首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The functional and biochemical characterization of rat bone marrow derived mast cells (RBMMC) confirms both species-related differences between rat and mouse bone marrow-derived mast cells (MBMMC) as well as mast cell heterogeneity in a single species. Such RBMMC have the staining characteristics of mucosal mast cells and contain the mucosal mast cell protease. The RBMMC release the preformed granule mediator beta-hexosaminidase both in response to immunologic stimulation with 200 ng Ag (net release 15.8 +/- 3.8%) and in response to 1 microM calcium ionophore A23187 (net release 21.8 +/- 6.8%). However, compound 48/80, substance P, and somatostatin did not induce mast cell degranulation. In experiments with optimal beta-hexosaminidase release, the RBMMC generated similar quantities of the newly formed arachidonic acid metabolites leukotriene C4 and PGD2 when stimulated with either Ag or calcium ionophore A23187. The RBMMC incorporate [35S]sulfate into proteoglycans consisting of 90% chondroitin sulfates and 10% heparin. The chondroitin sulfates were comprised of chondroitin 4 sulfate and chondroitin sulfate diB sulfated disaccharides in a ratio of 4/1. Although we show that RBMMC and MBMMC share a low histamine content, functional IgE receptors and unresponsiveness to cromolyn and selective secretagogues (compound 48/80, substance P, and somatostatin), we also provide evidence that RBMMC differ from MBMMC in their profile of newly generated mediators, preformed granule proteoglycan, and lack of proliferative response to mouse IL-3.  相似文献   

2.
PGD(2) is a key mediator of allergic inflammatory diseases that is mainly synthesized by mast cells, which constitutively express high levels of the terminal enzyme involved in PGD(2) synthesis, the hematopoietic PGD synthase (H-PGDS). In this study, we investigated whether eosinophils are also able to synthesize, and therefore, supply biologically active PGD(2). PGD(2) synthesis was evaluated within human blood eosinophils, in vitro differentiated mouse eosinophils, and eosinophils infiltrating inflammatory site of mouse allergic reaction. Biological function of eosinophil-derived PGD(2) was studied by employing inhibitors of synthesis and activity. Constitutive expression of H-PGDS was found within nonstimulated human circulating eosinophils. Acute stimulation of human eosinophils with A23187 (0.1-5 μM) evoked PGD(2) synthesis, which was located at the nuclear envelope and was inhibited by pretreatment with HQL-79 (10 μM), a specific H-PGDS inhibitor. Prestimulation of human eosinophils with arachidonic acid (10 μM) or human eotaxin (6 nM) also enhanced HQL-79-sensitive PGD(2) synthesis, which, by acting on membrane-expressed specific receptors (D prostanoid receptors 1 and 2), displayed an autocrine/paracrine ability to trigger leukotriene C(4) synthesis and lipid body biogenesis, hallmark events of eosinophil activation. In vitro differentiated mouse eosinophils also synthesized paracrine/autocrine active PGD(2) in response to arachidonic acid stimulation. In vivo, at late time point of the allergic reaction, infiltrating eosinophils found at the inflammatory site appeared as an auxiliary PGD(2)-synthesizing cell population. Our findings reveal that eosinophils are indeed able to synthesize and secrete PGD(2), hence representing during allergic inflammation an extra cell source of PGD(2), which functions as an autocrine signal for eosinophil activation.  相似文献   

3.
Mast cells and basophils involved in allergic responses do not have clonotypic Ag receptors. However, they can acquire Ag specificity through binding of Ag-specific IgE to FcepsilonRI expressed on their surface. Previous studies demonstrated that IgE binding induced the stabilization and accumulation of FcepsilonRI on the cell surface and resulted in up-regulation of FcepsilonRI. In this study we have further analyzed the maintenance of IgE-mediated memory in mast cells and basophils in vivo by comparing kinetics of serum IgE levels, FcepsilonRI expression, and ability to induce systemic anaphylaxis. A single i.v. injection of trinitrophenyl-specific IgE induced 8-fold up-regulation of FcepsilonRI expression on peritoneal mast cells in B cell-deficient (micro m(-/-)) mice. Serum IgE levels became undetectable by day 6, but the treatment of mice with anti-IgE mAb induced a significant drop in body temperature on days 14, 28, and 42. The administration of trinitrophenyl -BSA, but not BSA, in place of anti-IgE mAb gave similar results, indicating the Ag specificity of the allergic response. This long term maintenance of Ag-specific reactivity in the allergic response was also observed in normal mice passively sensitized with IgE even though the duration was shorter than that in B cell-deficient mice. The appearance of IgE with a different specificity did not interfere with the maintenance of IgE-mediated memory of mast cells and basophils. These results suggest that IgE-mediated stabilization and up-regulation of FcepsilonRI enables mast cells and basophils not only to acquire Ag specificity, but also to maintain memory in vivo for lengthy periods of time.  相似文献   

