首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Development of highly efficient anode is critical for enhancing the power output of microbial fuel cells (MFCs). The aim of this work is to investigate whether modification of carbon paper (CP) anode with graphene (GR) via layer-by-layer assembly technique is an effective approach to promote the electricity generation and methyl orange removal in MFCs. Using cyclic voltammetry and electrochemical impedance spectroscopy, the GR/CP electrode exhibited better electrochemical behavior. Scanning electron microscopy results revealed that the surface roughness of GR/CP increased, which was favorable for more bacteria to attach to the anode surface. The MFCs equipped with GR/CP anode achieved a stable maximum power density of 368 mW m?2 under 1,000 Ω external resistance and a start time for the initial maximum voltage of 180 h, which were, respectively, 51 % higher and 31 % shorter than the corresponding values of the MFCs with blank anode. The anode and cathode polarization curves revealed negligible difference in cathode potentials but obviously difference in anode potentials, indicating that the GR-modified anode other than the cathode was responsible for the performance improvement of MFC. Meanwhile, compared with MFCs with blank anode, 11 % higher decolorization efficiency and 16 % higher the chemical oxygen demand removal rate were achieved in MFC with GR-modified anode during electricity generation. This study might provide an effective way to modify the anode for enhanced electricity generation and efficient removal of azo dye in MFCs.  相似文献   

2.
A novel dissimilatory iron-reducing bacteria, Klebsiella sp. IR21, was isolated from the anode biofilm of an MFC reactor. Klebsiella sp. IR21 reduced 27.8 % of ferric iron to ferrous iron demonstrating that Klebsiella sp. IR21 has electron transfer ability. Additionally, Klebsiella sp. IR21 generated electricity forming a biofilm on the anode surface. When a pure culture of Klebsiella sp. IR21 was supplied into a single chamber, air–cathode MFC fed with a mixture of glucose and acetate (500 mg L?1 COD), 40–60 mV of voltage (17–26 mA m?2 of current density) was produced. Klebsiella sp. IR21 was also utilized as a biocatalyst to improve the electrical performance of a conventional MFC reactor. A single chamber, air–cathode MFC was fed with reject wastewater (10,000 mg L?1 COD) from a H2 fermentation reactor. The average voltage, current density, and power density were 142.9 ± 25.74 mV, 60.5 ± 11.61 mA m?2, and 8.9 ± 3.65 mW m?2, respectively, in the MFC without inoculation of Klebsiella sp. IR21. However, these electrical performances of the MFC were significantly increased to 204.7 ± 40.24 mV, 87.5 ± 17.20 mA m?2, and 18.6 ± 7.23 mW m?2, respectively, with inoculation of Klebsiella sp. IR21. The results indicate that Klebsiella sp. IR21 can be utilized as a biocatalyst for enhancement of electrical performance in MFC systems.  相似文献   

3.
Construction of efficient performance of microbial fuel cells (MFCs) requires certain practical considerations. In the single chamber microbial fuel cell, there is no border between the anode and the cathode, thus the diffusion of the dissolved oxygen has a contrary effect on the anodic respiration and this leads to the inhibition of the direct electron transfer from the biofilm to the anodic surface. Here, a fed-batch single chambered microbial fuel cells are constructed with different distances 3 and 6?cm (anode- cathode spacing), while keeping the working volume is constant. The performance of each MFC is individually evaluated under the effects of vitamins & minerals with acetate as a fed load. The maximum open circuit potential during testing the 3 and 6?cm microbial fuel cells is about 946 and 791?mV respectively. By decreasing the distance between the anode and the cathode from 6 to 3?cm, the power density is decreased from 108.3?mW?m?2 to 24.5?mW?m?2. Thus, the short distance in membrane-less MFC weakened the cathode and inhibited the anodic respiration which affects the overall performance of the MFC efficiency. The system is displayed a maximum potential of 564 and 791?mV in absence & presence of vitamins respectively. Eventually, the overall functions of the acetate single chamber microbial fuel cell can be improved by the addition of vitamins & minerals and increasing the distance between the cathode and the anode.  相似文献   

4.
Microbial fuel cell (MFC) and its cathode performances were compared with use of carbon fiber brush and plain carbon paper cathode electrodes in algae aeration. The MFC having carbon fiber brush cathode exhibited a voltage of 0.21 ± 0.01 V (1,000 Ω) with a cathode potential of around ?0.14 ± 0.01 V in algal aeration, whereas MFC with plain carbon paper cathode resulted in a voltage of 0.06 ± 0.005 V with a cathode potential of ?0.39 ± 0.01 V. During polarizations, MFC equipped with carbon fiber brush cathode showed a maximum power density of 30 mW/m2, whereas the MFC equipped with plain carbon paper showed a power density of 4.6 mW/m2. In algae aeration, the internal resistance with carbon fiber brush cathode was 804 Ω and with plain carbon paper it was 1,210 Ω. The peak currents of MFC operation with carbon fiber brush and plain carbon paper cathodes were ?31 mA and ?850 µA, respectively.  相似文献   

5.

