首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It has been shown that defects in cell fusion during mating can trigger programmed cell death in the yeast Saccharomyces cerevisiae. We wished to test whether defects in nuclear migration during cell fusion have the same effect. A partial pedigree analysis of nine kar1 × KAR1 crosses of two different types (four α KAR1 × a kar1 and five α kar1 × a KAR1 crosses) was carried out, and quantitative estimates of the frequencies of different mother/daughter (m/d) classes were obtained. The kar1 mutation affects nuclear congression and delays nuclear fusion. In each cross tested, the nucleus that entered the first bud tended to be the one contributed by the cell that carried the wild-type allele of KAR1. If budding was delayed by nutrient limitation, the kar1 nucleus could be rescued, indicating that the primary effect of the kar1 mutation is that it slows spindle action. Many m/d classes appear as a result of the degradation of one of the nuclei in the heterokaryon. Loss of nuclei in heterokaryons was accompanied by an accumulation of reactive oxygen species (ROS), and by abnormalities in nuclear structure revealed by TUNEL (terminal transferase-mediated dUTP nick end-labeling) analysis, DAPI staining and by histone-GFP fluorescence patterns which suggested an apoptosis-like process. Often only one nucleus was degraded, and ROS accumulation was restricted to one half of the zygote. We therefore suggest that the data obtained can be explained by apoptosis-like death of a half-cell (cell body).  相似文献   

2.
Chlorogenic acid (CGA) is a phenolic compound with various health-promoting properties, including antioxidant effects and a wide range of antibacterial activities. However, the antibacterial mechanism remains unclear. We investigated the underlying mode of action of CGA against Escherichia coli, which shows bacterial apoptosis-like death. Cells treated with CGA showed apoptotic features such as membrane depolarisation, caspase-like protein expression, increased intracellular Ca2+ levels, phosphatidylserine externalisation, and DNA fragmentation. In contrast to common bacterial apoptosis-like death, which is caused by reactive oxygen species (ROS) accumulation, CGA depleted intracellular ROS. Because ROS are important intracellular signalling molecules, and ROS depletion may affect bacterial intracellular signalling pathways, leading to cell death. To determine whether deficiencies in intracellular ROS cause apoptosis-like death, the cells were treated with H2O2 after CGA treatment. H2O2 restored depleted intracellular ROS levels to similar levels as in untreated cells, and cell viability was increased compared to CGA-treated cells. Moreover, apoptotic features were attenuated in H2O2 post-treated cells. These results demonstrate that CGA induces bacterial apoptosis in E. coli and intracellular ROS depletion is a core regulator in the progression of bacterial apoptosis-like death.  相似文献   

3.
HAMLET (Human α-lactalbumin Made Lethal to Tumor cells) triggers selective tumor cell death in vitro and limits tumor progression in vivo. Dying cells show features of apoptosis but it is not clear if the apoptotic response explains tumor cell death. This study examined the contribution of apoptosis to cell death in response to HAMLET. Apoptotic changes like caspase activation, phosphatidyl serine externalization, chromatin condensation were detected in HAMLET-treated tumor cells, but caspase inhibition or Bcl-2 over-expression did not prolong cell survival and the caspase response was Bcl-2 independent. HAMLET translocates to the nuclei and binds directly to chromatin, but the death response was unrelated to the p53 status of the tumor cells. p53 deletions or gain of function mutations did not influence the HAMLET sensitivity of tumor cells. Chromatin condensation was partly caspase dependent, but apoptosis-like marginalization of chromatin was also observed. The results show that tumor cell death in response to HAMLET is independent of caspases, p53 and Bcl-2 even though HAMLET activates an apoptotic response. The use of other cell death pathways allows HAMLET to successfully circumvent fundamental anti-apoptotic strategies that are present in many tumor cells.  相似文献   

