首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inosine is an endogenous purine nucleoside, which is formed during the breakdown of adenosine. The adenosinergic system was already described as capable of modulating mood in preclinical models; we now explored the effects of inosine in two predictive models of depression: the forced swim test (FST) and tail suspension test (TST). Mice treated with inosine displayed higher anti-immobility in the FST (5 and 50 mg/kg, intraperitoneal route (i.p.)) and in the TST (1 and 10 mg/kg, i.p.) when compared to vehicle-treated groups. These antidepressant-like effects started 30 min and lasted for 2 h after intraperitoneal administration of inosine and were not accompanied by any changes in the ambulatory activity in the open-field test. Both adenosine A1 and A2A receptor antagonists prevented the antidepressant-like effect of inosine in the FST. In addition, the administration of an adenosine deaminase inhibitor (1 and 10 mg/kg, i.p.) also caused an antidepressant-like effect in the FST. These results indicate that inosine possesses an antidepressant-like effect in the FST and TST probably through the activation of adenosine A1 and A2A receptors, further reinforcing the potential of targeting the purinergic system to the management of mood disorders.  相似文献   

2.
The modulation of N-methyl-D-aspartate receptor (NMDAR) and l-arginine/nitric oxide (NO) pathway is a therapeutic strategy for treating depression and neurologic disorders that involves excitotoxicity. Literature data have reported that creatine exhibits antidepressant and neuroprotective effects, but the implication of NMDAR and l-arginine/nitric oxide (NO) pathway in these effects is not established. This study evaluated the influence of pharmacological agents that modulate NMDAR/l-arginine-NO pathway in the anti-immobility effect of creatine in the tail suspension test (TST) in mice. The NOx levels and cellular viability in hippocampal and cerebrocortical slices of creatine-treated mice were also evaluated. The anti-immobility effect of creatine (10 mg/kg, po) in the TST was abolished by NMDA (0.1 pmol/mouse, icv), d-serine (30 µg/mouse, icv, glycine-site NMDAR agonist), arcaine (1 mg/kg, ip, polyamine site NMDAR antagonist), l-arginine (750 mg/kg, ip, NO precursor), SNAP (25 μg/mouse, icv, NO donor), L-NAME (175 mg/kg, ip, non-selective NOS inhibitor) or 7-nitroindazole (50 mg/kg, ip, neuronal NOS inhibitor), but not by DNQX (2.5 µg/mouse, icv, AMPA receptor antagonist). The combined administration of sub-effective doses of creatine (0.01 mg/kg, po) and NMDAR antagonists MK-801 (0.001 mg/kg, po) or ketamine (0.1 mg/kg, ip) reduced immobility time in the TST. Creatine (10 mg/kg, po) increased cellular viability in hippocampal and cerebrocortical slices and enhanced hippocampal and cerebrocortical NO x levels, an effect potentiated by l-arginine or SNAP and abolished by 7-nitroindazole or L-NAME. In conclusion, the anti-immobility effect of creatine in the TST involves NMDAR inhibition and enhancement of NO levels accompanied by an increase in neural viability.  相似文献   

3.
Glycogen synthase kinase-3 (GSK-3) plays a critical role in neuronal apoptosis. The two mammalian isoforms of the kinase, GSK-3α and GSK-3β, are inhibited by phosphorylation at Ser-21 and Ser-9, respectively. Depolarization, which is vital for neuronal survival, causes both an increase in Ser-21/9 phosphorylation and an inhibition of GSK-3α/β. However, the role of GSK-3 phosphorylation in depolarization-dependent neuron survival and the signaling pathway contributing to GSK-3 phosphorylation during depolarization remain largely unknown. Using several approaches, we showed that both isoforms of GSK-3 are important for mediating neuronal apoptosis. Nonphosphorylatable GSK-3α/β mutants (S21A/S9A) promoted apoptosis, whereas a peptide encompassing Ser-9 of GSK-3β protected neurons in a phosphorylation-dependent manner; these results indicate a critical role for Ser-21/9 phosphorylation on depolarization-dependent neuron survival. We found that Ser-21/9 phosphorylation of GSK-3 was mediated by Ca2+/calmodulin-dependent protein kinase II (CaMKII) but not by Akt/PKB, PKA, or p90RSK. CaMKII associated with and phosphorylated GSK-3α/β. Furthermore, the pro-survival effect of CaMKII was mediated by GSK-3 phosphorylation and inactivation. These findings identify a novel Ca2+/calmodulin/CaMKII/GSK-3 pathway that couples depolarization to neuronal survival.  相似文献   

