首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In Chile, an intensive Eucalyptus globulus clonal selection program is being carried out to increase forest productivity for pulp production. A breeding population was used to investigate the predicted ability of single nucleotide polymorphism (SNP) markers for genomic selection (GS). A total of 310 clones from 53 families were used. Stem volume and wood density were measured on all clones. Trees were genotyped at 12 K polymorphic markers using the EUChip60K genotype array. Genomic best linear unbiased prediction, Bayesian lasso regression, Bayes B, and Bayes C models were used to predict genomic estimated breeding values (GEBV). For cross-validation, 260 individuals were sampled for model training and 50 individuals for model validation, using 2 folds and 10 replications each. The average predictive ability estimates for wood density and stem volume across the models were 0.58 and 0.75, respectively. The average rank correlations were 0.59 and 0.71, respectively. Models produced very similar bias for both traits. When clones were ranked based on their GEBV, models had similar phenotypic mean for the top 10% of the clones. The predicted ability of markers will likely decrease if the models are used to predict GEBV of new material coming from the breeding program, because of a different marker–trait phase introduced by recombination. The results should be validated with larger populations and across two generations before routine applications of GS in E. globulus. We suggest that GS is a viable strategy to accelerate clonal selection program of E. globulus in Chile.  相似文献   

2.

Background

The theory of genomic selection is based on the prediction of the effects of genetic markers in linkage disequilibrium with quantitative trait loci. However, genomic selection also relies on relationships between individuals to accurately predict genetic value. This study aimed to examine the importance of information on relatives versus that of unrelated or more distantly related individuals on the estimation of genomic breeding values.

Methods

Simulated and real data were used to examine the effects of various degrees of relationship on the accuracy of genomic selection. Genomic Best Linear Unbiased Prediction (gBLUP) was compared to two pedigree based BLUP methods, one with a shallow one generation pedigree and the other with a deep ten generation pedigree. The accuracy of estimated breeding values for different groups of selection candidates that had varying degrees of relationships to a reference data set of 1750 animals was investigated.

Results

The gBLUP method predicted breeding values more accurately than BLUP. The most accurate breeding values were estimated using gBLUP for closely related animals. Similarly, the pedigree based BLUP methods were also accurate for closely related animals, however when the pedigree based BLUP methods were used to predict unrelated animals, the accuracy was close to zero. In contrast, gBLUP breeding values, for animals that had no pedigree relationship with animals in the reference data set, allowed substantial accuracy.

Conclusions

An animal''s relationship to the reference data set is an important factor for the accuracy of genomic predictions. Animals that share a close relationship to the reference data set had the highest accuracy from genomic predictions. However a baseline accuracy that is driven by the reference data set size and the overall population effective population size enables gBLUP to estimate a breeding value for unrelated animals within a population (breed), using information previously ignored by pedigree based BLUP methods.  相似文献   

3.
Sugarcane breeders in Australia combine data across four selection programs to obtain estimates of breeding value for parents. When these data are combined with full pedigree information back to founding parents, computing limitations mean it is not possible to obtain information on all parents. Family data from one sugarcane selection program were analysed using two different genetic models to investigate how different depths of pedigree and amount of data affect the reliability of estimating breeding value of sugarcane parents. These were the parental and animal models. Additive variance components and breeding values estimated from different amounts of information were compared for both models. The accuracy of estimating additive variance components and breeding values improved as more pedigree information and historical data were included in analyses. However, adding years of data had a much larger effect on the estimation of variance components of the population, and breeding values of the parents. To accurately estimate breeding values of all sugarcane parents, a minimum of three generations of pedigree and 5 years of historical data were required, while more information (four generations of pedigree and 7 years of historical data) was required when identifying top parents to be selected for future cross pollination.  相似文献   