4.
Antimicrobial peptides (AMPs) are multifunctional components of the innate immune system. Chemotherapeutic agents used for treatment of visceral leishmaniasis (VL) are now threatened due to the emergence of acquired drug resistance and toxicity. AMPs are attractive alternative to conventional pharmaceuticals. In this study, first time we explored the antileishmanial activity of spinigerin originally derived from Pseudacanthotermes spiniger. Leishmania donovani promastigotes present apoptosis-like cell death upon exposure to spinigerin (IC50, 150 μM). The infection rate was reduced by 20% upon exposure to 150 μM spinigerin but no cytotoxicity on host macrophages was observed. Elevation of intracellular ROS level and down-regulation of two ROS detoxifying enzymes, ascorbate peroxidase (APx) and trypanothione reductase (TR) suggested essential role of ROS machinery during spinigerin mediated cell death. About 97% cell population was found to be Annexin-V positive; 44% cells being highly Annexin-V positive. Moreover, we observed morphological changes like cell rounding, nuclear condensation, oligonucleosomal DNA degradation and TUNEL positive cells without loss of membrane integrity upon spinigerin exposure, suggests apoptosis-like death. Interestingly, collapse in mitochondrial membrane potential and increased level of intracellular ROS and calcium were not associated with caspase like activity. Computational analysis suggests spiningerin interacts with trypanothione reductase and thus probably interferes its function to detoxify the toxic ROS level. Therefore, spinigerin induces apoptosis-like cell death in L. donovani in a caspase-independent manner. The study elucidates the antileishmanial property of spinigerin that may be considered for future chemotherapeutic option alone or adjunct with other drug regimens for improved treatment of visceral leishmaniasis.  相似文献   

5.
The Fusarium genus of fungi is responsible for commercially devastating crop diseases and the contamination of cereals with harmful mycotoxins. Fusarium mycotoxins aid infection, establishment, and spread of the fungus within the host plant. We investigated the effects of the Fusarium mycotoxin deoxynivalenol (DON) on the viability of Arabidopsis cells. Although it is known to trigger apoptosis in animal cells, DON treatment at low concentrations surprisingly did not kill these cells. On the contrary, we found that DON inhibited apoptosis-like programmed cell death (PCD) in Arabidopsis cells subjected to abiotic stress treatment in a manner independent of mitochondrial cytochrome c release. This suggested that Fusarium may utilise mycotoxins to suppress plant apoptosis-like PCD. To test this, we infected Arabidopsis cells with a wild type and a DON-minus mutant strain of F. graminearum and found that only the DON producing strain could inhibit death induced by heat treatment. These results indicate that mycotoxins may be capable of disarming plant apoptosis-like PCD and thereby suggest a novel way that some fungi can influence plant cell fate.  相似文献   

6.
Programmed cell death in plants: distinguishing between different modes   总被引:1,自引:0,他引:1  
Programmed cell death (PCD) in plants is a crucial componentof development and defence mechanisms. In animals, differenttypes of cell death (apoptosis, autophagy, and necrosis) havebeen distinguished morphologically and discussed in these morphologicalterms. PCD is largely used to describe the processes of apoptosisand autophagy (although some use PCD and apoptosis interchangeably)while necrosis is generally described as a chaotic and uncontrolledmode of death. In plants, the term PCD is widely used to describemost instances of death observed. At present, there is a vastarray of plant cell culture models and developmental systemsbeing studied by different research groups and it is clear fromwhat is described in this mass of literature that, as with animals,there does not appear to be just one type of PCD in plants.It is fundamentally important to be able to distinguish betweendifferent types of cell death for several reasons. For example,it is clear that, in cell culture systems, the window of timein which ‘PCD’ is studied by different groups varieshugely and this can have profound effects on the interpretationof data and complicates attempts to compare different researcher'sdata. In addition, different types of PCD will probably havedifferent regulators and modes of death. For this reason, inplant cell cultures an apoptotic-like PCD (AL-PCD) has beenidentified that is fairly rapid and results in a distinct corpsemorphology which is visible 4–6 h after release of cytochromec and other apoptogenic proteins. This type of morphology, distinctfrom autophagy and from necrosis, has also been observed inexamples of plant development. In this review, our model systemand how it is used to distinguish specifically between AL-PCDand necrosis will be discussed. The different types of PCD observedin plants will also be discussed and the importance of distinguishingbetween different forms of cell death will be highlighted. Key words: Apoptosis, apoptosis-like programmed cell death (AL-PCD), Arabidopsis, autophagy, mitochondria, necrosis, programmed cell death (PCD) Received 5 June 2007; Revised 13 September 2007 Accepted 20 September 2007  相似文献   

