首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Explants of rat adrenal medulla were grown in tissue culture. The effects of various doses of dbcAMP ranging from 0.001 mM up to 1 mM and equimolar amounts of theophylline were recorded by phase contrast optics and catecholamine histochemistry (glyoxylic acid method) over six days. There was a dose-dependent inhibition of the normally occurring outgrowth of Schwann cells, “chromaffin” cells and axons from the explants. Maintenance of glyoxylic acid-induced fluorescence in “chromaffin” cells was dose-dependent, too. Since theophylline is known to enhance intracellular levels of cAMP only, these effects are probably due to the action of cAMP. cAMP obviously maintains the degree of differentiation of chromaffin cells. Thus it could be argued that a certain degree of dedifferentiation is a prerequisite for the formation of axons from these cells.  相似文献   

2.
The cyclic adenosine 3', 5'-monophosphate (cAMP) content of isolated unstimulated mast cells and the changes induced by a variety of pharmacologic, metabolic, and physical stimuli were studied. A modified bovine serum albumin density gradient purification method consistently provided mast cell preparations which were 95% or more pure, without apparent damage, and a 73% recovery of the mast cells applied to the gradients. The measured cAMP in unstimulated mast cells was high, a mean of 16 picomoles per million cells. Moderate agitation or contact with glass increased cAMP content about 2-fold. When calcium was omitted from the medium mast cell cAMP was markedly elevated; incremental increases in added calcium ion concentration from 1 muM to 1 mM caused a linear decrease in cAMP content. Theophylline (3 to 20 mM) caused a dose-related increase in mast cell cAMP content, approximately 2-fold at 20 mM theophylline. Epinephrine (0.01 to 1 mM) caused a modest, dose-related increase in cAMP. In the presence of theophylline, epinephrine increased cAMP levels equal to or greater than the sum of the effects of the agents used individually. The increase in cAMP induced by epinephrine was completely inhibited by 100 muM propranolol and partially inhibited by 10 muM propranolol, thus suggesting that a beta adrenergic receptor is involved. Prostaglandin E1 (PGE1) and histamine (in the presence of theophylline) also raised cAMP. Carbamylcholine (1 nM) lowered cAMP 38%; Atropine (0.1 mM) inhibited the decrease in cAMP induced by 1 nM carbamylcholine by 83% indicating that a muscarinic receptor is involved. In these homogeneous single cell suspensions, therefore, cholinergic and beta adrenergic agents have opposing effects on cAMP levels. Diazoxide (10 muM) and adenine (1 muM) caused 37 and 32% decreases in cAMP, respectively. The availability of highly purified mast cells and the identification of agents which either decrease or increase cAMP content allows a direct examination of the role of cAMP in histamine release.  相似文献   

3.
Summary Studies on isolated adrenal chromaffin cells in primary cultures may be seriously hampered by the presence of non-chromaffin, mainly fibroblast-like cells, which always occur in dissociates of adrenal medullary tissue and often outnumber the chromaffin cells by the end of the first week of culture, when no measures are taken to control their proliferation. The present study offers a new means to inhibit effectively the proliferation of these accessory cells by treating the cultures with dibutyrylic cyclic AMP (dbcAMP, 0.1 or 0.01 mM) and equimolar amounts of the phosphodiesterase inhibitor theophylline. With this treatment cultures of young rat adrenal chromaffin cells remain virtually free of accessory cells for two weeks of culture. Cultures of bovine adrenomedullary cells retain their initial amounts of non-chromaffin cells, which largely depends upon whether the primary cell suspensions have undergone differential plating prior to seeding. Suppression of accessory cell proliferation with dbcAMP and theophylline is partly due to maintaining differentiation of cortical cells, which otherwise dedifferentiate into rapidly dividing fibroblast-like elements. However, a more direct action of dbcAMP on accessory cells in terms of growth control is also conceivable. DbcAMP and theophylline in the doses applied do not impair the viability, ultrastructure and catecholamine-storing capacity of cultured chromaffin cells.  相似文献   