4.
Fruit-quality trait improvement is an important objective in citrus breeding; however, fruit breeding programs often accumulate highly unbalanced phenotypic records, which are a serious obstacle in comparing and selecting genotypes. The best linear unbiased prediction (BLUP) method can be used to overcome these difficulties, but few fruit breeding programs have adopted the method, and to our knowledge, the method has not yet been used to predict breeding values of traits based on pedigree information and genetic correlations between traits in citrus. Accordingly, we used the BLUP method to predict the breeding values of nine fruit-quality traits (fruit weight, fruit skin color, fruit surface texture, peelability, flesh color, pulp firmness, segment firmness, sugar content, and acid content) utilizing phenotypic records collected over several years as part of the citrus breeding program conducted at the Kuchinotsu branch of the National Institute of Fruit Tree Science in Japan. Although the accumulated phenotypic records were highly unbalanced, the BLUP method was able to predict the breeding values of all 2122 genotypes (111 parental cultivars and 2011 F1 offspring from 126 pair-cross families), as well as estimates of several genetic parameters, including narrow-sense heritability and phenotypic and genotypic correlations. These findings demonstrate the utility of the BLUP method in citrus crossbreeding and provide predicted breeding values, which can be used to select superior genotypes in the Kuchinotsu Citrus Breeding Program and related genetic selection endeavors.  相似文献   

5.
Bayesian (via Gibbs sampling) and empirical BLUP (EBLUP) estimation of fixed effects and breeding values were compared by simulation. Combinations of two simulation models (with or without effect of contemporary group (CG)), three selection schemes (random, phenotypic and BLUP selection), two levels of heritability (0.20 and 0.50) and two levels of pedigree information (0% and 15% randomly missing) were considered. Populations consisted of 450 animals spread over six discrete generations. An infinitesimal additive genetic animal model was assumed while simulating data. EBLUP and Bayesian estimates of CG effects and breeding values were, in all situations, essentially the same with respect to Spearman''s rank correlation between true and estimated values. Bias and mean square error (MSE) of EBLUP and Bayesian estimates of CG effects and breeding values showed the same pattern over the range of simulated scenarios. Methods were not biased by phenotypic and BLUP selection when pedigree information was complete, albeit MSE of estimated breeding values increased for situations where CG effects were present. Estimation of breeding values by Bayesian and EBLUP was similarly affected by joint effect of phenotypic or BLUP selection and randomly missing pedigree information. For both methods, bias and MSE of estimated breeding values and CG effects substantially increased across generations.  相似文献   

6.
Simulated data were used to determine the properties of multivariate prediction of breeding values for categorical and continuous traits using phenotypic, molecular genetic and pedigree information by mixed linear-threshold animal models via Gibbs sampling. Simulation parameters were chosen such that the data resembled situations encountered in Warmblood horse populations. Genetic evaluation was performed in the context of the radiographic findings in the equine limbs. The simulated pedigree comprised seven generations and 40 000 animals per generation. The simulated data included additive genetic values, residuals and fixed effects for one continuous trait and liabilities of four binary traits. For one of the binary traits, quantitative trait locus (QTL) effects and genetic markers were simulated, with three different scenarios with respect to recombination rate (r) between genetic markers and QTL and polymorphism information content (PIC) of genetic markers being studied: r = 0.00 and PIC = 0.90 (r0p9), r = 0.01 and PIC = 0.90 (r1p9), and r = 0.00 and PIC = 0.70 (r0p7). For each scenario, 10 replicates were sampled from the simulated horse population, and six different data sets were generated per replicate. Data sets differed in number and distribution of animals with trait records and the availability of genetic marker information. Breeding values were predicted via Gibbs sampling using a Bayesian mixed linear-threshold animal model with residual covariances fixed to zero and a proper prior for the genetic covariance matrix. Relative breeding values were used to investigate expected response to multi- and single-trait selection. In the sires with 10 or more offspring with trait information, correlations between true and predicted breeding values ranged between 0.89 and 0.94 for the continuous traits and between 0.39 and 0.77 for the binary traits. Proportions of successful identification of sires of average, favourable and unfavourable genetic value were 81% to 86% for the continuous trait and 57% to 74% for the binary traits in these sires. Expected decrease of prevalence of the QTL trait was 3% to 12% after multi-trait selection for all binary traits and 9% to 17% after single-trait selection for the QTL trait. The combined use of phenotype and genotype data was superior to the use of phenotype data alone. It was concluded that information on phenotypes and highly informative genetic markers should be used for prediction of breeding values in mixed linear-threshold animal models via Gibbs sampling to achieve maximum reduction in prevalences of binary traits.  相似文献   

7.