7.
Polynuclear platinum(II) complexes represent a class of potential anticancer agents that have shown promising pharmacological properties in preclinical studies. The nature of cellular responses induced by these complexes, however, is poorly understood. In this research, the cellular responses of human ovarian cancer COC1 cells to dinuclear platinum(II) complexes {[cis-Pt(NH3)2Cl]2L1}(NO3)2 (1) and {[cis-Pt(NH3)2Cl]2L2}(NO3)2 (2) (L1 = α,α′-diamino-p-xylene, L2 = 4,4′-methylenedianiline) has been studied using cisplatin as a reference. The effect of platinum complexes on the proliferation, death mode, mitochondrial membrane potential, and cell cycle progression has been examined by MTT assay and flow cytometry. The activation of cell cycle checkpoint kinases (CHK1/2), extracellular signal-regulated kinases (ERK1/2), and p38 mitogen-activated protein kinase (p38 MAPK) of the cells by the complexes has also been analyzed using phospho-specific flow cytometry. Complex 1 is more cytotoxic than complex 2 and cisplatin at most concentrations; complex 2 and cisplatin are comparably cytotoxic. These complexes kill the cells through an apoptotic or apoptosis-like pathway characterized by exposure of phosphatidylserine and dissipation of mitochondrial membrane potential. Complex 1 shows the strongest inductive effect on the morphological changes of the cells, followed by cisplatin and complex 2. Complexes 1 and 2 arrest the cell cycle in G2 or M phase, while cisplatin arrests the cell cycle in S phase. The influence of these complexes on CHK1/2, ERK1/2, and p38 MAPK varies with the dose of the drugs or reaction time. Activation of phospho-ERK1/2 and phospho-p38 MAPK by these complexes is closely related to the cytostatic activity. The results demonstrate that dinuclear platinum(II) complexes can induce some cellular responses different from those caused by cisplatin.  相似文献   

8.
Apoptosis, type-I of programmed cell death (PCD-I), is not restricted to multicellular organisms since many apoptotic features have been described in different trypanosomatids, including Trypanosoma cruzi. Our present aim was to monitor, by different morphological markers, the occurrence of apoptosis-like death in amastigotes and trypomastigotes of T.cruzi (Y strain) during the infection of heart culture cells. We documented the differential occurrence of PCD-I in amastigotes and trypomastigotes, with distinct death rates noticed between these two parasite-distinct forms. Fluorescence microscopy and flow cytometry analysis using different hall markers of apoptosis (phosphatidylserine exposure, collapse of mitochondrial membrane potential and DNA fragmentation) showed that amastigotes present higher levels of apoptosis-like cell death as compared to trypomastigotes. It is possible that the higher levels of PCD-I in these highly multiplicative forms may contribute to the control of the parasite burden within the host cells. On the other hand, the apoptosis-like occurrence in the infective but non-proliferative stage of the parasite (trypomastigotes) may play a role in parasite evasion mechanisms as suggested for other parasites.  相似文献   

9.
High temperature is an important environmental factor that affects the growth and development of most edible fungi, however, the mechanism(s) for resistance to high temperature remains elusive. Nitric oxide is known to be able to effectively alleviate oxidative damage and plays an important role in the regulation of trehalose accumulation during heat stress in mycelia of Pleurotus eryngii var. tuoliensis. In this paper, we investigated whether heat stress can activate apoptosis-like cell death in mycelia of Pleurotus. Two Pleurotus species were used to detect morphological features characteristic of apoptosis including nuclear condensation, reactive oxygen species accumulation, and DNA fragmentation when exposed to heat stress (42 °C). The results showed that these classical apoptosis markers were apparent in Pleurotus strains after heat treatment. The heat-induced apoptosis-like cell death in Pleurotus was further probed using oligomycin and N-acetylcysteine, both of which were shown to block processes leading to apoptosis. This is the first report that apoptosis-like cell death occurs in Pleurotus species as a result of abiotic stress, and that this process can be inhibited with chemicals that block mitochondrial-induced apoptotic pathways and/or with ROS-scavenging compounds.  相似文献   