4.
The present study reports the effects of the lipophylic ionophore X537A on lipolysis and accumulation of cAMP in isolated hamster epidiymal adipocytes. X537A inhibited lipolysis activated with norepinephrine, isoproterenol, dibutyryl cAMP or theophylline but failed to influence basal lipolysis. The minimum effective concentration of X537A required to inhibit lipolysis was between 1 and 3 micrograms/ml; at a concentration of 10 micrograms/ml, X537A inhibited lipolysis by approximately 50%. The antilipolytic effect of X537A does not result from decreased formation of cAMP because the accumulation of cAMP in response to isoproterenol or theophylline was significantly potentiated in the presence of the ionophore. Most of the additional cAMP that accumulated in the presence of X537A was found to be intracellelular, the distribution of cAMP between cells and incubation medium not being influenced by X537A. Neither the basal activity of cAMP dependent protein kinase nor the activity in the presence of isoproterenol or theophylline was influenced by X537A. The effects of X537A on lipolysis and on accumulation of cAMP were found to persist in the absence of extracellular calcium, but adipocytes that were preincubated in a calcium free media containing 4.0 mM EGTA failed to respond to X537A with an increase in cAMP levels. It is concluded that X537A inhibits lipolysis by uncoupling cAMP accumulation from activation of triglyceride lipase by a mechanism unrelated to activation of protein kinase.  相似文献   

5.
Explants and enzyme-dispersed cells of adrenal medulla from 10-12 day old rats were studied in culture for up to 3 weeks. Adrenomedullary chromaffin cells, nerve cells and satellite cells were clearly discernible. The nerve cells were few in number and did not show catecholaminespecific fluorescence. Chromaffin cells stored catecholamines, as judged by the Falck and Hillarp method, in varying amounts decreasing with age of the cultures and the distance from the explants. Exocytosis profiles observed with the electron microscope suggested that cultured chromaffin cells also released catecholamines. Moreover, the cells formed processes and frequently migrated into the outgrowth. After 6 days in culture, the great majority of chromaffin cells stored noradrenaline as revealed by electron microscopy with few adrenaline-storing cells being visible. Granular vesicles (approximately 80-240 nm in diameter) with cores of different electron densities were occasionally present in the same cell suggesting the occurrence of mixtures of primary and secondary amines. Apart from "chromaffin" granules, small clear and dense-cored vesicles (approximately 40-60 nm) were found both in the somata and cell processes. Chromaffin cells and their processes were often closely apposed and occasionally formed specialized attachment zones. As a whole, chromaffin cells in culture resembled small granule-containing cells in sympathetic ganglia. 0.5 mM dbcAMP prevented dedifferentiation of chromaffin cells as judged by the lack of processes, the size and amount of "chromaffin" granules and the high number of adrenaline-storing cells present after 6 days in culture. NGF caused a striking increase in the number of axons growing out from explants.  相似文献   

6.
The effects of theophylline, 8-Br-cAMP, and cAMP on necturus gallbladder epithelium were investigated using microelectrode techniques. Each of these substances depolarized the cell membranes by approximately 15 mV and decreased the apparent ratio of apical to basolateral membrane resistances to a value not significantly different from zero. Examination of the ionic selectivity of the apical membrane by ion substitutions in the mucosal bathing medium revealed a large increase in Cl permeability with no apparent changes in K and Na permeabilities. Intracellular Cl activity ((a)CL(i)) was measured using Cl- sensitive liquid ion-exchanger microelectrodes. Under control conditions, (a)Cl(i) was approximately 20 mM, 2.5 times higher than the value expected for equilibrium distribution ((a)Cl(i/eq). After addition of 8-Br-cAMP, (a)Cl(i) decreased within less than 60 s to approximately 13 mM, a value not significantly different from ((a)Cl(i/eq)). Virtually identical results were obtained with theophylline. Under control conditions, luminal Cl removal caused (a)Cl(i) to fall at an initial rate of 1.8 mM/min, whereas in tissues exposed to 8-Br- cAMP or theophylline a rate of 11.6 mM/min was observed. The apical membrane Cl transference number was estimated from the change of (a)Cl(i) upon exposure to 8-Br-cAMP as well as from the changes in apical membrane potential during variation of the luminal Cl concentration. The results, 0.91 and 0.88, respectively, are indicative of a high Cl permeability of the apical membrane during cAMP. This effect may explain, at least in part, the complete inhibition of fluid absorption produced by theophylline in this tissue. Moreover, enhancement of apical membrane Cl permeability may account for a variety of cAMP effects in epithelial tissues.  相似文献   

