首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plasma concentrations of LH, FSH and oestradiol-17 beta were measured in blood samples taken at 15 min intervals for 48 h during the follicular phase of four Merino ewes. The amplitude of pulses of LH and the mean concentration of LH were higher at the beginning of the follicular phase, 36-24 h before the preovulatory surge of LH (amplitude 2.4 ng ml-1, mean concentration 3.9 ng ml-1), than at the end, 24-0 h before the preovulatory surge (amplitude 1.2 +/- 0.1 ng ml-1; mean concentration 1.4 +/- 0.1 ng ml-1). There was no change in the inter-pulse interval during this time (mean 74 +/- 5 min). Over the same period, oestradiol levels increased from 7-8 pg ml-1 to a peak of 10-15 pg ml-1. Mean FSH concentrations declined (36-24 h: 3.6 ng ml-1 vs 24-0 h: 1.8 +/- 0.3 ng ml-1) before rising at the time of the preovulatory surge of LH and again 24 h later. It was concluded that the biphasic response of LH to oestrogen that is seen in ovariectomized ewes may also operate during the follicular phase of the oestrous cycle in entire ewes.  相似文献   

2.
Fifteen ovariectomized ewes were treated with implants (s.c.) creating circulating luteal progesterone concentrations of 1.6 +/- 0.1 ng ml-1 serum. Ten days later, progesterone implants were removed from five ewes which were then infused with saline for 64 h (0.154 mol NaCl l-1, 20 ml h-1, i.v.). Ewes with progesterone implants remaining were infused with saline (n = 5) or naloxone (0.5 mg kg-1 h-1, n = 5) in saline for 64 h. At 36 h of infusion, all ewes were injected with oestradiol (20 micrograms in 1 ml groundnut oil, i.m.). During the first 36 h of infusion, serum luteinizing hormone (LH) concentrations were similar in ewes infused with saline after progesterone withdrawal and ewes infused with naloxone, but with progesterone implants remaining (1.23 +/- 0.11 and 1.28 +/- 0.23 ng ml-1 serum, respectively, mean +/- SEM, P greater than 0.05). These values exceeded circulating LH concentrations during the first 36 h of saline infusion of ewes with progesterone implants remaining (0.59 +/- 0.09 ng ml-1 serum, P less than 0.05). The data suggested that progesterone suppression of tonic LH secretion, before oestradiol injection, was completely antagonized by naloxone. After oestradiol injection, circulating LH concentrations decreased for about 10 h in ewes of all groups. A surge in circulating LH concentrations peaked 24 h after oestradiol injection in ewes infused with saline after progesterone withdrawal (8.16 +/- 3.18 ng LH ml-1 serum).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
It can be difficult to confirm the presence of remnant ovarian tissue (ROT) in bitches that are presumed to be ovariohysterectomised. A GnRH stimulation test can be used to distinguish ovariectomised bitches from those in anoestrus, but it is uncertain whether the GnRH-induced changes in plasma LH and oestradiol concentrations that occur in intact bitches also occur in ROT-bitches. We report here eighteen ROT-bitches and compare the results of GnRH stimulation tests with those of six ovariectomised and six bitches in anoestrus.The basal (n = 17) and/or GnRH-stimulated (n = 18) plasma oestradiol concentration was above the detection limit of the assay, i.e., < 7 pmol/l, in all ROT-bitches but below the detection limit in all ovariectomised bitches. Basal plasma LH concentration was significantly higher in ROT-bitches (4.1 ± 0.7 μg/L) than those in anoestrus (0.64 ± 0.04 μg/L), and significantly lower than in ovariectomised bitches (20.2 ± 3.6 μg/L). Basal plasma LH concentration was relatively high in bitches in which there was a long interval between ovariectomy and appearance of oestrus. GnRH administration resulted in a significant increase in plasma LH and oestradiol concentrations in ROT-bitches. The GnRH-induced increase and subsequent decline in plasma LH concentration were significantly less in ROT-bitches than in either ovariectomised bitches or those in anoestrus. The GnRH-induced increase in plasma oestradiol concentration was significantly smaller in ROT-bitches than in those in anoestrus.In conclusion, the results of this study demonstrate that in dogs ROT is associated with noticeable changes in the pituitary-ovarian axis and suggest that a GnRH stimulation test may be used to distinguish between completely ovariectomised bitches and those with ROT.  相似文献   