10.
S.J. Park  K.W. Nam  H.J. Lee  E.Y. Cho  U. Koo  W. Mar   《Phytomedicine》2009,16(11):1042-1051
Large amounts of brain nitric oxide are produced over several hours after a stroke. This probably causes DNA strand nicks, nitration of cytosolic components of neurons, and ultimately neuronal death. Oxymatrine and matrine are two major alkaloids of the Chinese herb Sophora flavescens Ait. (Leguminosae); they have been demonstrated to inhibit liver injury during warm ischemia and reperfusion and to induce apoptosis, respectively, in vivo and in vitro. However, the neuroprotective efficacy of the EtOAc extract of S. flavescens (ESF) without the alkaloids has not been explored. This study investigated the inhibitory efficacy of ESF, which contain two major flavonoids kurarinone (45.5%) and sophoraflavone G (14.7%), in focal cerebral ischemia. Focal cerebral ischemia was induced using the middle cerebral artery occlusion (MCAO) method. After 1.5 h of MCAO and 24 h of reperfusion, the extent of neurological deficits and the infarct volume were measured in Sprague-Dawley rats. Compared with carnosine (50 mg/kg), as positive control ESF (20 mg/kg) significantly reduced infarct volume and neurological deficits. Treatment of human SH-SY5Y cells with sodium nitroprusside (SNP), a nitric oxide donor, decreased cell viability by causing apoptosis-like cell death. ESF significantly inhibited caspase-3-like enzyme activity and DNA fragmentation. The level of active caspase-3 was maximal 6 h after SNP treatment. However, active caspase-3 and apoptosis were dose-dependently inhibited by ESF treatment. Flow cytometry analysis showed that ESF significantly inhibited cell apoptosis (p<0.05) and reduced the apoptotic index by 79.9% (p<0.01). These results indicate that ESF is neuroprotective in focal cerebral ischemia and the flavonoids in ESF might be responsible for its neuroprotective activity in rats, alone or in part.  相似文献   

11.
Transgenic tobacco (Nicotiana tabacum L. cv. Wisconsin 38) lines expressing a mutant calmodulin (VU-3) that hyperactivates NAD kinase exhibit an enhanced elicitor-stimulated oxidative-burst reaction (S.A. Harding et al., 1997, EMBO J. 16: 1137–1144). VU-3 transgenic tobacco was used in the present study to investigate the relationship between calmodulin signalling, the production of active oxygen species and cell death in response to infection with an incompatible pathogen. Following P. syringae pv. syringae 61 infection, suspension cells derived from VU-3 transgenic plants exhibited a stronger oxidative burst (3- to 4-fold higher primary and secondary burst reactions), greater media alkalinization (3-fold) and more rapid cell death (4-fold greater mortality at 20 h post infection) than did infected control tobacco cells. Infection of leaf tissues with P. syringae pv. syringae 61 also resulted in an enhanced cell death response compared to control tobacco tissues. This cell death response of VU-3 leaf tissues, but not control leaf tissues, was further enhanced by the presence of 50 μM salicylic acid, suggesting that this transgenic line is more sensitive to the effects of this agent. Overall, the data support the model that calmodulin signalling pathways are involved in the plant oxidative burst and contribute to the regulation of cell death in infected plant tissues undergoing the hypersensitive response. Received: 6 January 1998 / Accepted: 7 March 1998  相似文献   