Objectives

Catalytic efficiency of a nitrogen-doped, mesoporous carbon aerogel cathode catalyst was investigated in a two-chambered microbial fuel cell (MFC) applying graphite felt as base material for cathode and anode, utilizing peptone as carbon source.

Results

This mesoporous carbon aerogel containing catalyst layer on the cathode increased the maximum power density normalized to the anode volume to 2.7 times higher compared to the maximum power density obtained applying graphite felt cathode without the catalyst layer. At high (2 and 3) cathode/anode volume ratios, maximum power density exceeded 40 W m?3. At the same time, current density and specific substrate utilization rate increased by 58% resulting in 31.9 A m?3 and 18.8 g COD m?3 h?1, respectively (normalized to anode volume). Besides the increase of the power and the rate of biodegradation, the investigated catalyst decreased the internal resistance from the range of 450–600 to 350–370 Ω.

Conclusions

Although Pt/C catalyst proved to be more efficient, a considerable decrease in the material costs might be achieved by substituting it with nitrogen-doped carbon aerogel in MFCs. Such cathode still displays enhanced catalytic effect.
  相似文献   

6.
Treatment of domestic wastewater using microbial fuel cells (MFCs) will require reactors with multiple electrodes, but this presents unique challenges under continuous flow conditions due to large changes in the chemical oxygen demand (COD) concentration within the reactor. Domestic wastewater treatment was examined using a single-chamber MFC (130 mL) with multiple graphite fiber brush anodes wired together and a single air cathode (cathode specific area of 27 m2/m3). In fed-batch operation, where the COD concentration was spatially uniform in the reactor but changed over time, the maximum current density was 148?±?8 mA/m2 (1,000 Ω), the maximum power density was 120 mW/m2, and the overall COD removal was >90 %. However, in continuous flow operation (8 h hydraulic retention time, HRT), there was a 57 % change in the COD concentration across the reactor (influent versus effluent) and the current density was only 20?±?13 mA/m2. Two approaches were used to increase performance under continuous flow conditions. First, the anodes were separately wired to the cathode, which increased the current density to 55?±?15 mA/m2. Second, two MFCs were hydraulically connected in series (each with half the original HRT) to avoid large changes in COD among the anodes in the same reactor. The second approach improved current density to 73?±?13 mA/m2. These results show that current generation from wastewaters in MFCs with multiple anodes, under continuous flow conditions, can be improved using multiple reactors in series, as this minimizes changes in COD in each reactor.  相似文献   

7.
Power densities and oxidation–reduction potentials (ORPs) of MFCs containing a pure culture of Shewanella oneidensis MR‐1 were compared to mixed cultures (wastewater inoculum) in cube shaped, 1‐, 2‐, and 3‐bottle batch‐fed MFC reactor configurations. The reactor architecture influenced the relative power produced by the different inocula, with the mixed culture generating 68–480% more power than MR‐1 in each MFC configuration. The mixed culture produced the maximum power density of 858 ± 9 mW m?2 in the cubic MFC, while MR‐1 produced 148 ± 20 mW m?2. The higher power by the mixed culture was primarily a result of lower internal resistances than those produced by the pure culture. Power was a direct function of ohmic resistance for the mixed culture, but not for strain MR‐1. ORP of the anode compartment varied with reactor configuration and inoculum, and it was always negative during maximum power production but it did not vary in proportion to power output. The ORP varied primarily at the end of the cycle when substrate was depleted, with a change from a reductive environment during maximum power production (approximately ?175 mV for mixed and approximately ?210 mV for MR‐1 in cubic MFCs), to an oxidative environment at the end of the batch cycle (~250 mV for mixed and ~300 mV for MR‐1). Mixed cultures produced more power than MR‐1 MFCs even though their redox potential was less negative. These results demonstrate that differences between power densities produced by pure and mixed cultures depend on the MFC architecture. Biotechnol. Bioeng. 2010; 105: 489–498. © 2009 Wiley Periodicals, Inc.  相似文献   