4.
The basal and gonadotropin releasing hormone (GnRH)-induced plasma concentrations of follicle stimulating hormone (FSH) and luteinizing hormone (LH) were studied in four anestrous and four ovariectomized (OVX) bitches. Blood samples were obtained via jugular venipuncture 40min before and 0, 10, 20, 30, 60, 90, and 120min after the i.v. administration of synthetic GnRH in a dose of 10microg/kg body weight. The basal plasma FSH and LH concentrations were significantly higher in the OVX bitches than in the anestrous bitches. In the anestrous bitches, the plasma FSH concentration was significantly higher than the pretreatment level at 10, 20, and 30min, whereas the plasma LH concentration was significantly elevated at 10 and 20min. The maximal GnRH-induced plasma FSH concentration in the anestrous bitches did not surpass the lowest plasma FSH concentration in the OVX bitches, whereas the GnRH-induced plasma LH concentrations in the anestrous bitches overlapped with the basal plasma LH concentrations in the OVX bitches. In the OVX bitches, GnRH administration did not induce a significant change in the plasma FSH concentration, whereas the plasma LH concentration increased significantly at 10 and 20min. In conclusion, the results of the present study indicate that in anestrous bitches GnRH challenge results in increased plasma levels of both FSH and LH, whereas in the OVX bitches, in which the basal plasma FSH and LH concentrations are higher, only a rise in the plasma LH concentration is present after GnRH stimulation. The results also suggest that a test to measure plasma concentration of FSH in single samples appears to have potential in verification of neuter status in bitches.  相似文献   

5.
The pattern of distribution of circulating luteinizing hormone (LH) isoforms in cattle during estrus and the luteal phase was investigated. In each stage, the stage of the estrous cycle was synchronized in seven Holstein heifers with a prostaglandin analogue. After estrus was detected, blood samples were taken at 2-h intervals for 24h. In the luteal phase, animals received 250 microg i.v. of GnRH and blood samples were collected every 15 min for 5h. LH concentration in the samples was determined. Samples with the greatest LH concentration in estrus (pre-ovulatory peak) and those collected 60 min after GnRH administration (luteal phase) were analyzed by chromatofocusing, eluted with a pH gradient from 10.5 to 3.5. Eluted LH was grouped into basic (pH > or = 7.5), neutral (pH 7.4-6.5) and acidic isoforms (pH < or = 6.4) as well as by pH unit. In both phases, basic forms were the most abundant, and these were greater (P < 0.05) during the luteal phase (78.4 +/- 4.2%) as compared with during estrus (57.1 +/- 6.2%); the proportion of neutral and acidic isoforms in estrus (13.7 +/- 2.6%; 28.5 +/- 2.8%) was greater (P < 0.05) as compared with the luteal phase (3.0 +/- 0.7; 18.7 +/- 3.4). These results indicate that the relative proportion of LH isoforms secreted by the adenohypophysis differ by stage of estrous cycle. The addition of excess of NaCl to the column modifies the antigen-antibody binding in the RIA, and the proteins eluted are erroneously quantified as LH; this is an artifact of the technique.  相似文献   

6.
The initial aim of the present study was to test whether the stress of transport suppresses LH pulsatile secretion in ewes. In a pilot experiment in the late breeding season, transport resulted in an unexpected response in three out of five transported, ovariectomized ewes pretreated with oestradiol and progesterone. Before transport, seasonal suppression of LH pulses had occurred earlier than anticipated, but LH pulsatility suddenly restarted for the period of transport. This finding was reminiscent of unexplained results obtained in ovariectomized ewes infused centrally with high doses of corticotrophin-releasing hormone after pretreatment with low doses of oestradiol with or without progesterone. Hence, an additional aim of the present study was to examine whether these latter results with corticotrophin-releasing hormone could be reproduced by increasing endogenous corticotrophin-releasing hormone secretion by transport. Subsequent experiments used groups of at least eight ovariectomized ewes at different times of the year with or without prior exposure to steroids to assess whether these unexpected observations were associated with season or the prevailing endocrine milieu. In the mid-breeding season, transport for 4 h in the absence of steroid pretreatment for 8 months reduced LH pulse frequency from 7.5 +/- 0.3 to 6.3 +/- 0.4 pulses per 4 h (P < 0.05) and LH pulse amplitude from 2.6 +/- 0.5 to 1.8 +/- 0.3 ng ml-1 (P < 0.05). Similarly, in the mid-breeding season, 34 h after the cessation of pretreatment with oestradiol and progesterone, transport suppressed LH pulse frequency from 6.1 +/- 0.4 to 5.5 +/- 0.3 pulses per 4 h (P < 0.05) with a tendency of effect on amplitude (6.2 +/- 2.7 to 2.61 +/- 0.6 ng ml-1; P = 0.07; note the large variance in the pretransport data). During mid-anoestrus, evidence of a suppressive effect of transport was only observed on LH pulse amplitude (4.7 +/- 0.6 versus 3.0 +/- 0.5 pulses per 4 h; P < 0.05) in ovariectomized ewes that had not been exposed to ovarian steroids for 4 months. Repetition of the pilot experiment with 12 ewes during the transition into anoestrus resulted in one ewe with LH pulses seasonally suppressed but increased by transport; 11 ewes had a distinct pulsatile LH pattern which was decreased by transport in six ewes. In anoestrus, there was no effect of transport on LH pulse frequency or amplitude in intact ewes, or those ovariectomized 2-3 weeks previously, with or without prior oestradiol and progesterone treatment. However, basal concentrations of cortisol were greater in anoestrus than in the breeding season, and the increment in cortisol during transport was similar in anoestrus and the breeding season but greater during the transition into anoestrus (P < 0.05). Progesterone concentrations increased from 0.31 +/- 0.02 ng ml-1 before transport to 0.48 +/- 0.05 ng ml-1 during the second hour of transport (P < 0.05). In conclusion, transport reduced LH pulse frequency and amplitude in ovariectomized ewes that had not been exposed to exogenous steroids for at least 4 months. In most animals, the previously observed increase in LH pulsatility induced by exogenous CRH was not reproduced by increasing endogenous CRH secretion by transport. However, in four ewes, transport did increase LH pulsatility, but only during the transition into anoestrus in ewes with seasonally suppressed LH profiles after withdrawal of steroid pretreatment.  相似文献   