7.
The antitumor agent hadacidin (N-formyl-hydroxyamino-acetic acid), at 4 mM, inhibited the multiplication of clone 4 Madin Darby canine kidney (MDCK) cells within 24 hr. Growth resumed rapidly upon replacement of hadacidin with aspartate, an observation consistent with the drug's action as a competitive inhibitor of adenylosuccinate synthetase, an enzyme in adenine nucleotide biosynthesis. Data indicate that the drug-treated cells were arrested in S phase of the cell cycle. Accompanying inhibition of multiplication was a 16-fold increase in the area occupied by the cells and a refractoriness to release by treatment with trypsin. None of these changes occurred when 0.5 mM adenosine was included in the incubation mixture containing the inhibitor. Hadacidin decreased the adenosine triphosphate (ATP) and cyclic adenosine monophosphate (cAMP) content of the cells as well as the rate at which 3H-leucine was incorporated into protein. In the presence of 1 mM dibutyryl cAMP and theophylline, the drug had no effect on cell division and protein synthesis. The data suggest that, in clone 4 MDCK cells, the effects of hadacidin are mediated by diminishing the level of cAMP.  相似文献   

8.
The effect of NaF on cAMP production was studied in hepatocytes isolated from fed and fasted rats. A four-six fold increase in hepatocyte cAMP production was observed in the presence of 10-20 mM NaF in cells isolated from either fed or fasted rats. The maximal stimulation of cAMP production was observed after a 10 min incubation in the presence of 1 mM theophylline. However, as little as 0.05-0.15 mM NaF induced a significant increase in cAMP production. It was also found that NaF would alter the production of glucose in isolated rat hepatocytes. When hepatocytes from fed rats were incubated with 0.05-5 mM NaF there was an increase in amount of glucose released from endogenous sources. Also NaF resulted in a decrease in lactate and pyruvate production. Similarly NaF stimulated glucose production in hepatocytes from fasted rats. The maximal stimulation was observed with about 0.15-0.25 mM NaF. At NaF concentrations greater than 1.5 mM a decrease in glucose production was observed. It is concluded that NaF increases the level of cAMP and alters glucose metabolism in intact hepatocytes.  相似文献   

9.
Intact rat retinae were incubated in Krebs-Ringer media with noradrenaline (NA) in the presence (0.75 mM) or absence of extracellular Ca2+ and at relatively high (10 mM) or low (1 mM) theophylline concentrations. Depending on the incubation conditions we found that the neuroleptic fluphenazine (FLU) affected cAMP-synthesis separately from cAMP-degradation of the NA-cAMP system in the retina. The main results were: At a relatively high theophylline concentration of 10 mM, where cAMP synthesis alone is operative, and at 0.75 Ca2+ we measured with 50 μM NA a NA-response of 110 pmol cAMP/mg prot. At a low theophylline concentration of 1 mM and again at 0.75 mM Ca2+ both cAMP-synthesis and -breakdown are operative. In this condition we found the NA-response of 26 pmol cAMP/mg prot. to be raised by 10 μM FLU to 130 pmol cAMP/mg prot. This enhancing effect might be due to inhibition of degradation of NA-induced cAMP by FLU. In the absence of extracellular calcium and again at 10 mM theophylline, 10 μM FLU raised the NA response nearly 4-fold from 42 pmol cAMP/mg prot. to 153 pmol cAMP/mg prot. The lowest effective concentration for obtaining this enhancing effect was 10 μM FLU and the effect is characterized by an apparent Km of 0.5 μM. The use of 10 mM theophylline in this condition suggests that this FLU-Ca2+ effect is confined to the synthesis part of the NA-cAMP system. The effect points to a replacement of an intramembraneous Ca2+ function by FLU. In conclusion: our results suggest that FLU inhibits degradation of NA-induced synthesis of cAMP and that the neuroleptic renders the NA-response less dependent on extracellular Ca2+.  相似文献   

10.
Methylisobutylxanthine (MIX) raised cAMP levels and inhibited prostacyclin synthesis and arachidonic acid release in endothelial cells from both pig aorta and human umbilical vein. These effects were reversible and dose dependent on MIX concentrations. Dibutyryl cAMP (3 mM) alone did not inhibit prostacyclin synthesis or arachidonic acid release. When added with MIX, dibutyryl cAMP did not enhance the inhibition elicited by MIX. MIX inhibited the formation of lysophospholipids, 1,2-diacylglycerol and phosphatidic acid in bradykinin-stimulated pig endothelial cells, suggesting that the inhibition of prostacyclin synthesis resulted from an apparent inhibition of both phospholipase A2 and phospholipase C. Other phosphodiesterase inhibitors, theophylline and mopidamole, also raised cAMP levels and inhibited arachidonic acid release. However, there was no correlation between cAMP levels and these inhibitions. Forskolin, an adenylate cyclase activator, elevated intracellular cAMP levels with no apparent inhibition on prostacyclin synthesis. We conclude that the inhibitory effect of MIX on phospholipase A2 and phospholipase C is probably through mechanisms other than the elevation of the cAMP level.  相似文献   