Background

Most quantitative traits are controlled by multiple quantitative trait loci (QTL). The contribution of each locus may be negligible but the collective contribution of all loci is usually significant. Genome selection that uses markers of the entire genome to predict the genomic values of individual plants or animals can be more efficient than selection on phenotypic values and pedigree information alone for genetic improvement. When a quantitative trait is contributed by epistatic effects, using all markers (main effects) and marker pairs (epistatic effects) to predict the genomic values of plants can achieve the maximum efficiency for genetic improvement.

Results

In this study, we created 126 recombinant inbred lines of soybean and genotyped 80 makers across the genome. We applied the genome selection technique to predict the genomic value of somatic embryo number (a quantitative trait) for each line. Cross validation analysis showed that the squared correlation coefficient between the observed and predicted embryo numbers was 0.33 when only main (additive) effects were used for prediction. When the interaction (epistatic) effects were also included in the model, the squared correlation coefficient reached 0.78.

Conclusions

This study provided an excellent example for the application of genome selection to plant breeding.  相似文献   

8.

Background

The theory of genomic selection is based on the prediction of the effects of quantitative trait loci (QTL) in linkage disequilibrium (LD) with markers. However, there is increasing evidence that genomic selection also relies on "relationships" between individuals to accurately predict genetic values. Therefore, a better understanding of what genomic selection actually predicts is relevant so that appropriate methods of analysis are used in genomic evaluations.

Methods

Simulation was used to compare the performance of estimates of breeding values based on pedigree relationships (Best Linear Unbiased Prediction, BLUP), genomic relationships (gBLUP), and based on a Bayesian variable selection model (Bayes B) to estimate breeding values under a range of different underlying models of genetic variation. The effects of different marker densities and varying animal relationships were also examined.

Results

This study shows that genomic selection methods can predict a proportion of the additive genetic value when genetic variation is controlled by common quantitative trait loci (QTL model), rare loci (rare variant model), all loci (infinitesimal model) and a random association (a polygenic model). The Bayes B method was able to estimate breeding values more accurately than gBLUP under the QTL and rare variant models, for the alternative marker densities and reference populations. The Bayes B and gBLUP methods had similar accuracies under the infinitesimal model.

Conclusions

Our results suggest that Bayes B is superior to gBLUP to estimate breeding values from genomic data. The underlying model of genetic variation greatly affects the predictive ability of genomic selection methods, and the superiority of Bayes B over gBLUP is highly dependent on the presence of large QTL effects. The use of SNP sequence data will outperform the less dense marker panels. However, the size and distribution of QTL effects and the size of reference populations still greatly influence the effectiveness of using sequence data for genomic prediction.  相似文献   

9.
10.

Background

Over the last ten years, genomic selection has developed enormously. Simulations and results on real data suggest that breeding values can be predicted with high accuracy using genetic markers alone. However, to reach high accuracies, large reference populations are needed. In many livestock populations or even species, such populations cannot be established when traits are difficult or expensive to record, or when the population size is small. The value of genomic selection is then questionable.

Methods

In this study, we compare traditional breeding schemes based on own performance or progeny information to genomic selection schemes, for which the number of phenotypic records is limiting. Deterministic simulations were performed using selection index theory. Our focus was on the equilibrium response obtained after a few generations of selection. Therefore, we first investigated the magnitude of the Bulmer effect with genomic selection.