7.
This study was designed to see if giving exogenous oestradiol, during the follicular phase of the oestrous cycle of intact ewes, during the breeding season or transition into anoestrus, would alter the occurrence, timing or magnitude of the preovulatory surge of secretion of luteinising hormone (LH) or follicle stimulating hormone (FSH). During the breeding season and the time of transition, separate groups of ewes were infused (intravenously) with either saline (30 ml h−1; n = 6) or oestradiol in saline (n = 6) for 30 h. Infusion started 12 h after removal of progestin-containing intravaginal sponges that had been in place for 12 days. The initial dose of oestradiol was 0.02 μg h−1; this was doubled every 4 h for 20 h, followed by every 5 h up to 30 h, to reach a maximum of 1.5 μg h−1. Following progestin removal during the breeding season, peak serum concentrations of oestradiol in control ewes were 10.31 ± 1.04 pg ml−1, at 49.60 ± 3.40 h after progestin removal. There was no obvious peak during transition, but at a time after progestin removal equivalent to the time of the oestradiol peak in ewes at mid breeding season, oestradiol concentrations were 6.70 ± 1.14 pg ml−1 in ewes in transition (P < 0.05). In oestradiol treated ewes, peak serum oestradiol concentrations (24.8 ± 2.1 pg ml−1) and time to peak (41.00 ± 0.05 h) did not differ between seasons (P > 0.05). During the breeding season, all six control ewes and four of six ewes given oestradiol showed oestrus with LH and FSH surges. The two ewes not showing oestrus did not respond to oestrus synchronisation and had persistently high serum concentrations of progesterone. During transition, three of six control ewes showed oestrus but only two had LH and FSH surges; all oestradiol treated ewes showed oestrus and gonadotrophin surges (P < 0.05). The timing and magnitude of LH and FSH surges did not vary with treatment or season. In blood samples collected every 12 min for 6 h, from 12 h after the start of oestradiol infusion, mean serum concentrations of LH and LH pulse frequency were lower in control ewes during transition than during mid breeding season (P < 0.05). Oestradiol treatment resulted in lower mean serum concentrations of LH in season and lower LH pulse frequency in transition (P < 0.05). We concluded that enhancing the height of the preovulatory peak in serum concentrations of oestradiol during the breeding season did not alter the timing or the magnitude of the preovulatory surge of LH and FSH secretion and that at transition into anoestrus, oestradiol can induce oestrus and the surge release of LH and FSH as effectively as during the breeding season.  相似文献   

8.
Acyclic mare given oestradiol for 3 days to simulate the preovulatory plasma oestradiol surge showed a non-significant 37% decrease in plasma LH during treatment. When GnRH analogue injections were given with oestradiol on Days 1--3, oestradiol had no effect on each GnRH-induced LH increase, but LH increases were more prolonged following subsequent GnRH injections on Days 4--7 when oestradiol was no longer being given. A much greater prolongation of LH release occurred when the course of GnRH injections was commenced after oestradiol treatment ceased; the LH response was almost identical to the prolonged periovulatory LH surge of the normal cycle. Therefore, it appears that the timing of the oestradiol surge, in relation to other hormonal events, is critical in inducing the uniquely prolonged periovulatory LH surge of the mare.  相似文献   