12.
Arabinogalactan-proteins (AGPs) are a family of highly glycosylated hydroxyproline-rich glycoproteins implicated in several aspects of plant growth and development. (β-d-glucosyl)3 Yariv phenylglycoside (β-GlcY), commonly known as Yariv reagent, selectively binds AGPs. We treated cell suspension cultures of Araucaria angustifolia, the Brazilian pine, with β-GlcY and observed inhibition of biomass increase in a culture medium with 50 μM β-GlcY. However, the growth was not inhibited by (α-d-galactosyl)3 Yariv phenylglycoside (α-GalY) which does not bind AGPs. Fluorescein diacetate staining of cells indicated that β-GlcY severely affected cell viability. However, cell swelling, bursting and release of cellular contents, all characteristics of necrotic cell death, were not observed in β-GlcY-treated cells. Instead, programmed cell death (PCD) structural changes such as cytoplasmic shrinkage and condensation were observed in β-GlcY-treated cells. In addition, callose accumulation, which is another marker of PCD, was also observed in β-GlcY-treated cells. The use of both, Ac-VEID-CHO, an inhibitor of caspase-like proteolytic activity related to PCD, and phenyl methyl sulphonyl fluoride (PMSF), a protease inhibitor known to suppress PCD, in the culture medium did not reverse the growth inhibition caused by β-GlcY. These data indicate that the β-GlcY-induced inhibition of Araucaria cell’s growth is related to AGP perturbation, and also that this growth inhibition is due to increased cell death not driven by necrosis.  相似文献   

13.
An essential ε-subunit of oligosaccharyltransferase Ost2 is a yeast homolog of mammalian highly conserved DAD1 (defender against apoptotic death). In hamster cells, the Gly38Arg mutation in DAD1 causes apoptosis at restrictive temperatures due to a defect in N-linked glycosylation. To analyze the function of Ost2 in yeast cell death, we constructed Saccharomyces cerevisiae strains expressing Gly58Arg (corresponding to the Gly38Arg mutation in hamster DAD1), Gly86Arg, and Glu113Val mutant Ost2. At elevated temperatures, ost2 mutants arrested growth by decreasing cell viability. Phosphatidylserine exposure, a phenotypic marker of apoptosis in mammalian cells, was found in ost2 mutant cells at 37 °C, although DNA fragmentation was not clearly detected. A high concentration of sorbitol compensates for the temperature sensitivity of the ost2 mutant. These results suggest that apoptosis-like cell death in ost2 mutants is caused by the secondary effect of overall reduced protein N-linked glycosylation.  相似文献   

14.
Many tumors, including hepatocellular carcinomas (HCCs), resist Fas-mediated cell death, which is one of the effector mechanisms in the host's anti-tumor response; however, this resistance can be abolished by interferon-γ (IFN-γ). IFN-γ may sensitize Fas-mediated cell death in several ways, but the exact mechanism in HCCs is uncertain. In this study, we thoroughly investigated the effect of IFN-γ on the susceptibility of one human normal liver cell line and 12 HCC cell lines to Fas-mediated cell death. We also investigated the effect of IFN-γ on the expression of various apoptosis-related genes such as the Fas/TNF-related genes, the bcl-2 family, and the caspase family of genes. Although most cell lines showed considerable constitutive expression of Fas, all tested cell lines resisted Fas-mediated cell death without IFN-γ. When cells were pretreated with IFN-γ, only three cell lines were made significantly susceptible to Fas-mediated cell death (SNU-354, SNU-387 and SNU-423); the other 10 cell lines were not affected. IFN-γ increased the mRNA expression of Fas, TRAIL and caspase-1, and surface Fas was also increased. The strongly sensitized cell lines (SNU-354, SNU-387 and SNU-423) showed a particularly potent increment in surface Fas after IFN-γ treatment (increase in surface Fas >1.7-fold). This result enabled us to conclude that a potent increment of surface Fas expression is a major sensitizing mechanism of IFN-γ. We conclude that IFN-γ cannot play a sensitizing role in most HCC cell lines and that IFN-γ makes HCC cells susceptible to Fas-mediated cell death through a marked up-regulation of surface Fas in some HCC cells. Received: 3 August 2000 / Accepted: 24 November 2000  相似文献   

