首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The susceptibilities of the major pests of cotton in Australia, Helicoverpa armigera and Helicoverpa punctigera, to some insecticidal proteins from Bacillus thuringiensis were tested by bioassay. A commercial formulation, DiPel, and individual purified insecticidal proteins were tested. H. armigera was consistently more tolerant to B. thuringiensis insecticidal proteins than was H. punctigera, although both were susceptible to only a limited range of these proteins. Only Cry1Ab, Cry1Ac, Cry2Aa, Cry2Ab, and Vip3A killed H. armigera at dosages that could be considered acceptable. There was no significant difference in the toxicities of Cry1Fa and Cry1Ac for H. punctigera but Cry1Fa had little toxicity for H. armigera. The five instars of H. armigera did not differ significantly in their susceptibility to DiPel on the basis of LC(50). However, there were significant differences in the susceptibility to Cry1Ac and Cry2Aa of three strains of H. armigera. Bioassays conducted with Cry1Ac and Cry2Aa showed that there was a small but significant negative interaction between these delta-endotoxins.  相似文献   

2.
Cry toxins produced by Bacillus thuringiensis bacteria are insecticidal proteins used worldwide in the control of different insect pests. Alterations in toxin-receptor interaction represent the most common mechanism to induce resistance to Cry toxins in lepidopteran insects. Cry toxins bind with high affinity to the cadherin protein present in the midgut cells and this interaction facilitates the proteolytic removal of helix ??-1 and pre-pore oligomer formation. Resistance to Cry toxins has been linked with mutations in the cadherin gene. One strategy effective to overcome larval resistance to Cry1A toxins is the production of Cry1AMod toxins that lack helix ??-1. Cry1AMod are able to form oligomeric structures without binding to cadherin receptor and were shown to be toxic to cadherin-silenced Manduca sexta larvae and Pectinophora gossypiella strain with resistance linked to mutations in a cadherin gene.We developed Cry1AbMod tobacco transgenic plants to analyze if Cry1AMod toxins can be expressed in transgenic crops, do not affect plant development and are able to control insect pests. Our results show that production of the Cry1AbMod toxin in transgenic plants does not affect plant development, since these plants exhibited healthy growth, produced abundant seeds, and were virtually undistinguishable from control plants. Most importantly, Cry1AbMod protein produced in tobacco plants retains its functional toxic activity against susceptible and tolerant M. sexta larvae due to the silencing of cadherin receptor by RNAi. These results suggest that CryMod toxins could potentially be expressed in other transgenic crops to protect them against both toxin-susceptible and resistant lepidopteran larvae affected in cadherin gene.  相似文献   

3.
4.
Sugarcane borer, Diatraea saccharalis (F.), is a primary corn stalk borer pest targeted by transgenic corn expressing Bacillus thuringiensis (Bt) proteins in many areas of the mid-southern region of the United States. Recently, genes encoding for Cry1A.105 and Cry2Ab2 Bt proteins were transferred into corn plants (event MON 89034) for controlling lepidopteran pests. This new generation of Bt corn with stacked-genes of Cry1A.105 and Cry2Ab2 will become commercially available in 2009. Susceptibility of Cry1Ab-susceptible and -resistant strains of D. saccharalis were evaluated on four selected Bt proteins including Cry1Aa, Cry1Ac, Cry1A.105, and Cry2Ab2. The Cry1Ab-resistant strain is capable of completing its larval development on commercial Cry1Ab-expressing corn plants. Neonates of D. saccharalis were assayed on a meridic diet containing one of the four Cry proteins. Larval mortality, body weight, and number of surviving larvae that did not gain significant weight (<0.1 mg per larva) were recorded after 7 days. Cry1Aa was the most toxic protein against both insect strains, followed in decreasing potency by Cry1A.105, Cry1Ac, and Cry2Ab2. Using practical mortality (larvae either died or no significant weight gain after 7 days), the median lethal concentration (LC50) of the Cry1Ab-resistant strain was estimated to be >80-, 45-, 4.1-, and −0.5-fold greater than that of the susceptible strain to Cry1Aa, Cry1Ac, Cry1A.105 and Cry2Ab2 proteins, respectively. This information should be useful to support the commercialization of the new Bt corn event MON 89034 for managing D. saccharalis in the mid-southern region of the United States.  相似文献   