9.
Père David's deer hinds were treated with GnRH, administered as intermittent i.v. injections (2.0 micrograms/injection at 2-h intervals) for 4 days, or as a continuous s.c. infusion (1.0 micrograms/h) for 14 days. These treatments were given early (February-March) and late (May-June) in the period of seasonal anoestrus. The administration of repeated injections of GnRH increased mean LH concentrations from pretreatment values of 0.54 +/- 0.09 to 2.10 +/- 0.25 ng/ml over the first 8 h of treatment in early anoestrus, and from 0.62 +/- 0.11 to 2.73 +/- 0.49 ng/ml in late anoestrus. The mean amplitude of GnRH-induced LH episodes was greater (P less than 0.01) in late (4.03 +/- 0.28 ng/ml) than in early (3.12 +/- 0.26 ng/ml) anoestrus, but within each replicate (early or late anoestrus), neither mean LH episode amplitude nor mean plasma LH concentrations differed significantly between the four periods of intensive blood sampling. On the basis of their progesterone profiles, 6/12 hinds had ovulated in response to treatment with injections of GnRH (1/6 in early anoestrus and 5/6 in late anoestrus), and oestrus and a preovulatory LH surge were recorded in all of these animals. Oestrus and a preovulatory LH surge were also recorded in one other animal treated in early anoestrus in which progesterone concentrations remained low. The mean times of onset of oestrus (91.0 +/- 1.00 and 62.4 +/- 0.98 h) and of the preovulatory LH surge (85.8 +/- 3.76 and 59.4 +/- 0.25 h) both occurred significantly earlier (P less than 0.001) in animals treated in late anoestrus. Continuous infusion of GnRH to seasonally anoestrous hinds resulted in an increase in mean plasma LH concentrations, but this response did not differ significantly between early (2.15 +/- 0.28 ng/ml) and late (2.48 +/- 0.26 ng/ml) anoestrus. Ovulation, based on progesterone profiles, occurred in 2/7 hinds in early anoestrus and in 4/6 hinds in late anoestrus. Oestrus was detected in all except one of these hinds. The mean time of onset of oestrus occurred earlier in animals treated in late anoestrus (66.2 +/- 0.32 h and 46.7 +/- 0.67 h, P less than 0.01). The administration of GnRH, given either intermittently or continuously, will induce ovulation in a proportion of seasonally anoestrous Père David's deer. However, more animals ovulate in response to this treatment in late than in early anoestrus (75% compared with 23%).  相似文献   

10.
Stress-like concentrations of cortisol increase the negative feedback potency of oestradiol in castrated male sheep. A similar cortisol-dependent response in female sheep might be expected to suppress gonadotrophin secretion and impair follicular development and ovulation. The oestrous activity of 21 female sheep was synchronized using progestogen-treated vaginal pessaries to test this hypothesis. Stress-like concentrations of cortisol (60-70 ng ml-1) were established by continuous infusion of cortisol (80 micrograms kg-1 h-1; n = 13) beginning 5 days before, and continuing for 5 days after, pessary removal. Control animals (n = 8) received a comparable volume of vehicle (50% ethanol-saline) over the 10 day infusion period. Serum concentrations of oestradiol increased progressively in control sheep during the 48 h immediately after pessary removal. This increase in serum oestradiol was blocked or significantly attenuated in sheep receiving stress-like concentrations of cortisol. Preovulatory surge-like secretion of LH was apparent in control animals 58.5 +/- 2.1 h after pessary removal. In contrast, surge-like secretion of LH was not observed during the 5 days after pessary removal in 54% (7 of 13) of sheep receiving cortisol. Moreover, the onset of the surge was significantly delayed in the cortisol-treated ewes that showed surge-like secretion of LH during the infusion period. The ability of episodic pulses of exogenous GnRH to override the anti-gonadal effect of cortisol was examined in a second study. Oestrous activity of 12 ewes was synchronized using progestogen-containing pessaries as described above. Ewes were randomly assigned to one of three treatment groups (n = 4 ewes per group). Animals received cortisol (100 micrograms kg-1 h-1; groups 1 and 2) or a comparable volume of vehicle (group 3) beginning 5 days before, and continuing for 2 days after, pessary removal. Pulses of GnRH (4 ng kg-1 h-1, i.v.; group 1) or saline (groups 2 and 3) at 1 h intervals were initiated at pessary removal and continued for 48 h. Serum concentrations of oestradiol were not significantly increased after pessary removal in sheep receiving cortisol alone. Conversely, serum concentrations of oestradiol increased progressively during the 48 h after pessary removal in control ewes and in ewes receiving cortisol and GnRH. At the end of infusion, serum concentrations of oestradiol did not differ (P > 0.05) between control (7.7 +/- 0.8 pg ml-1) ewes and ewes receiving cortisol and episodic GnRH (6.4 +/- 1.3 pg ml-1). Moreover, these values were significantly greater (P < 0.05) than the serum concentrations of oestradiol in animals receiving cortisol (1.0 +/- 0.4 pg ml-1) alone. Collectively, these data indicate stress-like concentrations of cortisol block or delay follicular development and the preovulatory surge of LH in sheep. In addition, episodic GnRH overrides cortisol-induced delay in follicular maturation.  相似文献   

