首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In forest tree genetic improvement, multi-trait genomic selection (GS) may have advantages in improving the accuracy of the genotype estimation and shortening selection cycles. For the breeding of Eucalyptus robusta, one of the most exotic planted species in Madagascar, volume at 49 months (V49), total lignin (TL), and holo-cellulose (Holo) were considered. For GS, 2919 single nucleotide polymorphisms (SNP) were used with the genomic best linear unbiased predictor (GBLUP) method, which was as efficient as the reproducing kernel Hilbert space (RKHS) and elastic net methods (EN), but more adapted to multi-trait modeling. The efficiency of individual I model, including the genomic data, was much higher than the provenance effect P model. For example, with V49, mean goodness-of-fit was: rI_Full =?0.79, rP_Full =?0.37 for I and P, respectively. The prediction accuracies using the cross-validation procedure were lower for V49: rI =?0.29 rP =?0.28. The genetic gains resulting from the indexes associating (V49, TL) and (V49, Holo) were higher using I than for the P model; for V49, the relative genetic gain was 37 and 20%, respectively, with 5% of selection intensity. The single-trait approach was as efficient as the multi-trait approach given the weak correlations between V49 and TL or Holo. The I model also brings greater diversity: for V49 the number of provenances represented in a selected population was two and three with the P model, and 6 and 16 with the I model.  相似文献   

2.
The Japanese flounder is one of the most widely farmed economic flatfish species throughout eastern Asia including China, Korea, and Japan. Edwardsiella tarda is a major species of pathogenic bacteria that causes ascites disease and, consequently, a huge economy loss for Japanese flounder farming. After generation selection, traditional breeding methods can hardly improve the E. tarda resistance effectively. Genomic selection is an effective way to predict the breeding potential of parents and has rarely been used in aquatic breeding. In this study, we chose 931 individuals from 90 families, challenged by E. tarda from 2013 to 2015 as a reference population and 71 parents of these families as selection candidates. 1,934,475 markers were detected via genome sequencing and applied in this study. Two different methods, BayesCπ and GBLUP, were used for genomic prediction. In the reference population, two methods led to the same accuracy (0.946) and Pearson’s correlation results between phenotype and genomic estimated breeding value (GEBV) of BayesCπ and GBLUP were 0.912 and 0.761, respectively. In selection candidates, GEBVs from two methods were highly similar (0.980). A comparison of GEBV with the survival rate of families that were structured by selection candidates showed correlations of 0.662 and 0.665, respectively. This study established a genomic selection method for the Japanese flounder and for the first time applied this to E. tarda resistance breeding.  相似文献   

3.
4.
Selective breeding is a common and effective approach for genetic improvement of aquaculture stocks with parental selection as the key factor. Genomic selection (GS) has been proposed as a promising tool to facilitate selective breeding. Here, we evaluated the predictability of four GS methods in Zhikong scallop (Chlamys farreri) through real dataset analyses of four economical traits (e.g., shell length, shell height, shell width, and whole weight). Our analysis revealed that different GS models exhibited variable performance in prediction accuracy depending on genetic and statistical factors, but non-parametric method, including reproducing kernel Hilbert spaces regression (RKHS) and sparse neural networks (SNN), generally outperformed parametric linear method, such as genomic best linear unbiased prediction (GBLUP) and BayesB. Furthermore, we demonstrated that the predictability relied mainly on the heritability regardless of GS methods. The size of training population and marker density also had considerable effects on the predictive performance. In practice, increasing the training population size could better improve the genomic prediction than raising the marker density. This study is the first to apply non-linear model and neural networks for GS in scallop and should be valuable to help develop strategies for aquaculture breeding programs.  相似文献   