4.
Mast cells are widely recognized as effector cells of allergic inflammatory reactions. They contribute to the pathogenesis of different chronic inflammatory diseases, wound healing, fibrosis, thrombosis/fibrinolysis, and anti-tumor immune responses. In this paper, we summarized the role of P2X and P2Y receptors in mast cell activation and effector functions. Mast cells are an abundant source of ATP which is stored in their granules and secreted upon activation. We discuss the contribution of mast cells to the extracellular ATP release and to the maintenance of extracellular nucleotides pool. Recent publications highlight the importance of purinergic signaling for the pathogenesis of chronic airway inflammation. Therefore, the role of ATP and P2 receptors in allergic inflammation with focus on mast cells was analyzed. Finally, ATP functions as mast cell autocrine/paracrine factor and as messenger in intercellular communication between mast cells, nerves, and glia in the central nervous system.  相似文献   

5.
IgE-sensitized rat basophilic leukemia (RBL)-2H3 mast cells have been shown to migrate towards antigen. In the present study we tried to identify the mechanism by which antigen causes mast cell migration. Antigen caused migration of RBL-2H3 cells at the concentration ranges of 1000-fold lower than those required for degranulation and the dose response was biphasic. This suggests that mast cells can detect very low concentration gradients of antigen (pg/ml ranges), which initiate migration until they degranulate near the origin of antigen, of which concentration is in the ng/ml ranges. Similar phenomenon was observed in human mast cells (HMCs) derived from CD34+ progenitors. As one mechanism of mast cell migration, we tested the involvement of sphingosine 1-phosphate (S1P). FcεRI-mediated cell migration was dependent on the production of S1P but independent of a S1P receptor or its signaling pathways as determined with S1P receptor antagonist VPC23019 and Gi protein inhibitor pertussis toxin (PTX). This indicated that the site of action of S1P produced by antigen stimulation was intracellular. However, S1P-induced mast cell migration was dependent on S1P receptor activation and inhibited by both VPC23019 and PTX. Cell migration towards antigen or extracellular S1P was dependent on the activation of the phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) pathways, while only migration towards antigen was inhibited by the inhibitors of sphingosine kinase and phospholipase C (PLC) and intracellular calcium chelator BAPTA. In summary, our data suggest that the high affinity receptor for IgE (FcεRI)-mediated mast cell migration is dependent on the production of S1P but independent of S1P receptors. Cell migration mediated by either FcεRI or S1P receptors involves activation of both PI3K and MAPK.  相似文献   

6.
鞘氨醇-1-磷酸(sphingosine-1 phosphate,S1P)是来源于鞘脂代谢途径的多效性信号分子,其代谢受到多种因素调控。S1P由细胞内的鞘氨醇激酶(sphingosine kinases,SphKs)催化鞘氨醇的磷酸化而合成,可通过转运蛋白释放至细胞外。S1P可通过在胞外结合其特异性G蛋白偶联受体及胞内作用而调节多种重要生物学效应。作为细胞外介质和细胞内信使,S1P在免疫系统中也发挥重要的调节作用。S1P参与免疫细胞的迁移、增殖、分化及死亡细胞清除等过程。本文对S1P的代谢以及其对于免疫细胞的调节作用进行综述。  相似文献   