5.
Syngenta is seeking commercial registration for VipCot cotton, a pyramided transgenic cotton trait that expresses two insecticidal proteins derived from Bacillus thuringiensis Vip3A and Cry1Ab. Both proteins are highly effective against two key cotton pests, Helicoverpa zea cotton bollworm; and Heliothis virescens, tobacco budworm. To investigate the role of VipCot cotton in delaying the development of resistance in these pests to transgenic Bt traits, Syngenta has performed studies to determine the dose of proteins expressed in VipCot and evaluate the potential for cross-resistance between the component proteins. Following United States Environmental Protection Agency (US EPA) high dose methods 1 and 4, VipCot was shown to express a high dose of proteins for H. zea and H. virescens. VipCot was also confirmed to express a high dose of proteins for H. zea through US EPA Method 5. Additionally, all the data collected to date verify a lack of cross-resistance between Vip3A and Cry proteins. These two key pieces of information indicate that VipCot cotton should be very durable under the currently mandated high dose plus refuge insect resistance management strategy.  相似文献   

6.
Bacillus thuringiensis (Bt) has played an important role in biocontrol of pests. However, insecticidal activity of B. thuringiensis against locusts has been rarely reported. Bt strain BTH-13 exhibiting specific activity to locusts was isolated from a soil sample in China and characterized. Its bipyramidal parasporal crystal is mainly composed of a protein of 129 kDa, and produces a mature toxin of 64 kDa after activation. The pattern of total DNA from BTH-13 showed a large and three small plasmid bands. Known δ-endotoxin genes, cry1Aa, cry1Ab, cry1Ac, cry1C, cry3, cry4 and cry7Aa were not found from strain BTH-13 by PCR amplification. The sequence analysis of a DNA fragment produced by PCR amplification with degenerate cry-selective primers revealed that the fragment encoded a δ-endotoxin segment, which exhibited some similarity to several Cry proteins (41% of the highest similarity to Cry7Ba1). Toxicity tests were performed against Locusta migratoria manilensis, and the results demonstrated that trypsin-treated sporulated cultures and crystal proteins had high toxicity to larval and adult locusts. Cry toxin of BTH-13 was detected on the midguts of treated locusts using immunofluorescent technology, which confirmed the site of action of the crystal proteins in their toxicity for locusts.  相似文献   

7.
Hemipteran pests including aphids are not particularly susceptible to the effects of insecticidal Cry toxins derived from the bacterium Bacillus thuringiensis. We examined the physiological basis for the relatively low toxicity of Cry1Ac and Cry3Aa against the pea aphid, Acyrthosiphon pisum (Harris). Cry1Ac was efficiently hydrolyzed by aphid stomach membrane associated cysteine proteases (CP) producing a 60 kDa mature toxin, whereas Cry3Aa was incompletely processed and partially degraded. Cry1Ac bound to the aphid gut epithelium but showed low aphid toxicity in bioassays. Feeding of aphids on Cry1Ac in the presence or absence of GalNAc, suggested that Cry1Ac gut binding was glycan mediated. In vitro binding of biotinylated-Cry1Ac to gut BBMVs and competition assays using unlabeled Cry1Ac and GalNAc confirmed binding specificity as well as glycan mediation of Cry1Ac binding. Although Cry3Aa binding to the aphid gut membrane was not detected, Cry3Aa bound 25 and 37 kDa proteins in aphid gut BBMV in ligand blot analysis and competition assays confirmed the binding specificity of Cry3Aa. This, combined with low toxicity in feeding assays, suggests that Cry3Aa does bind the gut epithelium to some extent. This is the first systematic examination of the physiological basis for the low efficacy of Cry toxins against aphids, and analysis of Cry toxin-aphid gut interaction.  相似文献   