5.
In Chile, an intensive Eucalyptus globulus clonal selection program is being carried out to increase forest productivity for pulp production. A breeding population was used to investigate the predicted ability of single nucleotide polymorphism (SNP) markers for genomic selection (GS). A total of 310 clones from 53 families were used. Stem volume and wood density were measured on all clones. Trees were genotyped at 12 K polymorphic markers using the EUChip60K genotype array. Genomic best linear unbiased prediction, Bayesian lasso regression, Bayes B, and Bayes C models were used to predict genomic estimated breeding values (GEBV). For cross-validation, 260 individuals were sampled for model training and 50 individuals for model validation, using 2 folds and 10 replications each. The average predictive ability estimates for wood density and stem volume across the models were 0.58 and 0.75, respectively. The average rank correlations were 0.59 and 0.71, respectively. Models produced very similar bias for both traits. When clones were ranked based on their GEBV, models had similar phenotypic mean for the top 10% of the clones. The predicted ability of markers will likely decrease if the models are used to predict GEBV of new material coming from the breeding program, because of a different marker–trait phase introduced by recombination. The results should be validated with larger populations and across two generations before routine applications of GS in E. globulus. We suggest that GS is a viable strategy to accelerate clonal selection program of E. globulus in Chile.  相似文献   

6.
Climate change is posing a major challenge to coffee production worldwide leading to a need for the development of coffee cultivars with increased drought tolerance. In several plant species, the use of DREB genes in crop improvement has achieved promising results to desiccation tolerance engineering. Recent studies reported CcDREB1D specific patterns of expression in Coffea canephora and functional evidence of this gene involvement in drought stress responses. However, knowledge on natural diversity of this gene is largely unknown. In this context, this study aimed at evaluating the sequence variability of the DREB1D gene in several Coffea genotypes. Nucleotide variation in promoters and coding regions of this gene were evaluated in a population consisting of 38 genotypes of C. canephora, C. arabica and C. eugenioides, most of them characterized by different phenotypes (tolerance vs. susceptibility) in relation to drought. The genetic diversity of the loci revealed different haplotypes for the promoter and coding regions. In particular, our findings suggest association between drought tolerance and the genetic variations on DREB1D promoter regions, but not with those from its corresponding coding regions. Gene expression studies revealed up-regulated expression of DREB1D gene upon drought mainly in leaves of drought-tolerant clones of C. canephora, and in response to drought, high, and low temperatures in leaves of C. arabica, suggesting a key role of this gene in coffee responses to abiotic stress.  相似文献   

7.
The advantages of open-pollinated (OP) family testing over controlled crossing (i.e., structured pedigree) are the potential to screen and rank a large number of parents and offspring with minimal cost and efforts; however, the method produces inflated genetic parameters as the actual sibling relatedness within OP families rarely meets the half-sib relatedness assumption. Here, we demonstrate the unsurpassed utility of OP testing after shifting the analytical mode from pedigree- (ABLUP) to genomic-based (GBLUP) relationship using phenotypic tree height (HT) and wood density (WD) and genotypic (30k SNPs) data for 1126 38-year-old Interior spruce (Picea glauca (Moench) Voss x P. engelmannii Parry ex Engelm.) trees, representing 25 OP families, growing on three sites in Interior British Columbia, Canada. The use of the genomic realized relationship permitted genetic variance decomposition to additive, dominance, and epistatic genetic variances, and their interactions with the environment, producing more accurate narrow-sense heritability and breeding value estimates as compared to the pedigree-based counterpart. The impact of retaining (random folding) vs. removing (family folding) genetic similarity between the training and validation populations on the predictive accuracy of genomic selection was illustrated and highlighted the former caveats and latter advantages. Moreover, GBLUP models allowed breeding value prediction for individuals from families that were not included in the developed models, which was not possible with the ABLUP. Response to selection differences between the ABLUP and GBLUP models indicated the presence of systematic genetic gain overestimation of 35 and 63% for HT and WD, respectively, mainly caused by the inflated estimates of additive genetic variance and individuals’ breeding values given by the ABLUP models. Extending the OP genomic-based models from single to multisite made the analysis applicable to existing OP testing programs.  相似文献   

8.

Key message

Genomic prediction for seedling and adult plant resistance to wheat rusts was compared to prediction using few markers as fixed effects in a least-squares approach and pedigree-based prediction.