11.
Summary Scatchard analysis of3H ouabain bound to isolated rectal gland cells as a function of increasing ouabain concentrations produced a concave curvilinear plot that was resolved into two specific sites with either a high (I) or low (II) affinity for ouabain. Cyclic cAMP/theophylline (±furosemide, 10–4 m) increased the amount of3H ouabain bound to the high-affinity site I. Vanadate, a phosphate congener which promotes formation of the ouabain-binding state of the enzyme, mimicked the effects of cAMP/theophylline at low concentrations of ouabain, suggesting that cAMP/theophylline increases binding to site I by enhancing the rate of turnover of resident enzyme. Enhanced86Rb uptake seen following cAMP/theophylline administration was primarily associated with increased flux through the high-affinity ouabain site, and this stimulation was not obliterated by the co-administration of furosemide. A model was presented which suggested the presence of two noninteracting pools of enzyme or isozymes which exhibit either a high or low affinity for ouabain. Cyclic AMP both stimulated turnover via site I, and modified the kinetics of binding of3H ouabain to site II. The (ave)K d of3H ouabain for site II was increased from 3.6 m (controls) to 0.5 m (cAMP/theophylline) and the Hill coefficient was modified from 0.45 (controls) to 1.12 (caMP/theophylline), suggesting a transition from a negative- to a noncooperative binding state. While furosemide reversed the effects of cAMP/theophylline on site II kinetics, it did not obliterate cAMP/theophylline effects on site I. This suggests that cAMP may alter the intrinsic turnover rate of this particular pool of Na,K-ATPase in shark rectal gland.  相似文献   

12.
cAMP, dbcAMP, cCMP, cGMP, theophylline and caffeine caused reversible melanosome dispersion within 5 minutes at 10 mM in the dermal melanophores of the black goldfish, Carassius auratus L. cTMP, cUMP, 5′-AMP, 5′-CMP, 5′-GMP, 5′-TMP, and 5′-UMP did not produce melanosome dispersion or aggregation in this melanophore system. cAMP was the most effective nucleotide in the induction of melanosome dispersion; at 10 mM, cGMP and at 5 mM, dbcAMP were the least effective of those nucleotides inducing melanosome dispersion. At the 10 mM level dbcAMP required 30 minutes to evoke the same degree of melanosome dispersion as 5 minutes cAMP treatment. Theophylline was more effective than caffeine in eliciting melanosome dispersion. At 1 mM, theophylline and caffeine first induced melanosome dispersion which was followed by aggregation in the course of the 30 minute test period. These reactions suggest both a high melanophore phosphodiesterase activity and competitive inhibition of phosphodiesterase by theophylline and caffeine. Induction of melanosome dispersion by several cyclic 3′,5′-nucleotides suggest multi-nucleotide control of melanosome dispersion. These findings also support a proposed mechanism of prostaglandin induced melanosome dispersion as well as the “second messenger” hypothesis.  相似文献   

13.
The role of cAMP in the control of secretion from bovine adrenal chromaffin cells was examined using the adenylate cyclase activator, forskolin. Treatment of chromaffin cells with forskolin resulted in a rise in cAMP levels. Forskolin inhibited catecholamine release elicited by carbamylcholine or nicotine but had no effect on secretion evoked by 55 mM K+. Inhibition of carbamylcholine-stimulated release by forskolin was half-maximal at 10 microM forskolin. The inhibition by forskolin of secretion evoked by carbamylcholine was at a step distal to the rise in intracellular free calcium concentration ([Ca2+]i), since this rise was not inhibited by forskolin, which itself produced a small rise in [Ca2+]i. The results suggest that secretion evoked by carbamylcholine is due to the activation of an additional second messenger pathway acting with the rise in [Ca2+]i. This additional pathway may be the target for cAMP action.  相似文献   