7.
Sphingosine 1-phosphate (S1P) is a biologically active lysophospholipid that transmits signals through a family of G-protein-coupled receptors to control cellular differentiation and survival, as well as the vital functions of several types of immune cell. In this Review article, we discuss recent results that indicate that S1P and its receptors are required for the emigration of thymocytes from the thymus, the trafficking of lymphocytes in secondary lymphoid organs and the migration of B cells into splenic follicles. In an autocrine manner, through interactions with different G-protein-coupled receptors, S1P also enhances optimal mast-cell migration and release of pro-inflammatory mediators in allergic reactions. S1P-S1P-receptor regulatory systems might therefore be novel targets for the therapy of diverse immunological diseases.  相似文献   

8.
Ionizing radiation has different biological effects according to dose and dose rate. In particular, the biological effect of low-dose radiation is unclear. Low-dose whole-body gamma irradiation activates immune responses in several ways. However, the effects and mechanism of low-dose radiation on allergic responses remain poorly understood. Previously, we reported that low-dose ionizing radiation inhibits mediator release in IgE-mediated RBL-2H3 mast cell activation. In this study, to have any physiological relevance, we investigated whether low-dose radiation inhibits allergic responses in activated human mast cells (HMC-1(5C6) and LAD2 cells), mouse models of passive cutaneous anaphylaxis and the late-phase cutaneous response. High-dose radiation induced cell death, but low-dose ionizing radiation of <0.5 Gy did not induce mast cell death. Low-dose ionizing radiation that did not induce cell death significantly suppressed mediator release from human mast cells (HMC-1(5C6) and LAD2 cells) that were activated by antigen-antibody reaction. To determine the inhibitory mechanism of mediator released by low-dose ionizing radiation, we examined the phosphorylation of intracellular signaling molecules such as Lyn, Syk, phospholipase Cγ, and protein kinase C, as well as the intracellular free Ca2+ concentration ([Ca2+]i). The phosphorylation of signaling molecules and [Ca2+]i following stimulation of FcεRI receptors was inhibited by low dose ionizing radiation. In agreement with its in vitro effect, ionizing radiation also significantly inhibited inflammatory cells infiltration, cytokine mRNA expression (TNF-α, IL-4, IL-13), and symptoms of passive cutaneous anaphylaxis reaction and the late-phase cutaneous response in anti-dinitrophenyl IgE-sensitized mice. These results indicate that ionizing radiation inhibits both mast cell-mediated immediate- and delayed-type allergic reactions in vivo and in vitro.  相似文献   

9.
Ligation of the high-affinity receptor for IgE (Fc epsilonRI), constitutively expressed on mast cells and basophils, promotes cell activation and immediate release of allergic mediators. Furthermore, Fc epsilonRI up-regulation on APC from atopic donors is involved in the pathophysiology of allergic diseases. In consideration of the clinical relevance of the IgE receptor, the down-modulation of Fc epsilonRI expression in mast cells may represent a potential target for handling atopic diseases. In an effort to identify new molecular mechanisms involved in attenuating Fc epsilonRI expression and signaling, we focused our attention on CIN85, a scaffold molecule that regulates, in concert with the ubiquitin ligase Cbl, the clathrin-mediated endocytosis of several receptor tyrosine kinases. In the present study, we show that endogenous CIN85 is recruited in Cbl-containing complexes after engagement of the Fc epsilonRI on a mast cell line and drives ligand-induced receptor internalization. By confocal microscopic analysis, we provide evidence that CIN85 directs a more rapid receptor sorting in early endosomes and delivery to a lysosomal compartment. Furthermore, biochemical studies indicate that CIN85 plays a role in reducing the expression of receptor complex. Finally, we demonstrate that CIN85-overexpressing mast cells are dramatically impaired in their ability to degranulate following Ag stimulation, suggesting that the accelerated internalization of activated receptors by perturbing the propagation of Fc epsilonRI signaling may contribute to dampen the functional response. This role of CIN85 could be extended to include other multimeric immune receptors, such as the T and B cell receptors, providing a more general molecular mechanism for attenuating immune responses.  相似文献   