4.
5.
Inosine is the first metabolite of adenosine. It exerts an antinociceptive effect by activating the adenosine A1 and A2A receptors. We have previously demonstrated that inosine exhibits antinociceptive properties in acute and chronic mice models of nociception. The aim of this study was to investigate the involvement of pertussis toxin-sensitive G-protein-coupled receptors, as well as K+ and Ca2+ channels, in the antinociception promoted by inosine in the formalin test. Mice were pretreated with pertussis toxin (2.5 μg/site, i.t., an inactivator of Gi/0 protein); after 7 days, they received inosine (10 mg/kg, i.p.) or morphine (2.5 mg/kg, s.c., used as positive control) immediately before the formalin test. Another group of animals received tetraethylammonium (TEA) or 4-aminopyridine (4-AP) (1 μg/site, i.t., a non-specific voltage-gated K+ channel blockers), apamin (50 ng/site, i.t., a small conductance Ca2+-activated K+ channel blocker), charybdotoxin (250 pg/site, i.t., a large-conductance Ca2+-activated K+ channel blocker), glibenclamide (100 μg/site, i.t., an ATP-sensitive K+ channel blocker) or CaCl2 (200 nmol/site, i.t.). Afterwards, the mice received inosine (10 mg/kg, i.p.), diclofenac (10 mg/kg, i.p., a positive control), or morphine (2.5 mg/kg, s.c., a positive control) immediately before the formalin test. The antinociceptive effect of inosine was reversed by the pre-administration of pertussis toxin (2.5 μg/site, i.t.), TEA, 4-aminopyridine, charybdotoxin, glibenclamide, and CaCl2, but not apamin. Further, all K+ channel blockers and CaCl2 reversed the antinociception induced by diclofenac and morphine, respectively. Taken together, these data suggest that the antinociceptive effect of inosine is mediated, in part, by pertussis toxin-sensitive G-protein coupled receptors and the subsequent activation of voltage gated K+ channel, large conductance Ca2+-activated and ATP-sensitive K+ channels or inactivation of voltage-gated Ca2+ channels. Finally, small conductance Ca2+-activated K+ channels are not involved in the antinociceptive effect of inosine.  相似文献   

6.
Taurine, 2-aminoethylsulfonic acid, is one of the most abundant amino acids in the brain. It has various important physiological functions as a neuromodulator and antioxidant. Taurine is expected to be involved in depression; however, knowledge regarding its function in relation to depression is limited. In this study, we attempted to elucidate the effects of oral taurine administration on antidepressant-like behaviors in rats and depression-related signal transduction in the hippocampus. In behavioral tests, rats fed a high taurine (HT: 45.0 mmol/kg taurine) diet for 4 weeks (HT4w) showed decreased immobility in the forced swim test (FS) compared to controls. However, rats fed a low taurine (LT: 22.5 mmol/kg taurine) diet for 4 weeks or an HT diet for 2 weeks (HT2w) did not show a significant difference in FS compared to controls. In biochemical analyses, the expression of glutamic acid decarboxylase (GAD) 65 and GAD67 in the hippocampus was not affected by taurine administration. However, the phosphorylation levels of extracellular signal-regulated kinase1/2 (ERK1/2), protein kinase B (Akt), glycogen synthase kinase3 beta (GSK3β) and cAMP response element-binding protein (CREB) were increased in the hippocampus of HT4w and HT2w rats. Phospho-calcium/calmodulin-dependent protein kinase II (CaMKII) was increased in the hippocampus of HT4w rats only. Moreover, no significant changes in these molecules were observed in the hippocampus of rats fed an HT diet for 1 day. In conclusion, our findings suggest that taurine has an antidepressant-like effect and an ability to change depression-related signaling cascades in the hippocampus.  相似文献   