11.
Six heifers were injected i.m. with 2500 i.u. PMSG followed by 15 mg prostaglandin 48 h later. Serial blood samples were collected through a catheter in the caudal vena cava every 10 min for 8 h on Day 10 (7 h after PMSG administration), during luteal regression (7 h after prostaglandin administration) and on the day thereafter. Four normally cyclic heifers served as a control group. Concentrations of progesterone, androstenedione, oestradiol, LH, FSH, and PMSG in the vena cava samples were measured and the frequency and amplitudes of episodic pulses of all hormones were estimated except for PMSG. Ovaries were collected by ovariectomy at 50 h after onset of luteal regression to determine the number of preovulatory follicles (non-atretic follicles greater than or equal to 10 mm). Stimulation of follicular growth by administration of PMSG resulted in the following effects on the secretion of steroids and endogenous gonadotrophins. (1) There were no alterations in progesterone concentration and the amplitude and frequency of episodic pulses. Mean (+/- s.e.m.) concentrations were 54.1 +/- 5.8, 19.1 +/- 3.1 and 3.4 +/- 0.9 nmol/l on Day 10 (L), during luteal regression (LR) and on the day thereafter (F) respectively. (2) There were no alterations in the episodic secretion patterns of androstenedione. Mean concentrations were 0.20 +/- 0.02, 0.15 +/- 0.02 and 0.11 +/- 0.02 nmol/l for the L, LR and F periods respectively. (3) There was an increase in oestradiol concentration from 17.1 +/- 3.0 pmol/l during the L period to 233.7 +/- 86.4 pmol/l during the F period. Pulse amplitude was enhanced compared to corresponding periods in control animals whereas pulse frequency remained the same. The oestradiol concentration was significantly correlated with the number of preovulatory follicles (r = 0.82, P less than 0.05). (4) There was a suppression of the frequency of episodic LH pulses (/8 h) during the LR (3.2 +/- 0.7) and F (4.3 +/- 0.4) periods compared to corresponding periods in control heifers (9.5 +/- 0.9 and 7.0 +/- 1.5 respectively). The preovulatory LH peak occurred earlier in 4 of 6 treated heifers. (5) There was a suppression of FSH concentrations, pulse amplitude and frequency during the LR and F (17.4 +/- 0.9 mg/l, 4.7 +/- 0.8 microgram/l and 7.5 +/- 0.4 pulses/8 h) periods compared to the corresponding F-period values (35.6 +/- 6.2 mg/l, 9.8 +/- 1.6 micrograms/l and 9.3 +/- 0.3 pulses/8 h) in control heifers.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
In sheep, induction of ovulation during anoestrus is accompanied by a high incidence of short luteal phases, though pre-treatment with progesterone can overcome this problem. We have investigated the effects of supplementing oestradiol during GnRH-induced ovulation on subsequent PGF2alpha release and luteal life span. Thirty anoestrous crossbred ewes received 250 ng GnRH i.v. at 2 h intervals for 48 h to induce ovulation either alone (group 1; n=10) or in association with either an i.m. injection of 20 mg progesterone 3 days earlier (group 2; n=10) or 3 i.m. injections of 10 microg oestradiol at 8 h intervals on the second day of GnRH treatment (group 3; n=10). Laparoscopy, performed 3 days following GnRH to confirm ovulation and 8 days later, coupled with plasma progesterone analysis were used to determine luteal life span. On day 4 following GnRH, plasma samples were collected at 20 min intervals for 8 h to monitor PGF2alpha release. One ewe from group 1 failed to ovulate and was excluded from further analysis. All groups showed an increase (P<0.01) in plasma oestradiol during GnRH treatment, with group 3 showing a marked (P<0.001) increase over that seen in the other two groups. In group 1 there were 1.4+/-0.2 PGF2alpha episodes/ewe/8 h. In group 2, pre-treatment with progesterone caused the complete inhibition of PGF2alpha episodes (0 episodes/ewe/8 h) while in group 3, treatment with oestradiol resulted in a significant reduction (0.3+/-0.1 episodes/ewe/8 h) compared with group 1 (P<0.01). In group 1, 9/9 ewes exhibited short cycles compared with 2/10 ewes in group 2 (P<0.01). In group 3 the proportion of ewes showing short cycles 7/10 ewes was not significantly different from the other groups. While treatment with oestradiol caused a significant attenuation of PGF2alpha release, this was associated with only a partial reduction in the incidence of short cycles.  相似文献   

