, the endocrine milieu to which a follicle was exposed may be more important than its size in determining its ability to undergo ovulation and development into a normal CL.  相似文献   

15.
This study determined if lengthening the superstimulation protocol from 4 to 7 days would result in an increase in the superovulatory response with no adverse effects on oocyte/embryo competence in beef cows. Follicular ablation was performed, a progesterone-releasing intravaginal device (PRID) was inserted, and cows were assigned to one of two treatment groups 5 to 8 days after ovulation: Control (4 days of follicle stimulating hormone (FSH)) or Long (7 days of FSH; n = 12 per group). The FSH treatments were initiated 1.5 days later (Day 0). A dose of 400 mg NIH-FSH-P1 (Folltropin-V) was distributed equally over 8 (Control) or 14 (Long) im injections at 12-h intervals. Prostaglandin F2α (PGF) was administered twice, 12 h apart, on Day 2 (Control) or Day 5 (Long), and PRID were removed 12 h after the second PGF. Both groups were given 25 mg pLH (lutropin-V) im 24 h after PRID removal and AI was done 12 and 24 h later. Ova/embryos were collected 7 days after the pLH injection. The mean (± SEM) number of ≥ 9 mm follicles at the time of first AI did not differ (P = 0.24) between groups, but more ovulations (30.9 ± 3.9 vs. 18.3 ± 2.9, P = 0.01) and CL (27.2 ± 2.1 vs. 20.8 ± 2.2, P = 0.04) occurred in the Long group. A higher proportion of the ≥ 9 mm follicles ovulated between 12 and 36 h after pLH in the Long group (93 vs. 69%; P = 0.001). Although numerically higher in the Long group, mean numbers of total ova/embryos, fertilized ova, transferable or freezable embryos did not differ. In conclusion, a lengthened superstimulatory treatment protocol resulted in more follicles acquiring the capacity to ovulate with an increased number of ovulations, and without a decrease in oocyte/embryo competence.  相似文献   

16.
Medroxyprogesterone acetate (MAP) from intravaginal sponges prolongs the lifespan of large ovarian follicles when administered after prostaglandin F2alpha (PGF2alpha)-induced luteolysis early in the luteal phase of ewes. The present study was designed to determine whether a PGF2alpha/MAP treatment applied at midcycle would alter the pattern of antral follicle growth and increase ovulation rate in nonprolific ewes. A single injection of PGF2alpha (15 mg, i.m.) was given, and an intravaginal MAP (60 mg) sponge was inserted for 6 days, on approximately Day 8 after ovulation, in 7 (experiment 1), 8 (experiment 2) or 11 (experiment 3) ultrasonographically monitored, cycling Western white-faced ewes; seven ewes (experiment 1) served as untreated controls. Blood samples were collected each day and also every 12 min for 6 h, halfway through the period of treatment with MAP (experiment 1), or every 4 h, from 1 day before to 1 day after sponging (experiment 2). Seventeen of 26 treated ewes (experiment 1, n = 6; experiment 2, n = 5; experiment 3, n = 6) ovulated 1 to 6 days after PGF2alpha, but this did not affect the emergence of ensuing follicular waves (experiments 1 and 2). These ovulations, confirmed by laparotomy and histological examinations of the ovaries (experiment 3), were not preceded by an increase in LH/FSH secretion and did not result in corpora lutea, as evidenced by transrectal ultrasonography and RIA of serum progesterone (experiments 1 and 2). Following the removal of MAP sponges, the mean ovulation rate was 3.1 +/- 0.4 in treated ewes and 2.0 +/- 0.3 in control ewes (experiment 1; P < 0.05). In experiments 1 and 2, the ovulation rate after treatment (3.1 +/- 0.4 and 2.8 +/- 0.4) was also greater than the pretreatment rate (1.9 +/- 0.3 and 1.9 +/- 0.1, respectively). Ovulations of follicles from two consecutive waves before ovulation were seen in five treated but only in two control ewes (experiment 1), and in seven ewes in experiment 2. There were no significant differences between the MAP-treated and control ewes in mean daily serum concentrations of FSH and estradiol, and no differences in the parameters of LH/FSH secretion, based on frequent blood sampling. Treatment of nonprolific Western white-faced ewes with PGF2alpha and MAP at midcycle changed follicular dynamics and increased ovulation rate by approximately 50%. These effects of MAP, in the absence of luteal progesterone, may not be mediated by changes in gonadotropin secretion.  相似文献   

17.
18.
Prepuberal gilts were treated with 750 IU pregnant mare serum gonadotropin (PMSG) followed 72 h later by 500 IU human chorionic gonadotropin (hCG) to induce follicular growth and ovulation. In this model, ovulation occurred at 42 +/- 2 h post hCG treatment. When 500 mug of cloprostenol was injected at 34 and of 36 h after hCG injection, 78% of the preovulatory follicles ovulated by 38 h compared with 0% in the control gilts. In addition, plasma progesterone concentrations were significantly higher in the cloprostenol-treated group than in the control group (P<0.01) at 38 h, indicating luteinization along with premature ovulation. These results suggest that prostaglandin F(2)alpha (PGF(2)alpha) or an analog can be used to advance, synchronize or induce ovulation in gilts.  相似文献   

19.
Prostaglandin (PG) levels in follicular fluid from preovulatory follicles of rabbit ovaries perfused were measured in order to compare PG changes in this model system with those that occur and in isolated, LH-treated follicles . One ovary from each rabbit was perfused without further treatment (control). The other ovary was exposed to LH (0.1 or 1 ug/ml) beginning 1 hour (h) after initiation of perfusion. Samples of perfusion medium were taken at frequent intervals for measurement of PGE, PGF, progesterone and estradiol 17β. The perfusions were terminated when the first ovulation occurred or appeared imminent as judged by changes in the size and shape of the follicles. Follicular fluid was then rapidly aspirated from all large follicles on both ovaries for PGE and PGF measurement.Ovulations occurred only in the LH-treated ovaries. Progesterone and estradiol levels were significantly elevated in the perfusion medium within 1 h of LH treatment in comparison to controls. PG levels in perfusion medium from the control and LH-treated ovaries were not different throughout perfusion and increased in both groups. In contrast, PG levels measured in follicular fluid from LH-treated ovaries were 4- to 5-fold greater than in fluid from control ovaries. It is concluded that ovulation induced by LH in this experimental model is accompanied by an increase in follicular PG levels similar to that seen in other and models. This difference in follicular PG levels between the LH-treated and control ovaries is, however, not reflected in the perfusion medium.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号