10.
Mast cells play important roles in host defence against pathogens, as well as being a key effector cell in diseases with an allergic basis such as asthma and an increasing list of other chronic inflammatory conditions. Mast cells initiate immune responses through the release of newly synthesised eicosanoids and the secretion of pre-formed mediators such as histamine which they store in specialised granules. Calcium plays a key role in regulating both the synthesis and secretion of mast-cell-derived mediators, with influx across the membrane, in particular, being necessary for degranulation. This raises the possibility that calcium influx through P2X receptors may lead to antigen-independent secretion of histamine and other granule-derived mediators from human mast cells. Here we show that activation of P2X7 receptors with both ATP and BzATP induces robust calcium rises in human mast cells and triggers their degranulation; both effects are blocked by the P2X7 antagonist AZ11645373, or the removal of calcium from the extracellular medium. Activation of P2X1 receptors with αβmeATP also induces calcium influx in human mast cells, which is significantly reduced by both PPADS and NF 449. P2X1 receptor activation, however, does not trigger degranulation. The results indicate that P2X7 receptors may play a significant role in contributing to the unwanted activation of mast cells in chronic inflammatory conditions where extracellular ATP levels are elevated.  相似文献   

11.
《Cellular signalling》2014,26(5):1105-1117
Mast cells play important roles via FcεRI-mediated activation in allergic asthma. A nonpolymorphic MHC I-like molecule CD1d, which is mainly expressed in APCs, presents glycolipid Ag to iTCR on iNKT cells and modulates allergic responses. This study aimed to investigate the role of CD1d on IgE production and mast cell activation related to allergic asthma. Bone marrow-derived mast cells (BMMCs) from C57BL/6 Wild type (WT) or KO (CD1d−/−) mice were activated with Ag/Ab (refer to WT-act-BMMCs and KO-act-BMMCs, respectively) or α-Galactosylceramide (WT-αGal-BMMCs, KO-αGal-BMMCs) in the presence of iNKT cells. WT, KO or BMMC-transferred KO mice were sensitized and/or challenged by OVA or α-Gal to induce asthma. KO-act-BMMCs reduced intracellular Ca2 + levels, expression of signaling molecules (Ras, Rac1/2, PLA2, COX-2, NF-κB/AP-1), mediator release (histamines, leukotrienes and cytokines/chemokines), and total IgE levels versus the corresponding WT-BMMCs. KO mice reduced total and OVA-specific serum IgE levels, number of mast cells, recruiting molecules (CCR2/CCL2, VCAM-1, PECAM-1), expression of tryptase, c-kit, CD40L and cytokine mRNA, co-localization of c-kit and CD1d or iNKT cells in BAL cells or lung tissues, and PCA responses, compared with the corresponding WT mice. BMMC-transferred KO-both mice showed the restoration of all allergic responses versus KO-both mice (Ag/Ab reaction plus α-Gal). KO-αGal-BMMCs or KO-αGal mice did not show any responses. Our data suggest that CD1d-expressed mast cells may function as APC cells for iNKT cells and exacerbate airway inflammation and remodeling through up-regulating IgE production via B cell Ig class switching and mediator release in mast cells of OVA-challenged mice.  相似文献   

12.
Mast cells are effector cells that mediate the allergic response through Ag stimulation of IgE bound to FcεRI. In allergic reactions, cross-linking of the surface receptors for IgE on mast cells results in the synthesis of Th2 cytokines such as IL-4 and IL-13, which are critical for the initiation and progression of the allergic response. Despite the important roles of these cytokines, the signaling mechanism by which Ag stimulation mediates the production of IL-4 and IL-13 in mast cells is not clearly understood. In the present study, we found that Ag-stimulated bone marrow-derived mast cells (BMMCs) highly upregulated the expression of BLT2, a leukotriene B(4) receptor, and that blockade of BLT2 with the specific antagonist LY255283 or small interfering RNA knockdown completely abolished the production of Th2 cytokines. Furthermore, BMMCs overexpressing BLT2 showed significantly enhanced production of Th2 cytokines compared with wild-type BMMCs. Additionally, we found that the generation of Nox1-derived reactive oxygen species occurs downstream of BLT2, thus mediating the synthesis of Th2 cytokines. Taken together, our results suggest that the BLT2-Nox1-reactive oxygen species cascade is a previously unsuspected mediatory signaling mechanism to Th2 cytokine production in Ag-stimulated BMMCs, thus contributing to allergic response.  相似文献   