Abstract

The unceasing plant-pathogen arms race and ephemeral nature of some rust resistance genes have been challenging for wheat (Triticum aestivum L.) breeding programs and farmers. Hence, it is important to devise strategies for effective evaluation and exploitation of quantitative rust resistance. One promising approach that could accelerate gain from selection for rust resistance is ‘genomic selection’ which utilizes dense genome-wide markers to estimate the breeding values (BVs) for quantitative traits. Our objective was to compare three genomic prediction models including genomic best linear unbiased prediction (GBLUP), GBLUP A that was GBLUP with selected loci as fixed effects and reproducing kernel Hilbert spaces-markers (RKHS-M) with least-squares (LS) approach, RKHS-pedigree (RKHS-P), and RKHS markers and pedigree (RKHS-MP) to determine the BVs for seedling and/or adult plant resistance (APR) to leaf rust (LR), stem rust (SR), and stripe rust (YR). The 333 lines in the 45th IBWSN and the 313 lines in the 46th IBWSN were genotyped using genotyping-by-sequencing and phenotyped in replicated trials. The mean prediction accuracies ranged from 0.31–0.74 for LR seedling, 0.12–0.56 for LR APR, 0.31–0.65 for SR APR, 0.70–0.78 for YR seedling, and 0.34–0.71 for YR APR. For most datasets, the RKHS-MP model gave the highest accuracies, while LS gave the lowest. GBLUP, GBLUP A, RKHS-M, and RKHS-P models gave similar accuracies. Using genome-wide marker-based models resulted in an average of 42% increase in accuracy over LS. We conclude that GS is a promising approach for improvement of quantitative rust resistance and can be implemented in the breeding pipeline.
  相似文献   

9.
10.
Ricoseius loxocheles (De Leon) (Acari: Phytoseiidae) is often found in coffee crops and is known to feed on coffee leaf rust, Hemileia vastatrix Berkeley and Broome (Uredinales). As the occurrence of coffee leaf rust is limited primarily to the rainy season, the mite may use other food sources to survive during the periods of low pathogen prevalence. It is well known that phytoseiid mites can survive on a variety of food sources, such as herbivorous mites, fungi and pollen. We evaluated the ability of R. loxocheles to survive and reproduce on a diet of Brevipalpus phoenicis Geijskes (Acari: Tenuipalpidae), cattail pollen (Typha spp.), clover rust (Puccinia oxalidis), bee pollen (Santa Bárbara® dehydrated pollen, Santa Bárbara, MG, Brazil) and coffee leaf rust. Ricoseius loxocheles did not survive or reproduce on any B. phoenicis stages tested (egg, larva, adult). The survival and oviposition of R. loxocheles were directly affected by the presence of coffee rust urediniospores, but not by the presence of the prey. Survival and oviposition of the phytoseiid were similar when fed cattail pollen, clover rust and coffee leaf rust but was lower when fed bee pollen. Our results show that R. loxocheles is not a predator of B. phoenicis but it is able to utilize other resources besides coffee leaf rust.  相似文献   

11.

Key message

The former Coffea subgenus is a species complex showing qualitative gene flow and reproductive barriers between species. Such qualitative gene flow allowed its evolution over time, particularly during the successive forest expansion-regression cycles in relation with glaciation periods.

Abstract

The present paper reviews the main botanical, geographical and genetic characteristics of the Coffea genus and then focuses on the former Coffea subgenus. Its broad distribution in Africa, Madagascar and Mascarene Islands is related to the high diversity of ecological situations. The importance of sympatry and parapatry cases and their role on gene flow possibilities between species is then underlined in the paper. Such gene flow is nevertheless partially limited by reproductive barriers: flowering date, frequency of hybrid F1 emergence, as well as the vigor and fertility of such hybrids. When hybridization occurs, distortion of segregation and disruptive selection would allow qualitative flow of non-adaptative genes, thus limiting the effect of genetic drift in small populations. The last part of the paper defines the notion of metaspecies in the case of the former Coffea by extension of the concept of metapopulation to species. The evolution over time of a metaspecies is finally discussed in relation with sympatry situations, gene flow possibilities and forest fragmentation.
  相似文献   