7.
In this study, we examined the ability of subchronic ascorbic acid administration to produce an antidepressant-like effect in the mouse tail suspension test (TST). Moreover, we investigated the effect of this vitamin on hippocampal and cerebrocortical brain-derived neurotrophic factor (BDNF) immunocontent, phosphorylation of protein kinase B (AKT), extracellular signal-regulated kinase (ERK), p38MAPK and c-Jun. N-terminal kinase (JNK). Fluoxetine (10 mg/kg, positive control, po) or ascorbic acid (0.1 and 1 mg/kg, po), administered once daily for 21 days, produced a significant antidepressant-like effect in the TST. The significant effects obtained in protein immunocontents were: administration of ascorbic acid at 1 mg/kg induced an increase in AKT phosphorylation in cerebral cortex of mice. Ascorbic acid treatment (1 mg/kg), similar to fluoxetine, decreased hippocampal p38MAPK but did not alter ERK or JNK phosphorylation. These results extend the data about the antidepressant-like effect of ascorbic acid by exploring, for the first time, the intracellular pathways involved in its antidepressant properties after subchronic administration.  相似文献   

8.
Wang Q  Zhang JY  Liu SJ  Li HL 《生理学报》2008,60(4):485-491
阿尔茨海默病(Alzheimer's disease,AD)的病理特征之一是神经元内存在神经原纤维缠结(neurofibrillary tangles,NFTs),后者是由过度磷酸化的微管相关蛋白tau形成的双股螺旋细丝(paired helical filaments,PHFs)构成.为了探讨丝裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)在微管相关蛋白tau磷酸化中的作用及机制,本实验用0.1 μg/mL、0.2 μg/mL和0.4μg/mL三种不同浓度的MAPK激动剂anisomycin处理小鼠成神经瘤细胞株(mouse neuroblastoma cells,N2a),检测MAPK活性的变化及其与tau蛋白多个AD相关位点过度磷酸化的关系,并检测糖原合酶激酶-3(glycogen synthase kinase-3,GSK-3)和蛋白激酶A(protein kinase A,PKA)的活性变化.结果显示,anisomycin以剂量依赖的方式激活MAPK活性,但免疫印迹结果显示tau蛋白的Ser-198/199/202位点和Ser-396/404位点的过度磷酸化只在anisomycin浓度为0.4 μg/mL时出现,三种浓度的anisomycin均未引起tau蛋白Ser-214位点磷酸化的改变;同时,GSK-3活性在anisomycin为0.1 μg/mL时没有明显变化,当anisomycin浓度升高到0.2 μg/mL和0.4 μg/mL时出现明显增高,而PKA的活性没有明显的改变.使用GSK-3的特异性抑制剂氯化锂(LiCl)则完全阻断MAPK被过度激活导致的tau蛋白磷酸化水平的增高,而同时MAPK活性不受影响.以上结果提示:过度激活MAPK可以导致tau蛋白Ser-198/199/202和Ser-396/404位点过度磷酸化,其机制可能涉及MAPK激活GSK-3的间接作用.  相似文献   

9.
Lactoferrin (LF) is a multifunctional protein in mammalian milk. We previously reported that enteric-coated bovine LF reduced the visceral fat in a double-blind clinical study. We further demonstrated that bovine LF (bLF) inhibited adipogenesis and promoted lipolysis in white adipocytes, but the effect of bLF on brown adipocytes has not been clarified. In this study, we investigated the effects of bLF on energy expenditure and cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) signaling pathway using human reprogrammed brown adipocytes generated by gene transduction. bLF at concentrations of ≥?100 μg/mL significantly increased uncoupling protein 1 (UCP1) mRNA levels, with the maximum value observed 4 h after bLF addition. At the same time point, bLF stimulation also significantly increased oxygen consumption. Signaling pathway analysis revealed rapid increases of intracellular cAMP and cAMP response element-binding protein (CREB) phosphorylation levels beginning 5 min after bLF addition. The mRNA levels of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) were also significantly increased after 1 h of bLF stimulation. H-89, a specific PKA inhibitor, abrogated bLF-induced UCP1 gene expression. Moreover, receptor-associated protein (Rap), an antagonist of low-density lipoprotein receptor-related protein 1 (LRP1), significantly reduced bLF-induced UCP1 gene expression in a dose-dependent manner. These results suggest that bLF promotes UCP1 gene expression in brown adipocytes through the cAMP-PKA signaling pathway via the LRP1 receptor, leading to increased energy expenditure.  相似文献   