15.
A regulated protein turnover machinery in the cell is essential for effective cellular homeostasis; any interference with this system induces cellular stress and alters the normal functioning of proteins important for cell survival. In this study, we show that persistent cellular stress and organelle dysfunction because of disruption of cellular homeostasis in human malaria parasite Plasmodium falciparum, leads to apoptosis-like cell death. Quantitative global proteomic analysis of the stressed parasites before onset of cell death, showed upregulation of a number of proteins involved in cellular homeostasis; protein network analyses identified upregulated metabolic pathways that may be associated with stress tolerance and pro-survival mechanism. However, persistent stress on parasites cause structural abnormalities in endoplasmic reticulum and mitochondria, subsequently a cascade of reactions are initiated in parasites including rise in cytosolic calcium levels, loss of mitochondrial membrane potential and activation of VAD-FMK-binding proteases. We further show that activation of VAD-FMK-binding proteases in the parasites leads to degradation of phylogenetically conserved protein, TSN (Tudor staphylococcal nuclease), a known target of metacaspases, as well as degradation of other components of spliceosomal complex. Loss of spliceosomal machinery impairs the mRNA splicing, leading to accumulation of unprocessed RNAs in the parasite and thus dysregulate vital cellular functions, which in turn leads to execution of apoptosis-like cell death. Our results establish one of the possible mechanisms of instigation of cell death by organelle stress in Plasmodium.Malaria is a major healthcare problem worldwide resulting in an estimated 0.65 million deaths every year. Present strategy of malaria control is totally dependent on pharmacological treatments and there is a constant need to identify new drug targets involved in important metabolic pathways in the parasite.1 The cellular machinery responsible for protein quality control and folding is essential for cellular homeostasis and survival of eukaryotic cells. The protein quality control is particularly important for malaria parasites because of its high replication rate, high temperature stress and high load on endoplasmic reticulum (ER) because of large amount of proteins that are to be secreted or exported to the host cytosol. In eukaryotic cells, inhibition of 26 S proteasome is one of the major causes for low clearance of unfolded proteins from ER and therefore leads to ER stress. ER stress response may help the cell to survive through the stress, it can also trigger apoptosis when high levels of unfolded proteins persist for a longer time.2 We have earlier shown that disruption of an important metabolic pathway of the parasite can incite the parasite to undergo apoptosis-like cell death.3 A number of other studies have suggested that apoptosis-like cell death can be induced in Plasmodium falciparum by different anti-malarial drugs, antibiotics and other small molecules.4, 5 However, the mode of induction of cell death and different cascade of molecular/cellular events leading to apoptosis-like cell death in the parasite are not clearly understood.In this study, we have assessed cellular stress induced by proteasome inhibition on asexual stage P. falciparum parasites. Global quantitative proteomic analyses identified putative pro-survival pathways in the parasites under cellular stress. We further show that persistent proteasome inhibition cause parasite cell death, which is mediated by a cascade of molecular and cellular events. Overall, our results highlight a probable mechanism of cell death and survival in Plasmodium under cellular stress.  相似文献   

16.
In a genetic screen, α-4GT1 has been identified as a potential enhancer of Hairless-mediated cell death in the eye of Drosophila. α-4GT1 encodes an α-1,4-glycosyltransferase, known to catalyze the fifth step in a series of ceramide glycosylation events. As reported for other enzymes involved in the glycosylation of ceramide, α-4GT1 is strongly expressed during oogenesis and is deposited maternally in the egg. Moreover, the protein is enriched at cell membranes. Unexpectedly, overexpression of α-4GT1 does not enhance Hairless-mediated cell death; instead, Hairless enhancement is caused by an allele of Scutoid 1 present on the α-4GT1 chromosome. Interestingly, the downregulation of α-4GT1 during eye development amplifies cell death induction by the pro-apoptotic gene reaper. Accordingly, overexpression of α-4GT1 represses reaper-induced cell death. Thus, α-4GT1 appears to be an inhibitor of apoptosis, as has previously been observed for other ceramide glycosylating enzymes, suggesting that it likewise contributes to ceramide anchoring in the membrane. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. This work was supported by a grant from the German Science Foundation (DFG) to A.C.N. (NA427/1—2). The authors declare that they have no conflict of interest.  相似文献   