12.
The drumstick tree (Moringa oleifera Lam.) is a perennial crop that has gained popularity in certain developing countries for its high-nutrition content and adaptability to arid and semi-arid environments. Here we report a high-quality draft genome sequence of M. oleifera. This assembly represents 91.78% of the estimated genome size and contains 19,465 protein-coding genes. Comparative genomic analysis between M. oleifera and related woody plant genomes helps clarify the general evolution of this species, while the identification of several species-specific gene families and positively selected genes in M. oleifera may help identify genes related to M. oleifera’s high protein content, fast-growth, heat and stress tolerance. This reference genome greatly extends the basic research on M. oleifera, and may further promote applying genomics to enhanced breeding and improvement of M. oleifera.  相似文献   

13.
Erianthus arundinaceus, a member of the Saccharum complex, is of interest as a potential resource for sugarcane improvement and as a bioenergy crop. Genetic analyses of germplasm collections of E. arundinaceus are being used increasingly. To expand the genomic resources in E. arundinaceus, we aimed at developing simple sequence repeat markers. Using pyrosequencing on the 454 GS FLX system, we sequenced genomic DNA from “JW630” collected in Japan. A total of 1682 candidate loci were used to design the primers, and 1234 primer pairs amplified fragments of the expected size in the primer screening with three wild E. arundinaceus accessions (JW630, “JW4,” and “IJ76-349”). The efficiency of genotyping was validated with a subset of 174 primer pairs and 8 E. arundinaceus accessions. Of these primer pairs, 171 amplified fragments in all accessions tested and 162 detected polymorphic loci. The average values of genetic parameters were estimated as 0.30 (range, 0.09–0.49) for polymorphic information content, 1.65 (0.00–5.87) for marker index, and 2.78 (0.00–8.75) for resolving power. Using these parameters, we selected 61 primer pairs with large discriminatory power for the analyzed loci. Of the 174 primer pairs, 45 (25.9%) were also applicable to Saccharum and 33 (19.0%) to Miscanthus species. These markers would provide a valuable tool for estimating genetic diversity and constructing linkage maps in E. arundinaceus, which would be useful for genetic study and breeding.  相似文献   

14.
Linsong Dong  Zhiyong Wang 《Genetica》2018,146(4-5):361-368
Genomic prediction is feasible for estimating genomic breeding values because of dense genome-wide markers and credible statistical methods, such as Genomic Best Linear Unbiased Prediction (GBLUP) and various Bayesian methods. Compared with GBLUP, Bayesian methods propose more flexible assumptions for the distributions of SNP effects. However, most Bayesian methods are performed based on Markov chain Monte Carlo (MCMC) algorithms, leading to computational efficiency challenges. Hence, some fast Bayesian approaches, such as fast BayesB (fBayesB), were proposed to speed up the calculation. This study proposed another fast Bayesian method termed fast BayesC (fBayesC). The prior distribution of fBayesC assumes that a SNP with probability γ has a non-zero effect which comes from a normal density with a common variance. The simulated data from QTLMAS XII workshop and actual data on large yellow croaker were used to compare the predictive results of fBayesB, fBayesC and (MCMC-based) BayesC. The results showed that when γ was set as a small value, such as 0.01 in the simulated data or 0.001 in the actual data, fBayesB and fBayesC yielded lower prediction accuracies (abilities) than BayesC. In the actual data, fBayesC could yield very similar predictive abilities as BayesC when γ?≥?0.01. When γ?=?0.01, fBayesB could also yield similar results as fBayesC and BayesC. However, fBayesB could not yield an explicit result when γ?≥?0.1, but a similar situation was not observed for fBayesC. Moreover, the computational speed of fBayesC was significantly faster than that of BayesC, making fBayesC a promising method for genomic prediction.  相似文献   