Results

Results showed that the reduction in response due to the Bulmer effect is the same for genomic selection as for selection based on traditional BLUP estimated breeding values, and is independent of the accuracy of selection. The reduction in response with genomic selection is greater than with selection based directly on phenotypes without the use of pedigree information, such as mass selection. To maximize the accuracy of genomic estimated breeding values when the number of phenotypic records is limiting, the same individuals should be phenotyped and genotyped, rather than genotyping parents and phenotyping their progeny. When the generation interval cannot be reduced with genomic selection, large reference populations are required to obtain a similar response to that with selection based on BLUP estimated breeding values based on own performance or progeny information. However, when a genomic selection scheme has a moderate decrease in generation interval, relatively small reference population sizes are needed to obtain a similar response to that with selection on traditional BLUP estimated breeding values.

Conclusions

When the trait of interest cannot be recorded on the selection candidate, genomic selection schemes are very attractive even when the number of phenotypic records is limited, because traditional breeding requires progeny testing schemes with long generation intervals in those cases.  相似文献   

11.
Despite their economic importance, some tropical crop species are largely neglected when it comes to conducting genetic studies characterizing target traits for breeding. Herein, genetic and phenotypic parameters as well quantitative trait loci (QTL) are described for the first time in a full-sib progeny of sweet passion fruit (Passiflora alata). A hundred F1 individuals were evaluated in two locations for seven fruit traits: diameter of fruit (DF, in mm), length of fruit (LF, in mm), weight of fruit (WF, in g), thickness of fruit skin (TS, in mm), weight of fruit skin (WS, in g), weight of fruit pulp (WP, in g) and soluble solids (SS, in °Brix). Mixed models fitted complex, unstructured genetic variance-covariance matrices for all traits in phenotypic analysis. Because of important genetic correlations among skin and pulp traits, multiplicative index selection to select the most promising individuals was successfully applied. A previously reported integrated map supported composite interval mapping (CIM) analyses. In total, we found 22 QTLs mapped in seven out of nine linkage groups. Heritabilities (from 59.8 % to 82.7 %) and proportion of phenotypic variance explained by the QTLs (from 42.0 % to 64.3 %) were comparable for each trait. Principal component analysis on TS, WS and WP showed that the first two principal components (PCs) accounted for 93.6 % of the total variability. CIM analyses on these two PCs revealed five putative QTLs controlling variation for these three traits simultaneously. Thus, genetic improvement for sweet passion fruit should be based on correlations between traits and QTL-related information can be a useful tool.  相似文献   

12.
The evolutionary potential in the timing of recruitment and reproduction may be crucial for the ability of populations to buffer against environmental changes, allowing them to avoid unfavourable breeding conditions. The evolution of a trait in a local population is determined by its heritability and selection. In the present study, we performed pedigree‐based quantitative genetic analyses for two life‐history traits (recruiting age and laying date) using population data of the storm petrel over an 18‐year period in two adjacent breeding colonies (only 150 m apart) that share the same environmental conditions. In both traits, natal colony effect was the main source of the phenotypic variation among individuals, and cohort variance for recruitment age and additive genetic variance for laying date were natal colony‐specific. We found significant heritability only in laying date and, more specifically, only in birds born in one of the colonies. The difference in genetic variance between the colonies was statistically significant. Interestingly, selection on earlier breeding birds was detected only in the colony in which heritable variation in laying date was found. Therefore, local evolvability for a life‐history trait may vary within a unexpectedly small spatial scale, through the diversifying natural selection and insulating gene flow. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 106 , 439–446.  相似文献   

13.
动物遗传标记辅助选择研究及其应用   总被引:40,自引:1,他引:39  
鲁绍雄  吴常信 《遗传》2002,24(3):359-362
随着分子数量遗传学及其相关学科的发展,有关动物遗传标记辅助选择方面的研究也在不断深入,且已经在动物遗传改良中有了一些成功应用的示例。就如何综合利用表型、系谱和遗传标记信息进行育种值估计的统计学方法研究方面,目前已基本形成了较为完善的统计学方法。同时,在标记辅助选择相对效率及其影响因素,以及标记辅助选择实施方案的研究上也取得了不少喜人的成果。本文综述了动物遗传标记辅助选择研究的一些进展,并对标记辅助选择在动物遗传改良中应用的有关问题进行了讨论。 Abstract:With the development of molecular and quantitative genetics and its related subjects,it made a great progress on the research about animal genetic marker-assisted selection (MAS).There were also some successful examples on the application of MAS to animal genetic improvement.The statistical method which using phenotypic,pedigree and genetic marker information to predict individual breeding values has already been developed.Many achievements were obtained from the researches,which carried on MAS relative efficiency and its affecting factors and selection schemes.The present paper reviewed some progresses of MAS research and discussed some problems about MAS application to animal breeding.  相似文献   