13.
To analyze the involvement in allergic reactions of platelets and sphingosine 1-phosphate (Sph-1-P), a lysophospholipid mediator released from activated platelets, the effects of Sph-1-P and a supernatant prepared from activated platelets on mast cell line RBL-2H3 were examined. Sph-1-P strongly inhibited the migration of both non-stimulated and fibronectin-stimulated RBL-2H3 cells, which was reversed by JTE-013, a specific antagonist of G protein-coupled Sph-1-P receptor S1P(2); S1P(2) was confirmed to be expressed in these cells. A similar anti-motility effect of Sph-1-P was observed in a phagokinetic assay. Consistent with these results, treatment of RBL-2H3 cells with Sph-1-P resulted in a rounded cell morphology, which was blocked by JTE-013. Under the present conditions, Sph-1-P failed to induce intracellular Ca(2+) mobilization or histamine degranulation, responses postulated to be elicited by intracellular Sph-1-P. Importantly, the Sph-1-P effect, i.e., the regulation of RBL-2H3 cell motility, was mimicked by the supernatant (both with and without boiling) prepared from activated platelets, and this effect of the supernatant was also blocked by JTE-013. Our results suggest that the motility of mast cells can be regulated by Sph-1-P and also platelets (which release Sph-1-P), via cell surface receptor S1P(2) (not through intracellular Sph-1-P actions, postulated previously in the same cells).  相似文献   

14.
In allergic bronchospasm inhaled allergen interacts with specific IgE antibody on the surface of mast cells, inducing the release of mediators, particularly histamine and leukotrienes, which induce bronchoconstriction. Disodium cromoglycate, previously considered to be predominantly a mast cell stabilizing agent, is effective prophylactically in inhibition of early and late phase asthmatic reactions. However, the microenvironment of the airways contains many cell types and the precise role of mast cells is not clear. Lymphocytes, alveolar macrophages, eosinophils, platelets, and neutrophils possess low affinity surface receptors for IgE and can respond to allergen, releasing mediators that have diverse functions. These observations compound the problem of which mediator(s) is most important in pathogenesis of asthma. Moreover, mast cell products modulate the functions of many cells, and thus whether mast cells act directly or indirectly on bronchial smooth muscle requires clarification. Neuropeptides activate or modulate mast cells, and together with evidence of the close association of mast cells and nerves, these observations provide exciting new directions for investigation. Evidence that mast cells from different sites are heterogeneous in their response to stimuli and antiallergic drugs and differ in mediator production and function amplifies the problems identified above. In summary, the role of mast cells in bronchoconstriction is complex and systematic analysis of interactions between mast cells and other cells of the airways is essential.  相似文献   

15.
《ImmunoMethods》1993,2(3):273-278
The role of mast cell activation and the generation of mediator release are important factors in determining the reactivity of lung tissue during allergic reactions and asthma. In this article, the advantages of our procedure for isolating mast cells from lung tissue over other methods are discussed. Our studies have demonstrated the importance of cross talk between mast cells and other cell types that also release mediators of bronchoconstriction during activation, thus amplifying the response. In addition, it has been found that inositol phospholipid turnover in response to various mast cell mediators is enhanced in hyperresponsive lung tissue. The consequences to the contractility of the tissue of such alterations in the cellular signaling system in lung tissue are discussed.  相似文献   

16.
Sphingosine 1-phosphate (S1P) has been proposed as a regulator of lymphocyte trafficking, but its role in mucosa-associated diseases, such as in food allergies, remains to be elucidated. To examine the role of S1P in allergic diseases in the intestine, we used a Th2 cell-mediated Ag-specific allergic diarrhea model and demonstrated that type 1 S1P receptor (S1P(1)) expression was preferentially associated with pathogenic CD4(+) T cells for the development of allergic reactions. Consistent with this demonstration, treatment with FTY720, a modulator of the S1P(1), prevented allergic diarrhea by inhibiting the migration of systemically primed pathogenic CD4(+) T cells induced by oral challenge with allergen into the large intestine. In addition, FTY720 hampered mast cell infiltration into the large intestine, whereas eosinophil infiltration into the large intestine and total and allergen-specific serum IgE production were comparable between mock- and FTY720-treated groups. These results suggest that modulation of the S1P-mediated pathway to inhibit the migration of pathogenic CD4(+) T cells and mast cells into the large intestine could be a novel strategy for preventing allergic diarrhea.  相似文献   