15.
Genetic relationships among 154 genotypes, including 50 species, held within the UK National Willow Collection were analysed using nine primer combinations in an optimised fluorescent amplified fragment length polymorphism (AFLP®) protocol. The AFLP® data resolved relationships at all levels, from discriminating between closely related accessions to differentiating among majority of species, sections and subgenera. The neighbour-joining dendrogram split accessions into three major well-supported clusters, two of which comprised species of the subgenera Vetrix and Salix. Surprisingly, the third (98% bootstrap support) comprised only Salix triandra accessions. The genetic similarity (GS) between S. triandra and Salix or Vetrix was similar (0.39 and 0.40, respectively) and greater than the genetic similarity between Salix and Vetrix (GS?=?0.57). Separate clustering of S. triandra is also supported by hierarchical analysis of molecular variance (AMOVA), that partitioned 31.4% of the total variance between these three groups, whereas only 16.3% was partitioned between the two subgenera. These results challenge all current classifications which assign S. triandra to subgenus Salix. Principal coordinate analysis gave corresponding results and facilitated interpretation of relationships among species within sections of the two subgenera, which are discussed. The study included 40 species which have been used in breeding, and the findings will facilitate the choice of parents and interpretation of the results of different crosses, on the basis of more accurate knowledge of genetic relationships. AFLPs® also detected identical genotypes (within the limits of AFLP® error) which should not be used as distinct parents in breeding programmes.  相似文献   

16.
Coffea arabica (the Arabica coffee) is an allotetraploid species originating from a recent hybridization between two diploid species: C. canephora and C. eugenioides. Transposable elements can drive structural and functional variation during the process of hybridization and allopolyploid formation in plants. To learn more about the evolution of the C. arabica genome, we characterized and studied a new Copia LTR-Retrotransposon (LTR-RT) family in diploid and allotetraploid Coffea genomes called Divo. It is a complete and relatively compact LTR-RT element (~5 kb), carrying typical Gag and Pol Copia type domains. Reverse Trancriptase (RT) domain-based phylogeny demonstrated that Divo is a new and well-supported family in the Bianca lineage, but strictly restricted to dicotyledonous species. In C. canephora, Divo is expressed and showed a genomic distribution along gene rich and gene poor regions. The copy number, the molecular estimation of insertion time and the analysis at orthologous locations of insertions in diploid and allotetraploid coffee genomes suggest that Divo underwent a different and recent transposition activity in C. arabica and C. canephora when compared to C. eugenioides. The analysis of this novel LTR-RT family represents an important step toward uncovering the genome structure and evolution of C. arabica allotetraploid genome.  相似文献   

17.
Selecting superior genotypes is facilitated by marker-assisted selection (MAS), which is particularly suitable for transferring disease resistance alleles because it nullifies environmental effects and allows selection of resistant individuals in the absence of the pathogen or race, enabling preventive breeding. Molecular markers linked to two major genes (SH3 and SH?), conferring resistance to coffee rust, and those linked to the Ck-1 gene, conferring resistance to coffee berry disease (CBD), have previously been identified. These markers were validated and used in a progeny of crosses between Indian selections with Coffea arabica cultivars. Eleven resistant individuals homozygous for SH3 were identified by MAS. Of these, seven carry SH? from Híbrido de Timor and the gene introduced from Coffea liberica (SH3). SH? was characterized as derived from Coffea canephora. Thus, it was possible to identify C. arabica genotypes carrying important genes for rust resistance introgressed from other coffee species. MAS also allowed identification of sources of CBD resistance for use in preventive breeding for resistance to this serious disease. Using two validated molecular markers, two coffee plants carrying Ck-1 were identified: the UFV 328-60 genotype (F2) was resistant and homozygous based on both molecular markers but exhibited no markers related to SH3 and SH?, and the UFV 317-12 genotype (F1) was resistant and homozygous but resistant and heterozygous based on CBD-Sat207 and CBD-Sat235, respectively. Along with possessing Ck-1, the latter carries SH?. Overall, plants carrying different genes for resistance to rust and CBD were identified. These plants are important sources for gene pyramiding in breeding programs aimed at multiple and durable resistance.  相似文献   