14.
The regulatory role of cyclic AMP (cAMP) in the growth and insulin production of the islet organ in vitro has been investigated. The effects of dibutyryl cyclic AMP (dbcAMP), theophylline , and 3-isobutyl-1-methylxanthine (IBMX) on DNA replication and on the biosynthesis of RNA and insulin in fetal rat islets of Langerhans maintained in tissue culture have been studied. Raising the glucose concentration from 2.7 mM to 16.7 mM caused a two-fold increase in DNA replication. Both dbcAMP and theophylline markedly inhibited the DNA replication at all glucose Concentrations studied. Low concentrations of IBMX stimulated DNA synthesis. However, at higher concentrations of this drug, known to considerably increase the islet cAMP levels , a marked inhibition of islet DNA replication was observed. Both (pro)insulin and total protein biosynthesis were stimulated by glucose, whereas dbcAMP stimulated only the (pro)insulin biosynthesis. Since glucose is known to raise islet intracellular levels of cAMP, which is known to be an inhibitor of cellular proliferation, the observed glucose stimulation of both islet-cell DNA replication and insulin production appeared conflicting. It is suggested that this dual effect of glucose may depend on a stimulation of proliferation in a limited pool of islet cells which may not exhibit an increase in cAMP.  相似文献   

15.
Active secretion of electrolytes by hepatocytes is believed to be responsible for bile acid-independent canalicular bile flow (BAICF). Theophylline, which enhances BAICF, has been shown to enhance electrogenic Cl- secretion in a number of other epithelia. Such transport is dependent on Na+ and Cl-. Thus, the mechanism of theophylline choleresis may also involve stimulation of electrogenic Cl- secretion of the liver. This hypothesis was tested by studying the effect of ion substitution on theophylline choleresis in isolated perfused rat livers. Addition of theophylline (0.1 mmol) and dibutyryl cAMP (0.05 mmol) to 100 ml perfusate, in a single dose, increased bile flow and biliary secretion of Na+ and Cl- reversibly. These effects of theophylline were virtually abolished when perfusate Na+ (146 mM) was replaced by Li+ (146 mM) or choline+ (120 mM), and when Cl- (127 mM) was replaced by 120 mM NO-3, acetate- or isethionate-. Since even the permeable ions like Li+ and NO-3 could not substitute for Na+ and Cl-, these results show that the effect of theophylline on BAICF is specifically dependent on the presence of Na+ and Cl- in the perfusate. We propose, by analogy to other epithelia, that an electrogenic Cl- secretion mechanism is present in the liver. Theophylline, acting via cAMP, stimulates this transport process, thereby enhancing BAICF.  相似文献   

16.
Results of hemacytometer cell counts and of tyrosinase measurements made by the Pomerantz method demonstrate that imidazole added to the medium of cultured B16 mouse melanoma cells can stimulate tyrosinase specific activity and inhibit cell division. These effects are greater than with adenosine 3',5' cyclic monophosphate (cAMP) or the cAMP-phosphodiesterase inhibitor theophylline. The effects of imidazole on cell division and tyrosinase are enhanced by theophylline and antagonized by cAMP. Cyclic AMP-phosphodiesterase activity in cell-free extracts can be inhibited by theophylline and stimulated by imidazole. However, imidazole does not affect cAMP-phosphodiesterase specific activity in vivo, nor does it affect intracellular cAMP concentrations as determined by competitive protein-binding assays. In contrast, the specific activity of cAMP-phosphodiesterase in vivo is stimulated by cAMP and theophylline, supporting the hypothesis that cAMP and agents which increase intracellular cAMP concentrations induce the synthesis of cAMP-phosphodiesterase. Studies with actinomycin-D and cycloheximide support the hypothesis that cAMP can also mediate posttranslational activation of tyrosinase. Similar experiments suggest that imidazole, or a derivative thereof, can induce the synthesis of tyrosinase at the pretranslational level of control. We hypothesize that this type of regulation (pretranslational) by imidazole may define a role for the concept of "Metabolite Gene Regulation" (MGR), in mammalian cells.  相似文献   

17.
The influence of intracellular injection of cAMP on the electrical coupling of canine Purkinje cells was investigated. It was found that the nucleotide enhanced reversibly the cell-to-cell communication through an increase in junctional conductance. Dibutyryl cAMP (5 X 10(-4) M) plus theophylline (0.4 mM) decreased appreciably the intracellular longitudinal resistance (ri). The interactions of cAMP and Ca on the electrical coupling were also investigated. The nucleotide and Ca have opposite effects on the electrical coupling. In the presence of high [Ca2+]o solutions (6 mM), the intracellular injection of cAMP causes a transient increase in the coupling coefficient followed by an appreciable decrease in cell-to-cell coupling. This reduction in intracellular communication was reversed by injecting EGTA into the same cell. The results of this study support the view that cAMP is a modulator of junctional conductance in cardiac muscle and that the compound interacts with Ca in the control of intracellular communication.  相似文献   