8.
Single-chamber microbial fuel cells (MFCs) with air-cathode were constructed. MFCs were fed different feedstocks during their inoculation, their role on phenol degradation and MFC performance were investigated. The results showed that the MFC inoculated using glucose exhibited the highest power density (31.3 mW m?2) when phenol was used as the sole substrate for MFC. The corresponding biodegradation kinetic constant was obtained at 0.035 h?1, at an initial phenol concentration of 600 mg L?1. Moreover, the phenol degradation rates in this MFC with closed circuit were 9.8–16.5 % higher than those in MFC with opened circuit. The cyclic voltammograms revealed a different electrochemical activity of the anode biofilms in the MFC, and this led to differences in performance of the MFCs with phenol as sole substrate. These results demonstrated that phenol degradation and power production are affected by current generation and type of acclimation.  相似文献   

9.

Objectives

To increase the power generation of microbial fuel cells (MFCs), anode modification with carbon materials (activated carbon, carbon nanotubes, and carbon nanohorns) was investigated.

Results

Maximum power densities of a stainless-steel anode MFC with a non-modified electrode (SS-MFC), an activated carbon-modified electrode (AC-MFC), a carbon nanotube-modified electrode (CNT-MFC) and a carbon nanohorn-modified electrode (CNH-MFC) were 72, 244, 261 and 327 mW m?2, respectively. The total polarization resistance measured by electrochemical impedance spectroscopy were 3610 Ω for SS-MFC, 283 Ω for AC-MFC, 231 Ω for CNTs-MFC, and 136 Ω for CNHs-MFC, consistent with the anode resistances obtained by fitting the anode polarization curves.

Conclusions

Single-wall carbon nanohorns are better than activated carbon and carbon nanotubes as a new anode modification material for improving anode performance.
  相似文献   

10.
A procedure was proposed to mimic marine microbial fuel cell (MFC) in liquid phase. A graphite anode and a stainless steel cathode which have been proven, separately, to be efficient in MFC were investigated. A closed anodic compartment was inoculated with sediments, filled with deoxygenated seawater and fed with milk to recover the sediment's sulphide concentration. A stainless steel cathode, immersed in aerated seawater, used the marine biofilm formed on its surface to catalyze oxygen reduction. The cell implemented with a 0.02m(2)-graphite anode supplied around 0.10W/m(2) for 45 days. A power of 0.02W/m(2) was obtained after the anode replacement by a 0.06m(2)-stainless steel electrode. The cell lost its capacity to make a motor turn after one day of operation, but recovered its full efficiency after a few days in open circuit. The evolution of the kinetic properties of stainless steel was identified as responsible for the power limitation.  相似文献   

11.
Desulfitobacterium hafniense strain DCB2 generates electricity in microbial fuel cells (MFCs) when humic acids or the humate analog anthraquinone-2,6-disulfonate (AQDS) is added as an electron-carrying mediator. When utilizing formate as fuel, the Gram-positive, spore-forming bacterium generated up to 400 mW/m2 of cathode surface area in a single-chamber MFC with a platinum-containing air-fed cathode. Hydrogen, lactate, pyruvate, and ethanol supported electricity generation, but acetate, propionate, and butyrate did not. Scanning electron microscopy indicated that strain DCB2 colonized the surface of a current-generating anode but not of an unconnected electrode. The electricity was recovered fully within minutes after the exchange of the medium in the anode chamber and within a week after an exposure of a colonized anode to 90°C for 20 min. Of the six strains of Desulfitobacteria tested, all of which would reduce AQDS, only D. hafniense strain DCB2 continued to reduce AQDS and generate electricity for more than 24 h, indicating that reduction of the humate analog alone is insufficient to sustain electrode reduction.  相似文献   