8.
杀虫晶体蛋白(insecticidal crystal proteins,ICPs;含有Cry和Cyt 2大家族)和营养期杀虫蛋白(vegetative insecticidal proteins,Vips)等Bt杀虫蛋白可有效防治鳞翅目害虫,其中Cry应用最广泛。然而,一些地区的鳞翅目害虫已对Bt杀虫蛋白产生了抗性。目前,普遍认为鳞翅目昆虫中肠受体与Bt杀虫蛋白结合能力的改变是导致其对Bt杀虫蛋白产生抗性的最主要因素。在鳞翅目昆虫中,Cry受体是研究得最为透彻的Bt受体,已经被证实的有氨肽酶N、钙黏蛋白、碱性磷酸酶和ABC转运蛋白等。Vips杀虫蛋白类与鳞翅目昆虫中肠受体的结合方式与Cry杀虫蛋白相似,但结合位点与Cry杀虫蛋白不同。本文从结构特点、作用机制及不同鳞翅目昆虫间的表达差异等角度对以上4种鳞翅目昆虫中肠Bt受体进行了综述,并提出如下展望:(1)以棉铃虫或小菜蛾等鳞翅目昆虫为农业害虫模式生物进行深入研究,阐明其对Bt杀虫蛋白产生抗性的机制,为研究其他鳞翅目农业害虫对Bt杀虫蛋白产生抗性的机制提供理论借鉴;(2)鉴于在不同鳞翅目昆虫间,中肠Bt受体与Bt杀虫蛋白结合存在差异,且同一Bt杀虫蛋白与鳞翅目昆虫Bt受体并不专一性结合,Bt杀虫蛋白多基因组合策略是较为有效的田间鳞翅目昆虫防治策略,是今后一段时间内Bt杀虫蛋白应用的发展方向。  相似文献   

9.
The binding properties of Vip3A, a new family of Bacillus thuringiensis insecticidal toxins, have been examined in the major cotton pests, Heliothis virescens and Helicoverpa zea. Vip3A bound specifically to brush border membrane vesicles (BBMV) prepared from both insect larval midguts. In order to examine the cross-resistance potential of Vip3A to the commercially available Cry1Ac and Cry2Ab2 toxins, the membrane binding site relationship among these toxins was investigated. Competition binding assays demonstrated that Vip3A does not inhibit the binding of either Cry1Ac or Cry2Ab2 and vice versa. BBMV protein blotting experiments showed that Vip3A does not bind to the known Cry1Ac receptors. These distinct binding properties and the unique protein sequence of Vip3A support its use as a novel insecticidal agent. This study indicates a very low cross-resistance potential between Vip3A and currently deployed Cry toxins and hence supports its use in an effective resistance management strategy in cotton.  相似文献   

10.
Cry15Aa protein, produced by Bacillus thuringiensis serovar thompsoni HD542, in a crystal together with a 40 kDa accompanying protein, is one of a small group of non-typical, less well-studied members of the Cry family of insecticidal proteins, and may provide an alternative for the more commonly used Cry proteins in insect pest management. In this study we examined the role of the C-terminal part of Cry15Aa and of the 40 kDa protein in crystal formation in recombinant B. thuringiensis. The contribution of the 40 kDa protein and of the Cry15Aa carboxy-terminal sequence for crystal formation, crystal solubilization, and insecticidal properties was assessed. No significant differences in toxicity against Cydia pomonella, before or after in vitro solubilization of crystal-spore preparations, were found. Although the 40 kDa protein significantly contributes to in vitro solubility and in vivo crystal formation of Cry15Aa, no direct evidence for involvement of the 40 kDa protein in toxicity of Cry15Aa was found.  相似文献   