13.
FACTORS AFFECTING THE SECRETION OF LUTEINIZING HORMONE IN THE EWE   总被引:1,自引:0,他引:1  
(1) Luteinizing hormone (LH) is secreted as discrete pulses throughout all stages of the reproductive cycle of the ewe, including pre-pubertal, seasonal and lactational anoestrus, and the luteal and follicular phases of the oestrous cycle. Secretion is probably also pulsatile during the preovulatory surge of LH. (2) The secretion of LH is affected by the ovarian steroids, oestradiol and progesterone, both of which act principally to reduce the frequency of the pulses. During the luteal phase the two steroids act synergistically to exert this effect, and during anoestrus oestradiol acts independently of progesterone. Androstenedione secreted by the ovary apparently has no role in the control of LH secretion. (3) The amplitude of the pulses may also be affected by the steroids but there are conflicting reports on these effects, some showing that amplitude is lowered by the presence of oestrogen and others showing increases in amplitude in the presence of oestrogen and progesterone. (4) The secretion of LH pulses is affected by photoperiod, social environment and nutrition. Under the influence of decreasing day-length, oestradiol alone cannot reduce the frequency of pulses and the ewe experiences oestrous cycles. When day-length is increasing, the hypothalamus becomes more responsive to oestradiol which reduces the frequency of the pulses. (5) A hypothetical pheromone secreted by rams can increase the frequency of the LH pulses in anoestrous ewes and thereby induce ovulation, possibly by inhibiting the negative feedback exerted by oestradiol. (6) The relationships between nutrition and reproduction are poorly understood, but it seems likely that the effects of nutrition are mediated partly through the hypothalamus and its control of the secretion of LH pulses. (7) The pulses of LH secreted by the anterior pituitary gland are evoked by pulses of GnRH secreted by the hypothalamus. The location of the centre controlling the GnRH pulses and the neurotransmitter involved are not known.  相似文献   

14.
Pituitary and ovarian responses to subcutaneous infusion of GnRH were investigated in acyclic, lactating Mule ewes during the breeding season. Thirty postpartum ewes were split into 3 equal groups; Group G received GnRH (250 ng/h) for 96 h; Group P + G was primed with progestagen for 10 d then received GnRH (250 ng/h) for 96 h; and Group P received progestagen priming and saline vehicle only. The infusions were delivered via osmotic minipumps inserted 26.6 +/- 0.45 d post partum (Day 0 of the study). Blood samples were collected for LH analysis every 15 min from 12 h before until 8 h after minipump insertion, then every 2 h for a further 112 h. Daily blood samples were collected for progesterone analysis on Days 1 to 10 following minipump insertion, then every third day for a further 25 d. In addition, the reproductive tract was examined by laparoscopy on Day -5 and Day +7 and estrous behavior was monitored between Day -4 and Day +7. Progestagen priming suppressed (P < 0.05) plasma LH levels (0.27 +/- 0.03 vs 0.46 +/- 0.06 ng/ml) during the preinfusion period, but the GnRH-induced LH release was similar for Group G and Group P + G. The LH surge began significantly (P < 0.05) earlier (32.0 +/- 3.0 vs 56.3 +/- 4.1 h) and was of greater magnitude (32.15 +/- 3.56 vs 18.84 +/- 4.13 ng/ml) in the unprimed than the primed ewes. None of the ewes infused with saline produced a preovulatory LH surge. The GnRH infusion induced ovulation in 10/10 unprimed and 7/9 progestagen-primed ewes, with no significant difference in ovulation rate (1.78 +/- 0.15 and 1.33 +/- 0.21, respectively). Ovulation was followed by normal luteal function in 4/10 Group-G ewes, while the remaining 6 ewes had short luteal phases. In contrast, each of the 7 Group-P + G ewes that ovulated secreted progesterone for at least 10 d, although elevated plasma progesterone levels were maintained in 3/7 unmated ewes for >35 d. Throughout the study only 2 ewes (both from Group P + G) displayed estrus. These data demonstrate that although a low dose, continuous infusion of GnRH can increase tonic LH concentrations sufficient to promote a preovulatory LH surge and induce ovulation, behavioral estrus and normal luteal function do not consistently follow ovulation in the progestagen-primed, postpartum ewe.  相似文献   