14.
Over the last 20 years, global production of Persian walnut (Juglans regia L.) has grown enormously, likely reflecting increased consumption due to its numerous benefits to human health. However, advances in genome‐wide association (GWA) studies and genomic selection (GS) for agronomically important traits in walnut remain limited due to the lack of powerful genomic tools. Here, we present the development and validation of a high‐density 700K single nucleotide polymorphism (SNP) array in Persian walnut. Over 609K high‐quality SNPs have been thoroughly selected from a set of 9.6 m genome‐wide variants, previously identified from the high‐depth re‐sequencing of 27 founders of the Walnut Improvement Program (WIP) of University of California, Davis. To validate the effectiveness of the array, we genotyped a collection of 1284 walnut trees, including 1167 progeny of 48 WIP families and 26 walnut cultivars. More than half of the SNPs (55.7%) fell in the highest quality class of ‘Poly High Resolution’ (PHR) polymorphisms, which were used to assess the WIP pedigree integrity. We identified 151 new parent‐offspring relationships, all confirmed with the Mendelian inheritance test. In addition, we explored the genetic variability among cultivars of different origin, revealing how the varieties from Europe and California were differentiated from Asian accessions. Both the reconstruction of the WIP pedigree and population structure analysis confirmed the effectiveness of the Applied Biosystems? Axiom? J. regia 700K SNP array, which initiates a novel genomic and advanced phase in walnut genetics and breeding.  相似文献   

15.
? Genomic selection is increasingly considered vital to accelerate genetic improvement. However, it is unknown how accurate genomic selection prediction models remain when used across environments and ages. This knowledge is critical for breeders to apply this strategy in genetic improvement. ? Here, we evaluated the utility of genomic selection in a Pinus taeda population of c. 800 individuals clonally replicated and grown on four sites, and genotyped for 4825 single-nucleotide polymorphism (SNP) markers. Prediction models were estimated for diameter and height at multiple ages using genomic random regression best linear unbiased predictor (BLUP). ? Accuracies of prediction models ranged from 0.65 to 0.75 for diameter, and 0.63 to 0.74 for height. The selection efficiency per unit time was estimated as 53-112% higher using genomic selection compared with phenotypic selection, assuming a reduction of 50% in the breeding cycle. Accuracies remained high across environments as long as they were used within the same breeding zone. However, models generated at early ages did not perform well to predict phenotypes at age 6 yr. ? These results demonstrate the feasibility and remarkable gain that can be achieved by incorporating genomic selection in breeding programs, as long as models are used at the relevant selection age and within the breeding zone in which they were estimated.  相似文献   

16.
17.

Background

Genomic selection has become an important tool in the genetic improvement of animals and plants. The objective of this study was to investigate the impacts of breeding value estimation method, reference population structure, and trait genetic architecture, on long-term response to genomic selection without updating marker effects.

Methods

Three methods were used to estimate genomic breeding values: a BLUP method with relationships estimated from genome-wide markers (GBLUP), a Bayesian method, and a partial least squares regression method (PLSR). A shallow (individuals from one generation) or deep reference population (individuals from five generations) was used with each method. The effects of the different selection approaches were compared under four different genetic architectures for the trait under selection. Selection was based on one of the three genomic breeding values, on pedigree BLUP breeding values, or performed at random. Selection continued for ten generations.