18.
Subtropical East Asia harbours a large plant diversity that is often attributed to allopatric speciation in this topographically complex region characterized by a relative climate stability. Here, we use observations of Platycarya, a widespread subtropical Asian tree genus, to explore the consequences of past climate stability on species’ evolutionary history in subtropical China. This genus has a controversial taxonomy: while it is now prevailingly treated as monotypic, two species have been originally described, Platycarya strobilacea and P. longipes. Previous information from species distribution models, fossil pollen data and genetic data based on chloroplast DNA (cpDNA) were integrated with newly obtained genetic data from the two putative species. We used both cpDNA (psbA-trnH and trnL-F intergenic spacers, including a partial trnL gene sequence) and nuclear markers. The latter included sequences of the internal transcribed spacer region (ITS1–5.8S–ITS2) of the nuclear ribosomal DNA and random genomic single nucleotide polymorphisms. Using these nuclear genetic markers, we found interspecific genetic divergence fitting with the ‘two species’ scenario and geographically structured intraspecific variation. Using cpDNA markers, we also found geographically structured intraspecific variation. Despite deep inter- and intraspecific genetic divergence, we detected genetic admixture in southwest China. Overall, our findings of genetic divergence within Platycarya support the hypothesis of allopatric speciation. However, episodes of population interconnection were identified, at least in southwest China, suggesting that the genus has had a dynamic population history.  相似文献   

19.
The genus Cenchrus comprises around 25 species of ‘bristle clade’ grasses. Cenchrus ciliaris (buffel grass) is a hardy, perennial range grass that survives in poor sandy soils and limiting soil moisture conditions and, due to the very same reasons, this grass is one of the most prevalent fodder grasses of the arid and semi-arid regions. Most of the germplasms of Cenchrus produce seeds asexually through the process of apomeiosis. Therefore, the lack of sufficient sexual lines has hindered the crop improvement efforts in Cenchrus being confined to simple selection methods. Many attempts have been initiated in buffel grass to investigate the various molecular aspects such as genomic signatures of different species and genotypes, molecular basis of abiotic stress tolerance and reproductive performance. Even though it is an important fodder crop, molecular investigations in Cenchrus lack focus and the molecular information available on this grass is scanty. Cenchrus is a very good gene source for abiotic stress tolerance and apomixis studies. Biotechnological interventions in Cenchrus can help in crop improvement in Cenchrus as well as other crops through transgenic technology or marker assisted selection. To date no consolidated review on biotechnological interventions in Cenchrus grass has been published. Therefore we provide a thorough and in depth review on molecular research in Cenchrus focusing on molecular signatures of evolution, tolerance to abiotic stress and apomictic reproductive mechanism.  相似文献   

20.
Cranberry and blueberry are closely related and recently domesticated fruit crops in the genus Vaccinium. Both have a presumed American origin and likely evolved from a common ancestor; however, details of their adaptive radiation and the extent of their genomic divergence remains little understood. To better understand their evolutionary and genomic relationships, a set of 323 cross-transferable simple sequence repeat (SSR) markers were identified, added to existing marker datasets, and used to construct linkage maps for cranberry (582 SSRs) and an interspecific diploid blueberry population (V. darrowii x V. corymbosum) x V. corymbosum (409 markers, densest blueberry SSR map currently available). The maps allowed for the first comparative genetic mapping study in Vaccinium, and revealed a surprisingly high degree of macro-synteny and collinearity between the cranberry and blueberry genomes. Approximately 93% of the blueberry linkage map was collinear with cranberry, while the remaining 7% (66.3 cM) was spread across 15 non-collinear regions detected in eight of the 12 linkage groups. These observations suggest that large-scale genome differentiation between the cranberry and blueberry genomes has not occurred during their evolution, and that sequence information will be highly transferable between the species in future genetic research and breeding. Finally, the set of 323 cross-transferable SSRs and linkage maps they were used to construct can serve as a shared resource for the Vaccinium research community, enabling additional comparative mapping studies, the identification and transfer of quantitative trait loci and candidate genes between species, and future exploration of evolutionary relationships in Vaccinium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号