10.
Glycogen synthase kinase 3β (GSK-3β) is a key regulator in signaling networks that control cell proliferation, metabolism, development, and other processes. Lithium chloride is a GSK-3 family inhibitor that has been a mainstay of in vitro and in vivo studies for many years. Beryllium salt has the potential to act as a lithium-like inhibitor of GSK-3, but it is not known whether this agent is effective under physiologically relevant conditions. Here we show that BeSO4 inhibits endogenous GSK-3β in cultured human cells. Exposure to 10 µM Be2+ produced a decrease in GSK-3β kinase activity that was comparable to that produced by 10 mM Li+, indicating that beryllium is about 1,000-fold more potent than the classical inhibitor when treating intact cells. There was a statistically significant dose-dependent reduction in specific activity of GSK-3β immunoprecipitated from cells that had been treated with either agent. Lithium inhibited GSK-3β kinase activity directly, and it also caused GSK-3β in cells to become phosphorylated at serine-9 (Ser-9), a post-translational modification that occurs as part of a well-known positive feedback loop that suppresses the kinase activity. Beryllium also inhibited the kinase directly, but unlike lithium it had little effect on Ser-9 phosphorylation in the cell types tested, suggesting that alternative modes of feedback inhibition may be elicited by this agent. These results indicate that beryllium, like lithium, can induce perturbations in the GSK-3β signaling network of treated cells.  相似文献   

11.
Two classic animal behavior despair tests-the forced swimming test (FST) and the tail suspension test (TST) were used to evaluate antidepressant-like activity of a new chalcone compound, chalcone-1203 in mice. It was observed that chalcone-1203 at dose of 1, 5, and 10 mg/kg significantly reduced the immobility time in the FST and TST in mice 30 min after treatment. In addition, chalcone-1203 was found to exhibit significant oral activity in the FST in mice. It also produced a reduction in the ambulation in the open-field test in mice not previously habituated to the arena, but no effect in the locomotor activity in mice previously habituated to the open-field. The main monoamine neurotransmitters and their metabolites in mouse brain regions were also simultaneously determined by HPLC–ECD. It was found that chalcone-1203 significantly increased the concentrations of the main neurotransmitters 5-HT and NE in the hippocampus, hypothalamus and cortex. Chalcone-1203 also significantly reduced the ratio of 5-HIAA/5-HT in the hippocampus and cortex, shown down 5-HT metabolism compared with mice treated with stress vehicle. In conclusion, chalcone-1203 produced significant antidepressant-like activity, and the mechanism of action may be due to increased 5-HT and NE in the mouse hippocampus and cortex.  相似文献   

12.
This study aims to examine the antidepressant-like action of Ghrelin (Ghr), a hormone synthesized predominantly by gastrointestinal endocrine cells and released during periods of negative energy balance, in two behavioral models: tail suspension test (TST), a predictive model of antidepressant activity, and the olfactory bulbectomy (OB), an established animal model of depression. The reduction in the immobility time in the TST was the parameter used to assess antidepressant-like effect of Ghr. The depressive-like behavior in olfactory bulbectomized mice was inferred through the increase in the immobility time in the TST and the hyperlocomotor activity in the open-field test. Ghr produced antidepressant-like effect in TST (0.3 nmol/μl, i.c.v.), and reversed OB-induced depressive-like behavior. In conclusion, these results provide clear evidence that an acute administration of ghrelin produce antidepressant-like effect in the TST and OB.  相似文献   