18.
The effects of elevating intracellular cAMP levels on Na+ transport across the apical membrane of Necturus gallbladder epithelium were studied by intracellular and extracellular microelectrode techniques. Intracellular cAMP was raised by serosal addition of the phosphodiesterase inhibitor theophylline (3 mM) or mucosal addition of either 8-Br-cAMP (1 mM) or the adenylate cyclase activator forskolin (10 microM). During elevation of intracellular cAMP, intracellular Na+ activity (alpha Nai) and intracellular pH (pHi) decreased significantly. In addition, acidification of the mucosal solution, which contained either 100 or 10 mM Na+, was inhibited by approximately 50%. The inhibition was independent of the presence of Cl- in the bathing media. The rates of change of alpha Nai upon rapid alterations of mucosal [Na+] from 100 to 10 mM and from 10 to 100 mM were both decreased, and the rate of pHi recovery upon acid loading was also reduced by elevated cAMP levels. Inhibition was approximately 50% for all of these processes. These results indicate that cAMP inhibits apical membrane Na+/H+ exchange. The results of measurements of pHi recovery at 10 and 100 mM mucosal [Na+] and a kinetic analysis of recovery as a function of pHi suggest that the main or sole mechanism of the inhibitory effect of cAMP is a reduction in the maximal rate of acid extrusion. In conjunction with the increase in apical membrane electrodiffusional Cl- permeability, produced by cAMP, which causes a decrease in net Cl- entry (Petersen, K.-U., and L. Reuss, 1983, J. Gen. Physiol., 81:705), inhibition of Na+/H+ exchange contributes to the reduction of fluid absorption elicited by this agent. Similar mechanisms may account for the effects of cAMP in other epithelia with similar transport properties. It is also possible that inhibition of Na+/H+ exchange by cAMP plays a role in the regulation of pHi in other cell types.  相似文献   

19.
Surface binding of anti-actin IgG alone or in a Mr = 716 000 [(IgG)2Protein A]2 complex results in a stimulation of DNA synthesis and cell growth in L cells. Cyclic-AMP (0.01–1.0 mM) added to such cell cultures augmented DNA synthesis as measured by incorporation of [3H]thymidine into DNA. Theophylline (0.1–1.0 mM), a phosphodiesterase inhibitor which prevents enzymatic breakdown of cAMP, had similar effects, but cGMP (0.01–1.0 μM) reversed the effects of cAMP and theophylline upon DNA synthesis. Analysis of the cell cycle by flow cytometry revealed that antibody produced a shift (7%) of cells from the G1-phase to the S-phase (DNA-synthetic) of the cell cycle at 72 hr of incubation. Addition of cAMP (0.5 mM) to cell cultures, however, produced significant shifts of antibody stimulated cells from G1-phase to S-phase at all time points measured, i.e., 24 (12%),48 (22%),72 hr (23%). Thus, antibody recruited cells into S-phase of the cell cycle and cAMP greatly augmented the effect. These observations suggest that the mechanism of activation of L cell growth by antibody to surface antigens involves a recruitment of cells into the DNA-synthetic phase and that the effect may be mediated by cAMP.  相似文献   

20.
The effects of theophylline (a phosphodiesterase inhibitor) and cAMP on 17α, 20ß-dihydroxy-4-pregnen-3-one-induced germinal vesicle breakdown was investigatedin vitro in catfish (Clarias batrachus) oocytes. Folliculated oocytes incubated with 17α, 20ß-dihydroxy-4-pregnen-3-one at the concentration of 1 μg/ml induced 93.2 ± 2.23% germinal vesicle breakdown. When the oocytes were prestimulated with 17α,20ß-dihydroxy-4-pregnen-3-one for 6 h and then treated with different concentrations of theophylline, there was a significant drop in the frequency of germinal vesicle breakdown at the concentrations 2.0, 1.5 and 1.0 mM. However, theophylline was found to be incapable of inhibiting germinal vesicle breakdown at its lowest concentration (0.5 inM). In the time course study, significant inhibition of germinal vesicle breakdown was recorded when 1 mM theophylline was added up to 30 h of 17α,20ß-dihydroxy-4-pregnen-3-one Stimulation but the inhibitory effect of theophylline gradually (time dependent manner) declined if the stimulatory time of 17α,20ß-dihydroxy-4-pregnen-3-one was increased. A similar inhibition of germinal vesicle breakdown was also recorded with various concentrations of cAMP. Except 0.5 mM, all the higher concentrations of cAMP significantly inhibited 17α,20ß-dihydroxy-4-pregnen-3-one induced germinal vesicle breakdown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号