11.
Bacillus thuringiensis (Bt) Cry8D insecticidal proteins are unique among Cry8 family proteins in terms of its insecticidal activity against adult Scarab beetles, such as Japanese beetle (Popillia japonica Newman). From the sequence homology with other Bt Cry proteins especially those active against beetles, such as Cry3Aa whose 3D structure is available, the structure of the Cry8D protein has been predicted to be a typical three-domain Cry protein type. In addition, the activation process of Cry8D in gut juice of susceptible insects is presumed to be similar to that of Cry3A (Yamaguchi et al., 2008). In this study, the activation process of Cry8Da in insect gut juice was closely examined. Japanese beetle gut juice proteases digested the 130 kDa Cry8Da protein to produce a 64 kDa protein. This 64 kDa protein was active against both adult and larval Japanese beetle and considered to be an activated toxin. N-terminal sequencing of this 64 kDa protein revealed that the Cry8Da leader sequence consisting of 63 amino acid residues from M1 to F63 was removed. As in the case of Cry3Aa, the proteases further digested the 64 kDa protein to two 8 kDa and 54 kDa fragments. N-terminal amino acid analysis of these smaller fragments indicated that the proteases digested the loop between Alpha Helix (Alpha for short) 3 and Alpha 4. This means that the 8 kDa fragment consists of Alpha 1-3 of Domain I and that the 54 kDa fragment contains the remaining Domain I and full Domain II and Domain III. Size exclusion chromatography and anion exchange chromatography could not separate these 64, 54 and 8 kDa proteins suggesting that the 54 kDa and 8 kDa fragments are still forming the toxin complex equivalent to the 64 kDa protein by size and ionic charge. The sequencing and chromatography results suggest that the gut juice proteases merely nicked the loop between Alpha 3 and Alpha 4. This nicking process appeared to be essential for receptor binding of the Cry8Da toxin. BBMV binding assay revealed that the Cry8Da toxin bound to BBMV preparations from both adult and larval Japanese beetle only after the loop was nicked. Only the 54 kDa fragment bound to the BBMV preparations but not the 64 kDa protein. Ligand blot showed that the protease activated Cry8Da toxin, presumably the 54 kDa fragment, bound to specific BBMV proteins, one or more of those would be receptor(s). The sizes and binding affinities of these Cry8Da-bound proteins of Japanese beetle BBMV differed between larvae and adults.  相似文献   

12.
Toxicity and larval growth inhibition of 11 insecticidal proteins of Bacillus thuringiensis were evaluated against neonate larvae of Helicoverpa armigera, a major pest of important crops in Spain and other countries, by a whole-diet contamination method. The most active toxins were Cry1Ac4 and Cry2Aa1, with LC50 values of 3.5 and 6.3 microg/ml, respectively. At the concentrations tested, Cry1Ac4, Cry2Aa1, Cry9Ca, Cry1Fa1, Cry1Ab3, Cry2Ab2, Cry1Da, and Cry1Ja1, produced a significant growth inhibition, whereas Cry1Aa3, Cry1Ca2, and Cry1Ea had no effect.  相似文献   

13.
Susceptibility of Spodoptera exigua to 9 toxins from Bacillus thuringiensis   总被引:2,自引:0,他引:2  
Nine of the most common lepidopteran active Cry proteins from Bacillus thuringiensis have been tested for activity against Spodoptera exigua. Because of possible intraspecific variability, three laboratory strains (FRA, HOL, and MUR) have been used. Mortality assays were performed with the three strains. LC50 values for the active toxins were determined to the FRA and the HOL strains, whereas susceptibility of the MUR strain was assessed using only two concentrations. The results showed that Cry1Ca, Cry1Da, and Cry1Fa were the most effective toxins with all strains. Cry1Ab was found effective for the HOL strain, but very little effective against FRA (6.5-fold) and MUR strains. Cry1Aa and Cry1Ac were marginally toxic to all strains, whereas the rest of the toxins tested (Cry1Ba, Cry2Aa, and Cry2Ab) were non toxic. Significant differences in susceptibility among strains were also found for Cry1Da, being the FRA strain 25-fold more susceptible than the HOL strain. Growth inhibition, as an additional susceptibility parameter, was determined in the FRA strain with the 9 toxins. The toxicity profile obtained differed from that observed in mortality assays. Cry1Aa, Cry1Ab, Cry1Ac, Cry1Ca, Cry1Da, and Cry1Fa toxins produced a similar larval growth inhibition. Cry2Aa had a lower but clear effect on larval growth inhibition, whereas Cry1Ba and Cry2Ab did not have any effect.  相似文献   