13.
Metformin, a first-line antidiabetic drug, has been reported with anticancer activities in many types of cancer. However, its molecular mechanisms remain largely unknown. As a member of inhibitor of apoptosis proteins, survivin plays an important role in the regulation of cell death. In the present study, we investigated the role of survivin in metformin-induced anticancer activity in non–small cell lung cancer in vitro. Metformin mainly induced apoptotic cell death in A549 and H460 cell lines. It remarkably suppressed the expression of survivin, decreased the stability of this protein, then promoted its proteasomal degradation. Moreover, metformin greatly suppressed protein kinase A (PKA) activity and induced its downstream glycogen synthase kinase 3β (GSK-3β) activation. PKA activators, both 8-Br-cAMP and forskolin, significantly increased the expression of survivin. Consistently both GSK-3β inhibitor LiCl and siRNA restored the expression of survivin in lung cancer cells. Furthermore, metformin induced adenosine 5′-monophosphate-activated protein kinase (AMPK) activation. Suppression of the activity of AMPK with Compound C reversed the degradation of survivin induced by metformin, and meanwhile, restored the activity of PKA and GSK-3β. These results suggest that metformin kills lung cancer cells through AMPK/PKA/GSK-3β-axis–mediated survivin degradation, providing novel insights into the anticancer effects of metformin.  相似文献   

14.
We studied the effect of cilostazol, a selective inhibitor of phosphodiesterase 3, on barrier functions of blood–brain barrier (BBB)-related endothelial cells, primary rat brain capillary endothelial cells (RBEC), and the immortalized human brain endothelial cell line hCMEC/D3. The pharmacological potency of cilostazol was also evaluated on ischemia-related BBB dysfunction using a triple co-culture BBB model (BBB Kit?) subjected to 6-h oxygen glucose deprivation (OGD) and 3-h reoxygenation. There was expression of phosphodiesterase 3B mRNA in RBEC, and a significant increase in intracellular cyclic AMP (cAMP) content was detected in RBEC treated with both 1 and 10 μM cilostazol. Cilostazol increased the transendothelial electrical resistance (TEER), an index of barrier tightness of interendothelial tight junctions (TJs), and decreased the endothelial permeability of sodium fluorescein through the RBEC monolayer. The effects on these barrier functions were significantly reduced in the presence of protein kinase A (PKA) inhibitor H-89. Microscopic observation revealed smooth and even localization of occludin immunostaining at TJs and F-actin fibers at the cell borders in cilostazol-treated RBEC. In hCMEC/D3 cells treated with 1 and 10 μM cilostazol for 24 and 96 h, P-glycoprotein transporter activity was increased, as assessed by rhodamine 123 accumulation. Cilostazol improved the TEER in our triple co-culture BBB model with 6-h OGD and 3-h reoxygenation. As cilostazol stabilized barrier integrity in BBB-related endothelial cells, probably via cAMP/PKA signaling, the possibility that cilostazol acts as a BBB-protective drug against cerebral ischemic insults to neurons has to be considered.  相似文献   