17.
Mitochondrial dysfunction plays a role in the pathogenesis of a wide range of diseases that involve disordered cellular fuel metabolism and survival/death pathways, including neurodegenerative diseases, cancer and diabetes. Cytokine, virus recognition and cellular stress pathways converging on mitochondria cause apoptotic and/or necrotic cell death of β-cells in type-1 diabetes. Moreover, since mitochondria generate crucial metabolic signals for glucose stimulated insulin secretion (GSIS), mitochondrial dysfunction underlies both the functional derangement of GSIS and (over-nutrition) stress-induced apoptotic/necrotic β-cell death, hallmarks of type-2 diabetes. The apparently distinct mechanisms governing β-cell life/death decisions during the development of diabetes provide a remarkable example where remote metabolic, immune and stress signalling meet with mitochondria mediated apoptotic/necrotic death pathways to determine the fate of the β-cell. We summarize the main findings supporting such a pivotal role of mitochondria in β-cell death in the context of current trends in diabetes research.  相似文献   

18.
19.
Thevetia peruviana is a small tree that produces several compounds with pharmaceutical application, among which peruvoside could be highlighted. However, these compounds are produced in low concentration in the plant, making it important to develop strategies such as plant cell culture and elicitation to obtain higher quantities of the desired product. In this work, cell suspension cultures of T. peruviana were established in four different culture media: Murashige–Skoog (MS), half Murashige–Skoog (half MS), Schenk–Hildebrandt (SH), and Gamborg (B5) to study their effect on cell growth. Cell growth kinetics were studied in SH medium, and the extracellular peruvoside production during the culture time was determined. The best culture medium for the establishment of cell suspension cultures was MS with a growth index of 3.17 ± 0.2 g g−1 inoculum. The cell growth kinetics showed the four characteristic growth phases of a cell culture (lag, exponential, stationary, and death), and during none of these phases was it possible to observe peruvoside production. The elicitor effect of methyl-jasmonate (MeJ) was studied in cell suspension cultures established in SH medium. The effect of MeJ concentration and the time in which it should be applied were determined. The best results were obtained at a concentration of 100 mg l−1 of MeJ applied at the beginning of the culture, which induced a peruvoside production of 8.93 mg l−1 medium. The current results are the first report of an in vitro peruvoside production system.  相似文献   

20.
Chukmesundan (CMSD), composed of the following 8 medicinal herbs including Panex ginseng C.A. MEYER, Atractylodes macrocephala KOID, Poria cocos WOLF, Pinellia ternata BREIT, Brassica alba BOISS, Aconitum carmichaeli DEBX, Cynanchum atratum BGE and Cuscuta chinensis LAM. CMSD is being used in Korea for the treatment of various symptoms accompanying hypertension and cerebrovascular disorders. This study was carried out to examine the effects of CMSD on cultured primary neuron cell, cell cytotoxicity and lipid peroxidation in Aβ-treated cells. Cell death was enhanced by addition of Aβ. Pretreatment of CMSD attenuated in cell killing induced by Aβ. The protective effect of the CMSD water extracts on Aβ-induced neuronal death was also observed by lactate dehydrogenase assay using cultured astrocyte cells. Aβ-induced cell death was protected by the water extract of CMSD in a dose-dependent manner, and 25–50 μg/ml was the most effective concentration. CMSD has been also shown to protect primary cultured neurons from N-methyl-d-aspartate receptor-mediated glutamate toxicity. It was in vivo evidenced that CMSD protects neurons against ischemia-induced cell death. Moreover, oral administration of CMSD into mice prevented ischemia-induced learning disability and rescued hippocampal CA1 neurons from lethal ischemic damage. The neuroprotective action of exogenous CMSD was also confirmed by counting synapses in the hippocampal CA1 region. The presence of CMSD in neuron cultures rescued the neurons from nitrogen oxide (NO)-induced death. From these, it was suggested that CMSD may exert its neuroprotective effect by reducing the NO-mediated formation of free radicals or antagonizing their toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号