17.
It is well established that catecholamines (CAs), which regulate immune and inflammatory responses, derive from the adrenal medulla and from presynaptic neurons. Recent studies reveal that T cells also can synthesize and release catecholamines which then can regulate T cell function. We have shown recently that macrophages and neutrophils, when stimulated, can generate and release catecholamines de novo which, then, in an autocrine/paracrine manner, regulate mediator release from these phagocytes via engagement of adrenergic receptors. Moreover, regulation of catecholamine-generating enzymes as well as degrading enzymes clearly alter the inflammatory response of phagocytes, such as the release of proinflammatory mediators. Accordingly, it appears that phagocytic cells and lymphocytes may represent a major, newly recognized source of catecholamines that regulate inflammatory responses.  相似文献   

18.
Lysophosphatidic acid as an autocrine and paracrine mediator   总被引:12,自引:0,他引:12  
Recent studies have established that lysophosphatidic acid (LPA) is produced by a wide variety of cell types, and that most mammalian cells express receptors for LPA. These findings raise the hypothesis that LPA acts as an autocrine mediator to initiate signaling in the cells where it is produced, as well as a paracrine mediator to affect neighboring cells. The extent to which these scenarios occur will depend on the species of LPA generated, the LPA receptors expressed, and the ability of these receptors to bind to the LPA produced. The enzymes involved in LPA synthesis and their cellular localization in relationship to LPA receptors are also likely to be important. Studies addressing these issues with respect to the potential roles of LPA as an autocrine and paracrine mediator are reviewed, with examples.  相似文献   

19.
The linker for activation of T cells (LAT) and the non-T cell activation linker (NTAL) are two transmembrane adapters which organize IgE receptor (FcepsilonRI) signaling complexes in mast cells. LAT positively regulates, whereas NTAL negatively regulates mast cell activation. We previously found that the four distal tyrosines of LAT can generate negative signals. We show here that two of these tyrosines provide two binding sites for SHIP1, that LAT recruits SHIP1 in vivo, and that SHIP1 recruitment is enhanced in NTAL-deficient cells. We show that NTAL negatively regulates mast cell activation by decreasing the recruitment, by LAT, of molecules involved in FcepsilonRI-dependent positive signaling. We show that NTAL also decreases the recruitment of SHIP1 by LAT, leading to an increased phosphorylation of the antiapoptotic molecule Akt, and positively regulates mast cell survival. We finally show that the positive effect of NTAL on Akt phosphorylation and mast cell survival requires LAT. Our data thus document the mechanisms by which LAT and NTAL can generate both positive and negative signals which differentially regulate mast cell activation and survival. They also provide molecular bases for the recruitment of SHIP1 in FcepsilonRI signaling complexes. SHIP1 is a major negative regulator of mast cell activation and, hence, of allergic reactions.  相似文献   

20.
Sphingosine-1-phosphate (S1P) is a highly bioactive sphingolipid involved in diverse biological processes leading to changes in cell growth, differentiation, motility, and survival. S1P generation is regulated via sphingosine kinase (SK), and many of its effects are mediated through extracelluar action on G-protein-coupled receptors. In this study, we have investigated the mechanisms regulating SK, where this occurs in the cell, and whether this leads to release of S1P extracellularly. The protein kinase C (PKC) activator, phorbol 12-myristate 13-acetate (PMA), induced early activation of SK in HEK 293 cells, and this activation was more specific to the membrane-associated SK. Therefore, we next investigated whether PMA induced translocation of SK to the plasma membrane. PMA induced translocation of both endogenous and green fluorescent protein (GFP)-tagged human SK1 (hSK1) to the plasma membrane. PMA also induced phosphorylation of GFP-hSK1. The PMA-induced translocation was abrogated by preincubation with known PKC inhibitors (bisindoylmaleimide and calphostin-c) as well as by the indirect inhibitor of PKC, C(6)-ceramide, supporting a role for PKC in mediating translocation of SK to the plasma membrane. SK activity was not necessary for translocation, because a dominant negative G82D mutation also translocated in response to PMA. Importantly, PKC regulation of SK was accompanied by a 4-fold increase in S1P in the media. These results demonstrate a novel mechanism by which PKC regulates SK and increases secretion of S1P, allowing for autocrine/paracrine signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号