15.
Microtubule-associated protein tau is abnormally hyperphosphorylated in Alzheimer's disease (AD) and other tauopathies and is believed to lead to neurodegeneration in this family of diseases. Here we show that infusion of forskolin, a specific cAMP-dependent protein kinase A (PKA) activator, into the lateral ventricle of brain in adult rats induced activation of PKA by severalfold and concurrently enhanced the phosphorylation of tau at Ser-214, Ser-198, Ser-199, and or Ser-202 (Tau-1 site) and Ser-396 and or Ser-404 (PHF-1 site), which are among the major abnormally hyperphosphorylated sites seen in AD. PKA activation positively correlated to the extent of tau phosphorylation at these sites. Infusion of forskolin together with PKA inhibitor or glycogen synthase kinase-3 (GSK-3) inhibitor revealed that the phosphorylation of tau at Ser-214 was catalyzed by PKA and that the phosphorylation at both the Tau-1 and the PHF-1 sites is induced by basal level of GSK-3, because forskolin activated PKA and not GSK-3 and inhibition of the latter inhibited the phosphorylation at Tau-1 and PHF-1 sites. Inhibition of cdc2, cdk5, or MAPK had no significant effect on the forskolin-induced hyperphosphorylation of tau. Forskolin inhibited spatial memory in a dose-dependent manner in the absence but not in the presence of R(p)-adenosine 3',5'-cyclic monophosphorothioate triethyl ammonium salt, a PKA inhibitor. These results demonstrate for the first time that phosphorylation of tau by PKA primes it for phosphorylation by GSK-3 at the Tau-1 and the PHF-1 sites and that an associated loss in spatial memory is inhibited by inhibition of the hyperphosphorylation of tau. These data provide a novel mechanism of the hyperphosphorylation of tau and identify both PKA and GSK-3 as promising therapeutic targets for AD and other tauopathies.  相似文献   

16.
TIMAP (TGF-beta1 inhibited, membrane-associated protein) is a prenylated, endothelial cell-predominant protein phosphatase 1 (PP1c) regulatory subunit that localizes to the plasma membrane of filopodia. Here, we determined whether phosphorylation regulates TIMAP-associated PP1c function. Phosphorylation of TIMAP was observed in cells metabolically labeled with [32P]orthophosphate and was reduced by inhibitors of protein kinase A (PKA) and glycogen synthase kinase-3 (GSK-3). In cell-free assays, immunopurified TIMAP was phosphorylated by PKA and, after PKA priming, by GSK-3beta. Site-specific Ser to Ala substitution identified amino acid residues Ser333/Ser337 as the likely PKA/GSK-3beta phosphorylation site. Substitution of Ala for Val and Phe in the KVSF motif of TIMAP (TIMAPV64A/F66A) abolished PP1c binding and TIMAP-associated PP1c activity. TIMAPV64A/F66A was hyper-phosphorylated in cells, indicating that TIMAP-associated PP1c auto-dephosphorylates TIMAP. Constitutively active GSK-3beta stimulated phosphorylation of TIMAPV64A/F66A, but not wild-type TIMAP, suggesting that the PKA/GSK-3beta site may be subject to dephosphorylation by TIMAP-associated PP1c. Substitution of Asp or Glu for Ser at amino acid residues 333 and 337 to mimic phosphorylation reduced the PP1c association with TIMAP. Conversely, GSK-3 inhibitors augmented PP1c association with TIMAP-PP1c in cells. The 333/337 phosphomimic mutations also increased TIMAP-associated PP1c activity in vitro and against the non-integrin laminin receptor 1 in cells. Finally, TIMAP mutants with reduced PP1c activity strongly stimulated endothelial cell filopodia formation, an effect mimicked by the GSK-3 inhibitor LiCl. We conclude that TIMAP is a target for PKA-primed GSK-3beta-mediated phosphorylation. This phosphorylation controls TIMAP association and activity of PP1c, in turn regulating extension of filopodia in endothelial cells.  相似文献   

17.
Glycogen synthase kinase-3 (GSK-3) is regulated by various extracellular ligands and phosphorylates many substrates, thereby regulating cellular functions. Using yeast two-hybrid screening, we found that GSK-3beta binds to AKAP220, which is known to act as an A-kinase anchoring protein. GSK-3beta formed a complex with AKAP220 in intact cells at the endogenous level. Cyclic AMP-dependent protein kinase (PKA) and type 1 protein phosphatase (PP1) were also detected in this complex, suggesting that AKAP220, GSK-3beta, PKA, and PP1 form a quaternary complex. It has been reported that PKA phosphorylates GSK-3beta, thereby decreasing its activity. When COS cells were treated with dibutyryl cyclic AMP to activate PKA, the activity of GSK-3beta bound to AKAP220 decreased more markedly than the total GSK-3beta activity. Calyculin A, a protein phosphatase inhibitor, also inhibited the activity of GSK-3beta bound to AKAP220 more strongly than the total GSK-3beta activity. These results suggest that PKA and PP1 regulate the activity of GSK-3beta efficiently by forming a complex with AKAP220.  相似文献   