12.
The fabrication and performance of a flexible and stretchable microbial fuel cell (MFC) monolithically integrated into a single sheet of textile substrate are reported. The single‐layer textile MFC uses Pseudomonas aeruginosa (PAO1) as a biocatalyst to produce a maximum power of 6.4 µW cm?2 and current density of 52 µA cm?2, which are substantially higher than previous textile‐MFCs and are similar to other flexible paper‐based MFCs. The textile MFC demonstrates a stable performance with repeated stretching and twisting cycles. The membrane‐less single‐chamber configuration drastically simplifies the fabrication and improves the performance of the MFC. A conductive and hydrophilic anode in a 3D fabric microchamber maximizes bacterial electricity generation from a liquid environment and a silver oxide/silver solid‐state cathode reduces cathodic overpotential for fast catalytic reaction. A simple batch fabrication approach simultaneously constructs 35 individual devices, which will revolutionize the mass production of textile MFCs. This stretchable and twistable power device printed directly onto a single textile substrate can establish a standardized platform for textile‐based biobatteries and will be potentially integrated into wearable electronics in the future.  相似文献   

13.
We examined whether a hyperthermophilic microbial fuel cell (MFC) would be technically feasible. Two-chamber MFC reactors were inoculated with subsurface microorganisms indigenous to formation water from a petroleum reservoir and were started up at operating temperature 80 °C. The MFC generated a maximum current of 1.3 mA 45 h after the inoculation. Performance of the MFC improved with an increase in the operating temperature; the best performance was achieved at 95 °C with the maximum power density of 165 mWm?2, which was approximately fourfold higher than that at 75 °C. Thus, to our knowledge, our study is the first to demonstrate generation of electricity in a hyperthermophilic MFC (operating temperature as high as 95 °C). Scanning electron microscopy showed that filamentous microbial cells were attached on the anode surface. The anodic microbial consortium showed limited phylogenetic diversity and primarily consisted of hyperthermophilic bacteria closely related to Caldanaerobacter subterraneus and Thermodesulfobacterium commune.  相似文献   

14.
The performance of aerated and ferricyanide catholytes on the bioelectricity production was evaluated in dual chambered microbial fuel cell (MFC) (mediatroless anode; graphite electrodes) employing selectively enriched H(2) producing mixed consortia as anodic inoculum. Two MFCs with aerated catholyte (MFC(AC)) and ferricyanide catholyte (MFC(FC)) were operated separately to elucidate the difference in power generation potential and carbon removal efficiency under similar operating conditions [ambient pressure; room temperature (28+/-2 degrees C); acidophilic microenvironment (pH 6)]. The experimental data demonstrated the feasibility of in situ bioelectricity generation along with wastewater treatment. Effective power generation and substrate removal efficiency was documented in the fuel cell operated with ferricyanide catholyte (586 mV; 2.37 mA; 0.559 kg COD/m(3) day) than aerated catholyte (572 mV; 1.68 mA; 0.464 kg COD/m(3) day). Maximum power yield (0.635 W/kg COD(R) and 0.440 W/kg COD(R)) and current density (222.59 mA/m(2) and 190.28 mA/m(2)) was observed at 100 Omega resistor with ferricyanide and aerated catholytes, respectively. The study documented both wastewater treatment and electricity production through direct conversion of H(2) in a single system.  相似文献   

15.
Electrode materials play a key role in enhancing the electricity generation in the microbial fuel cell (MFC). In this study, a new material (Ti-TiO(2)) was used as an anode electrode and compared with a graphite electrode for electricity generation. Current densities were 476.6 and 31 mA/m(2) for Ti-TiO(2) and graphite electrodes, respectively. The PCR-DGGE analysis of enriched microbial communities from estuary revealed that MFC reactors were dominated by Shewanella haliotis, Enterococcus sp., and Enterobacter sp. Bioelectrochemical kinetic works in the MFC with Ti-TiO(2) electrode revealed that the parameters by non-linear curve fitting with the confidence bounds of 95% gave good fit with the kinetic constants of η (difference between the anode potential and anode potential giving one-half of the maximum current density) = 0.35 V, K (s) (Half-saturation constant) = 2.93 mM and J (max) = 0.39 A/m(2) for T = 298 K and F = 96.485 C/mol-e(-). From the results observed, it is clear that Ti-TiO(2) electrode is a promising candidate for electricity generation in MFC.  相似文献   

16.
Air-cathode, microbial fuel cells (MFC) with different anode surface areas were evaluated for simultaneous decolorization of Congo Red and bioelectricity production. Doubling the anode area from 18 to 36?cm2 increased net power by 150?% (0.16–0.4?mW), normalized power (per anode surface area) by 22?% (88–107?mW?m?2) and Congo Red decolorization by 163?% (1.6–4.2?mg?l?1?h?1). Quadrupling the original anode area induced an additional 5?% increase (up to 4.2?mW) in net power and 174?% increase (up to 11.5?mg?l?1?h?1) in Congo Red decolorization; however, normalized power decreased by 85?% (down to 58?mW?m?2). Increased bacterial attachment could account for both the enhanced power and Congo Red decolorization in larger anode MFCs. The limited effect on power output likely arises from cathode limitation or inefficient utilization of anodes.  相似文献   