14.
To understand the low toxicity of Cry toxins in planthoppers, proteolytic activation of Cry1Ab in Nilaparvata lugens was studied. The proteolytic processing of Cry1Ab protoxin by N. lugens midgut proteases was similar to that by trypsin activated Cry1Ab. The Cry1Ab processed with N. lugens midgut proteases was highly insecticidal against Plutella xylostella. However, Cry1Ab activated either by trypsin or the gut proteases of the brown planthopper showed low toxicity in N. lugens. Binding analysis showed that activated Cry1Ab bound to brush border membrane vesicles (BBMV) from N. lugens at a significantly lower level than to BBMV from P. xylostella.  相似文献   

15.
Infection of Galleria mellonella by feeding a mixture of Bacillus thuringiensis spores or vegetative bacteria in association with the toxin Cry1C results in high levels of larval mortality. Under these conditions the toxin or bacteria have minimal effects on the larva when inoculated separately. In order to evaluate whether G. mellonella can function as an oral infection model for human and entomo-bacterial pathogens, we tested strains of Bacillus cereus, Bacillus anthracis, Enterococcus faecalis, Listeria monocytogenes, Pseudomonas aeruginosa and a Drosophila targeting Pseudomonas entomophila strain. Six B. cereus strains (5 diarrheal, 1 environmental isolate) were first screened in 2nd instar G. mellonella larvae by free ingestion and four of them were analyzed by force-feeding 5th instar larvae. The virulence of these B. cereus strains did not differ from the B. thuringiensis virulent reference strain 407Cry with the exception of strain D19 (NVH391/98) that showed a lower virulence. Following force-feeding, 5th instar G. mellonella larvae survived infection with B. anthracis, L. monocytogenes, E. faecalis and P. aeruginosa strains in contrast to the P. entomophila strain which led to high mortality even without Cry1C toxin co-ingestion. Thus, specific virulence factors adapted to the insect intestine might exist in B. thuringiensis/B. cereus and P. entomophila. This suggests a co-evolution between host and pathogens and supports the close links between B. thuringiensis and B. cereus and more distant links to their relative B. anthracis.  相似文献   

16.
Bioassays of insecticidal proteins from Bacillus thuringiensis subsp. israelensis with larvae of the malaria vector mosquito Anophelesalbimanus showed that the cytolytic protein Cyt1Aa was not toxic alone, but it increased the toxicity of the crystalline proteins Cry4Ba and Cry11Aa. Synergism also occurred between Cry4Ba and Cry11Aa toxins. Whereas many previous analyses of synergism have been based on a series of toxin concentrations leading to comparisons between expected and observed values for the concentration killing 50% of insects tested (LC50), we describe and apply a method here that enables testing for synergism based on single concentrations of toxins.  相似文献   

17.
The toxicity of seven Bacillus thuringiensis Cry protoxins was tested against neonate larvae of Epinotia aporema, a major soybean pest in Argentina and South America. The most active protoxins were Cry1Ab and Cry1Ac, with LC50 values of 0.55 and 1.39 microg/ml, respectively. Cry1Aa, Cry1Ba, Cry1Ca, and Cry9Ca protoxins were equally toxic with LC50 values about 4 microg/ml, whereas Cry1Da was not toxic. The synergistic activity of different protoxin-mixtures was also analyzed, no synergistic effect between the Cry proteins was observed, with the exception of the poorly toxic Cry1Ba/Cry1Da mixture that was slightly synergistic. The binding capacity of individual Cry1 and Cry9Ca toxins to brush border membranes of E. aporema was also determined. The non-toxic Cry1Da toxin was the only toxin unable to bind to E. aporema membranes. In addition the heterologous competition experiments showed that Cry1Ab and Cry1Ac toxins share a common binding site. Based on these data, we propose that Cry1Ab and Cry1Ac toxins could be used in the biological control of E. aporema.  相似文献   