15.
The pattern of LH secretion and response to exogenous GnRH was determined on 5 occasions during seasonal anoestrus of the Père David's deer hind. LH pulse frequency was low (3.3 +/- 0.6 pulses/18 h) in early anoestrus (February), increased significantly in mid-anoestrus (April; 8.4 +/- 1.4 pulses/18 h) and thereafter declined slightly in late anoestrus (June; 6.3 +/- 0.25 pulses/18 h). Mean LH concentrations also showed significant changes during anoestrus with higher levels in mid-anoestrus (April; 0.85 +/- 0.12 ng/ml) when compared with other times (0.53 +/- 0.05, 0.60 +/- 0.10, 0.68 +/- 0.06 and 0.71 +/- 0.05 ng/ml for February, March, May and June, respectively). LH pulse amplitude showed no significant changes during the study. The LH response to intravenous injections of 2 micrograms GnRH was lowest in early anoestrus (February), increased significantly in mid-anoestrus (April) and remained high through late anoestrus. The response during the luteal phase was similar to that seen during late anoestrus. These results indicate that seasonal anoestrus in the Père David's deer hind is not a uniform state but is characterized by an early period of 'deep' anoestrus.  相似文献   

16.
Oxytocin infusions were initiated on day 10 of the oestrous cycle in ewes, and luteal regression was induced by injection of 100 micrograms cloprostenol on day 12. Blood samples were collected at frequent intervals via an indwelling jugular vein cannula to measure concentrations of progesterone and luteinizing hormone (LH) during the luteal and follicular phases in saline (n = 6) and oxytocin (n = 5) infused animals. The oxytocin infusion maintained peripheral plasma concentrations of 53 +/- 3.2 pg oxytocin ml-1 (mean +/- SEM) compared with values of about 1 pg ml-1 during oestrus in control ewes. Oxytocin infusion had no effect on luteal phase progesterone concentrations, the timing of luteolysis, basal luteinizing hormone (LH) secretion, LH pulse frequency, or the timing or height of the LH surge. Treated ewes came into oestrus significantly earlier than controls (P < 0.05) but ovulated normally. Uterine samples collected 96 h after cloprostenol injection (approximately day 2 of the cycle) showed that oxytocin receptor concentrations were significantly higher in the endometrium in ewes that had been given a 5 day oxytocin infusion than in control animals (556 and 262 fmol mg-1 protein, respectively: geometric means from ANOVA, P < 0.001), whereas myometrial receptor concentrations were not affected (113 and 162 fmol mg-1 protein, respectively). We conclude that the previously reported delay in luteal development caused by oxytocin infusion (Wathes et al., 1991) is not due to the inhibition or delay of ovulation, but must instead occur via a direct influence on the developing corpus luteum.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The pulsatile secretion pattern of growth hormone was investigated during four stages of the luteal phase and during mid-anoestrus in six cyclic beagle bitches. Plasma samples were obtained via jugular venepuncture at 10 min intervals for 12 h at 19 +/- 2 (mean +/- SEM; luteal phase 1), 38 +/- 2 (luteal phase 2), 57 +/- 2 (luteal phase 3), 78 +/- 2 (luteal phase 4) and 142 +/- 4 days (mid-anoestrus) after ovulation. During all stages, growth hormone was secreted in a pulsatile fashion. The mean basal plasma growth hormone concentration during luteal phase 1 (2.2 +/- 0.3 microgram l(-1)) was significantly higher than that during luteal phase 4 (1.5 +/- 0.1 microgram l(-1)) and mid-anoestrus (1.4 +/- 0.2 microgram l(-1)). The mean area under the curve (AUC) above zero during luteal phase 1 (27.3 +/- 2.7 microgram l(-1) in 12 h) tended to be higher than that during luteal phase 4 (20.8 +/- 1.8 microgram l(-1) in 12 h) and mid-anoestrus (19.2 +/- 2.5 microgram l(-1) in 12 h). In contrast, the mean AUCs above the baseline during luteal phase 1 (1.1 +/- 0.5 microgram l(-1) in 12 h) and luteal phase 2 (1.2 +/- 0.5 microgram l(-1) in 12 h) were significantly lower than that during luteal phase 4 (2.8 +/- 0.5 microgram l(-1) in 12 h). In conclusion, the pulsatile secretion pattern of growth hormone changes during the luteal phase in healthy cyclic bitches: basal growth hormone secretion is higher and less growth hormone is secreted in pulses during stages in which the plasma progesterone concentration is high. It is hypothesized that this change is caused by a partial suppression of pituitary growth hormone release by progesterone-induced growth hormone production in the mammary gland. The progesterone-induced production of growth hormone in the mammary gland may promote the physiological proliferation and differentiation of mammary gland tissue during the luteal phase of the bitch by local autocrine-paracrine effects. In addition, progesterone-induced mammary growth hormone production may exert endocrine effects, such as hyperplastic changes in the uterine epithelium and insulin resistance.  相似文献   