17.
In this study, a two-compartment continuous flow microbial fuel cell (MFC) reactor was used to compare the efficiencies of cathode oxygenation by air and by hydrogen peroxide. The MFC reactor had neither a proton-selective membrane nor an electron transfer mediator. At startup, the cathodic compartment was continuously aerated and the anodic compartment was fed with a glucose solution. An increase of electrical power generation from 0.008 to 7.2 mW m(-2) of anode surface with a steady-state potential of 215-225 mV was observed within a period of 12 days. The performance of the air-oxygenated MFC reactor progressively declined over time because of biofilm proliferation in the cathodic compartment. Oxygenation of the cathodic compartment using 300 mL d(-1) of 0.3% hydrogen peroxide solution resulted in a power density of up to 22 mW m(-2) (68.2 mA m(-2)) of anode surface at a potential of 340-350 mV. The use of H2O2 for oxygenation was found to improve the long-term stability of the MFC reactor.  相似文献   

18.
Du F  Xie B  Dong W  Jia B  Dong K  Liu H 《Bioresource technology》2011,102(19):8914-8920
Microbial fuel cell (MFC) is an emerging technology in the energy and environment field. Its application is limited due to its high cost caused by the utilization of membranes and noble metal catalysts. In this paper, a membraneless MFC, with separated electrode chambers, was designed. The two separated chambers are connected via a channel and the continuous electrolyte flow from anode to cathode drives proton transfer. The proton mass transfer coefficiency in this MFC is 0.9086 cm/s, which is higher than reported MFCs with membranes, such as J-cloth and glass fiber. The maximum output voltage is 160.7 mV, with 1000 Ω resistor. Its peak power density is 24.33 mW/m3. SCOD removal efficiency can reach 90.45% via this MFC. If the connection between the two electrode chambers is blocked, the performance of MFC will decrease severely. All the above results prove the feasibility and advantages of this special MFC model.  相似文献   

19.
Olive mill wastewaters create significant environmental issues in olive-processing countries. One of the most hazardous groups of pollutants in these wastewaters is phenolic compounds. Here, olive mill wastewater was used as substrate and treated in single-chamber air-cathode microbial fuel cells. Olive mill wastewater yielded a maximum voltage of 381 mV on an external resistance of 1 kΩ. Notable decreases in the contents of 3,4-dihydroxybenzoic acid, tyrosol, gallic acid and p-coumaric acid were detected. Chemical oxygen demand removal rates were 65 % while removal of total phenolics by the process was lower (49 %). Microbial community analysis during the olive mill wastewater treating MFC has shown that both exoelectrogenic and phenol-degrading microorganisms have been enriched during the operation. Brevundimonas-, Sphingomonas- and Novosphingobium-related phylotypes were enriched on the anode biofilm, while Alphaproteobacteria and Bacteriodetes dominated the cathode biofilm. As one of the novel studies, it has been demonstrated that recalcitrant olive mill wastewaters could be treated and utilized for power generation in microbial fuel cells.  相似文献   

20.
Solid phase microbial fuel cells (SMFC; graphite electrodes; open-air cathode) were designed to evaluate the potential of bioelectricity production by stabilizing composite canteen based food waste. The performance was evaluated with three variable electrode-membrane assemblies. Experimental data depicted feasibility of bioelectricity generation from solid state fermentation of food waste. Distance between the electrodes and presence of proton exchange membrane (PEM) showed significant influence on the power yields. SMFC-B (anode placed 5 cm from cathode-PEM) depicted good power output (463 mV; 170.81 mW/m2) followed by SMFC-C (anode placed 5 cm from cathode; without PEM; 398 mV; 53.41 mW/m2). SMFC-A (PEM sandwiched between electrodes) recorded lowest performance (258 mV; 41.8 mW/m2). Sodium carbonate amendment documented marked improvement in power yields due to improvement in the system buffering capacity. SMFCs operation also documented good substrate degradation (COD, 76%) along with bio-ethanol production. The operation of SMFC mimicked solid-sate fermentation which might lead to sustainable solid waste management practices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号