18.
From Metchnikoff to Monsanto and beyond: the path of microbial control   总被引:2,自引:0,他引:2  
In 125 years since Metchnikoff proposed the use of Metarhizium anisopliae to control the wheat cockchafer and brought about the first field trials, microbial control has progressed from the application of naturalists' observations to biotechnology and precision delivery. This review highlights major milestones in its evolution and presents a perspective on its current direction. Fungal pathogens, the most eye-catching agents, dominated the early period, but major mycological control efforts for chinch bugs and citrus pests in the US had questionable success, and interest waned. The discoveries of Bacillus popilliae and Bacillus thuringiensis began the era of practical and commercially viable microbial control. A program to control the Japanese beetle in the US led to the discovery of both B. popilliae and Steinernema glaseri, the first nematode used as a microbial control agent. Viral insect control became practical in the latter half of the 20th century, and the first registration was obtained with the Heliothis nuclear polyhedrosis virus in 1975. Now strategies are shifting for microbial control. While Bt transgenic crops are now planted on millions of hectares, the successes of more narrowly defined microbial control are mainly in small niches. Commercial enthusiasm for traditional microbial control agents has been unsteady in recent years. The prospects of microbial insecticide use on vast areas of major crops are now viewed more realistically. Regulatory constraints, activist resistance, benign and efficacious chemicals, and limited research funding all drive changes in focus. Emphasis is shifting to monitoring, conservation, integration with chemical pesticides, and selection of favorable venues such as organic agriculture and countries that have low costs, mild regulatory climates, modest chemical inputs, and small scale farming.  相似文献   

19.
Bacillus thuringiensis subsp. israelensis (Bti) produces at least four different crystal proteins that are specifically toxic to different mosquito species and that belong to two non-related family of toxins, Cry and Cyt named Cry4Aa, Cry4Ba, Cry11Aa and Cyt1Aa. Cyt1Aa enhances the activity of Cry4Aa, Cry4Ba or Cry11Aa and overcomes resistance of Culex quinquefasciatus populations resistant to Cry11Aa, Cry4Aa or Cry4Ba. Cyt1Aa synergized Cry11Aa by their specific interaction since single point mutants on both Cyt1Aa and Cry11Aa that affected their binding interaction affected their synergistic insecticidal activity. In this work we show that Cyt1Aa loop β6-αE K198A, E204A and β7 K225A mutants affected binding and synergism with Cry4Ba. In addition, site directed mutagenesis showed that Cry4Ba domain II loop α-8 is involved in binding and in synergism with Cyt1Aa since Cry4Ba SI303-304AA double mutant showed decreased binding and synergism with Cyt1Aa. These data suggest that similarly to the synergism between Cry11Aa and Cyt1Aa toxins, the Cyt1Aa also functions as a receptor for Cry4Ba explaining the mechanism of synergism between these two Bti toxins.  相似文献   

20.
Bacillus thuringiensis produces insecticidal crystal (Cry) proteins which bind to cell surface receptors on the brush border membrane of susceptible midgut larvae. The toxin-receptor interaction generates pores in midgut epithelial cells resulting in cell lysis. Here, a cDNA encoding membrane-bound alkaline phosphatase from Aedes aegypti (Aa-mALP) midgut larvae, based on the sequence identity hit to Bombyx mori membrane-bound ALP, was amplified by RT-PCR and transiently expressed in Spodoptera frugiperda (Sf9) insect cells as a 58-kDa membrane-bound protein via the baculovirus expression system and confirmed by digestion with phosphatidylinositol-specific phospholipase C and LC-MS/MS analysis. Immunolocalization results showed that Cry4Ba is able to bind to only Sf9 cells-expressing Aa-mALP. Moreover, these cells were shown to undergo cell lysis in the presence of 100 ??g/ml trypsin-treated toxin. Finally, trypan blue exclusion assay also demonstrated an increase in cell death in recombinant cells treated with Cry4Ba. Overall results indicated that Aa-mALP protein was responsible for mediating Cry4Ba toxicity against Sf9 cells, suggesting its role as a receptor for Cry4Ba toxin in A. aegypti mosquito larvae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号