18.
Investigation of kinase-related processes often uses pharmacological inhibition to reveal pathways in which kinases are involved. However, one concern about using such kinase inhibitors is their potential lack of specificity. Here, we report that the calcium–calmodulin-dependent kinase II (CaMKII) inhibitor CK59 inhibited multiple voltage-gated calcium channels, including the L-type channel during depolarization in a dose-dependent manner. The use of another CaMKII inhibitor, cell-permeable autocamtide-2 related inhibitory peptide II (Ant-AIP-II), failed to similarly decrease calcium current or entry in hippocampal cultures, as shown by ratiometric calcium imaging and whole-cell patch clamp electrophysiology. Notably, inhibition due to CK59 was reversible; washout of the drug brought calcium levels back to control values upon depolarization. Furthermore, the IC50 for CK59 was approximately 50 μM, which is only fivefold larger than the reported IC50 values for CaMKII inhibition. Similar nonspecific actions of other CaMKII inhibitors KN93 and KN62 have previously been reported. In the case of all three kinase inhibitors, the IC50 for calcium current inhibition falls near that of CaMKII inhibition. Our findings demonstrate that CK59 attenuates activity of voltage-gated calcium channels, and thus provide more evidence for caution when relying on pharmacological inhibition to examine kinase-dependent phenomena.  相似文献   

19.
The biological mechanisms that link the development of depression to metabolic disorders such as obesity and diabetes remain ambiguous. In the present study the potential of a selective cyclooxygenase inhibitor celecoxib (15 mg/kg p.o.) was investigated in depression associated with obesity in mice. Behavioral tests used to assess depressive-like behavior were sucrose preference test, forced swim test (FST), tail suspension test (TST) and elevated plus maze (EPM). The basal locomotor score in obese mice was not altered. Furthermore, estimation of biochemical parameters was performed for plasma glucose, total cholesterol, triglycerides and total proteins. Escitalopram (10 mg/kg p.o.) served as reference standard drug. In the results, chronic treatment with celecoxib for 28 days significantly attenuated the behavioral alterations as indicated by increased the sucrose consumption, reduced the immobility time in FST and TST, increased the percent open arm time and entries in EPM in obese mice. In the biochemical parameters celecoxib significantly reversed the increased plasma glucose, total cholesterol, triglycerides and total proteins in obese mice. In conclusion, celecoxib exhibited potential antidepressant-like effect in depression associated with obesity, which to some extent is mediated by reversing the altered plasma glucose in obese mice.  相似文献   

20.
Glycogen synthase kinase 3 (GSK-3) is a serine/threonine kinase involved in the regulation of cellular processes ranging from glycogen metabolism to cell cycle regulation. Its two known isoforms, α and β, are differentially expressed in tissues throughout the body and exert distinct but often overlapping functions. GSK-3 is typically active in resting cells, inhibition by phosphorylation of Ser21 (GSK-3α) or Ser9 (GSK-3β) being the most common regulatory mechanism. GSK-3 activity has been linked recently with immune system function, yet little is known about the role of this enzyme in neutrophils, the most abundant leukocyte type. In the present study, we examined GSK-3 expression and regulation in human neutrophils. GSK-3α was found to be the predominant isoform, it was constitutively expressed and cell stimulation with different agonists did not alter its expression. Stimulation by fMLP, LPS, GM-CSF, Fcγ receptor engagement, or adenosine A2A receptor engagement all resulted in phosphorylation of Ser21. The use of metabolic inhibitors revealed that combinations of Src kinase, PKC, PI3K/AKT, ERK/RSK and PKA signaling pathways could mediate phosphorylation, depending on the agonist. Neither PLC nor p38 were involved. We conclude that GSK-3α is the main isoform expressed in neutrophils and that many different pathways can converge to inhibit GSK-3α activity via Ser21-phosphorylation. GSK-3α thus might be a hub of cellular regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号