18.
Overall, significantly more antral follicles greater than or equal to 1 mm diameter were present in Romney ewes during anoestrus than in the breeding season (anoestrus, 35 +/- 3 (mean +/- s.e.m.) follicles per ewe, 23 sheep; Day 9-10 of oestrous cycle, 24 +/- 1 follicles per ewe, 22 sheep; P less than 0.01), although the mean numbers of preovulatory-sized follicles (greater than or equal to 5 mm diam.) were similar (anoestrus, 1.3 +/- 0.2 per ewe; oestrous cycle, 1.0 +/- 0.1 per ewe). The ability of ovarian follicles to synthesize oestradiol did not differ between anoestrus and the breeding season as assessed from the levels of extant aromatase enzyme activity in granulosa cells and steroid concentrations in follicular fluid. Although the mean plasma concentration of LH did not differ between anoestrus and the luteal phase of the breeding season, the pattern of LH secretion differed markedly; on Day 9-10 of the oestrous cycle there were significantly more (P less than 0.001) high-amplitude LH peaks (i.e. greater than or equal to 1 ng/ml) in plasma and significantly fewer (P less than 0.001) low amplitude peaks (less than 1 ng/ml) than in anoestrous ewes. Moreover, the mean concentrations of FSH and prolactin were significantly lower during the luteal phase of the cycle than during anoestrus (FSH, P less than 0.05, prolactin, P less than 0.001). It is concluded that, in Romney ewes, the levels of antral follicular activity change throughout the year in synchrony with the circannual patterns of prolactin and day-length. Also, these data support the notion that anovulation during seasonal anoestrus is due to a reduced frequency of high-amplitude LH discharges from the pituitary gland.  相似文献   

19.
Suckling, a common practice in smallholder dairy-farming systems in the developing world, delays the onset of post-partum ovarian activity in dairy buffalo. The present study was designed to assess the effect of suckling on pituitary function in lactating buffaloes 25-35 days post-partum. Six suckled and nine non-suckled buffaloes were challenged intravenously with a bolus injection of GnRH (20microg buserelin acetate; Receptal). Heparinized venous blood samples were collected at 15min intervals for 2h before and up to 4h after GnRH for luteinizing hormone (LH) estimation. Pretreatment basal LH concentrations were similar in the suckled (0.6+/-0.2ng/ml) and the non-suckled (0.5+/-0.1ng/ml) buffaloes. All but one suckled buffaloes released a LH surge, starting 15-60min post-GnRH treatment, which lasted for 180-225min. While one suckled buffalo did not respond to GnRH, the LH response in the remaining suckled buffaloes was significantly less than in the non-suckled buffaloes in terms of peak LH concentrations (14.3+/-2.7ng/ml versus 26.2+/-4.3ng/ml) and area under the LH curve (1575.6+/-197.4mm(2) versus 2108.9+/-323.9mm(2)). The LH response was least in suckled buffaloes challenged with GnRH while in the luteal phase of an oestrus cycle and with plasma progesterone concentration >1ng/ml. In conclusion, suckling suppressed pituitary responsiveness to exogenous GnRH challenge in post-partum buffaloes.  相似文献   

20.
Plasma oestradiol-17 beta concentrations in Labradors increased during pro-oestrus to an average maximal concentration of of 79-7 +/- 10-9 (S.D.) pg/ml, and then fell rapidly. In 6/7 bitches the peak occurred within 1 day of oestrus. No consistent changes in plasma oestradiol levels were observed during pregnancy and at parturition and the values were similar to those in late anoestrus. Plasma progesterone levels did not increase markedly during pro-oestrus. At oestrus, progesterone values rose and maximal concentrations, which varied from about 20 to about 55 ng/ml, were reached within a few days of the oestradiol peak. Plasma progesterone decreased in late pregnancy and in one of the three bitches studied in detail low or undetectable levels were reached 10 days before parturition. In the other two bitches an abrupt decrease in progesterone occurred just before parturition. Dexamethasone treatment (2 X 5 mg daily for 10 days) from Day 30 of pregnancy resulted in intrauterine death and resorption of the fetuses in the two bitches studied. Treatment from about Day 45 resulted in the birth of dead fetuses at Days 55 and 59 of pregnancy. The changes in plasma oestradiol levels were very small. No changes in plasma progesterone levels were seen when dexamethasone was given in late pregnancy, but an accelerated decline occurred after treatment in mid-pregnancy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号