Results

Differences in long-term selection response were small. For a genetic architecture with a very small number of three to four quantitative trait loci (QTL), the Bayesian method achieved a response that was 0.05 to 0.1 genetic standard deviation higher than other methods in generation 10. For genetic architectures with approximately 30 to 300 QTL, PLSR (shallow reference) or GBLUP (deep reference) had an average advantage of 0.2 genetic standard deviation over the Bayesian method in generation 10. GBLUP resulted in 0.6% and 0.9% less inbreeding than PLSR and BM and on average a one third smaller reduction of genetic variance. Responses in early generations were greater with the shallow reference population while long-term response was not affected by reference population structure.

Conclusions

The ranking of estimation methods was different with than without selection. Under selection, applying GBLUP led to lower inbreeding and a smaller reduction of genetic variance while a similar response to selection was achieved. The reference population structure had a limited effect on long-term accuracy and response. Use of a shallow reference population, most closely related to the selection candidates, gave early benefits while in later generations, when marker effects were not updated, the estimation of marker effects based on a deeper reference population did not pay off.  相似文献   

18.
The advantages of open-pollinated (OP) family testing over controlled crossing (i.e., structured pedigree) are the potential to screen and rank a large number of parents and offspring with minimal cost and efforts; however, the method produces inflated genetic parameters as the actual sibling relatedness within OP families rarely meets the half-sib relatedness assumption. Here, we demonstrate the unsurpassed utility of OP testing after shifting the analytical mode from pedigree- (ABLUP) to genomic-based (GBLUP) relationship using phenotypic tree height (HT) and wood density (WD) and genotypic (30k SNPs) data for 1126 38-year-old Interior spruce (Picea glauca (Moench) Voss x P. engelmannii Parry ex Engelm.) trees, representing 25 OP families, growing on three sites in Interior British Columbia, Canada. The use of the genomic realized relationship permitted genetic variance decomposition to additive, dominance, and epistatic genetic variances, and their interactions with the environment, producing more accurate narrow-sense heritability and breeding value estimates as compared to the pedigree-based counterpart. The impact of retaining (random folding) vs. removing (family folding) genetic similarity between the training and validation populations on the predictive accuracy of genomic selection was illustrated and highlighted the former caveats and latter advantages. Moreover, GBLUP models allowed breeding value prediction for individuals from families that were not included in the developed models, which was not possible with the ABLUP. Response to selection differences between the ABLUP and GBLUP models indicated the presence of systematic genetic gain overestimation of 35 and 63% for HT and WD, respectively, mainly caused by the inflated estimates of additive genetic variance and individuals’ breeding values given by the ABLUP models. Extending the OP genomic-based models from single to multisite made the analysis applicable to existing OP testing programs.  相似文献   

19.
A LS Houde  C C Wilson  B D Neff 《Heredity》2013,111(6):513-519
The additive genetic effects of traits can be used to predict evolutionary trajectories, such as responses to selection. Non-additive genetic and maternal environmental effects can also change evolutionary trajectories and influence phenotypes, but these effects have received less attention by researchers. We partitioned the phenotypic variance of survival and fitness-related traits into additive genetic, non-additive genetic and maternal environmental effects using a full-factorial breeding design within two allopatric populations of Atlantic salmon (Salmo salar). Maternal environmental effects were large at early life stages, but decreased during development, with non-additive genetic effects being most significant at later juvenile stages (alevin and fry). Non-additive genetic effects were also, on average, larger than additive genetic effects. The populations, generally, did not differ in the trait values or inferred genetic architecture of the traits. Any differences between the populations for trait values could be explained by maternal environmental effects. We discuss whether the similarities in architectures of these populations is the result of natural selection across a common juvenile environment.  相似文献   

20.

Background

Genomic selection can increase genetic gain within aquaculture breeding programs, but the high costs related to high-density genotyping of a large number of individuals would make the breeding program expensive. In this study, a low-cost method using low-density genotyping of pre-selected candidates and their sibs was evaluated by stochastic simulation.

Methods

A breeding scheme with selection for two traits, one measured on candidates and one on sibs was simulated. Genomic breeding values were estimated within families and combined with conventional family breeding values for candidates that were pre-selected based on conventional BLUP breeding values. This strategy was compared with a conventional breeding scheme and a full genomic selection program for which genomic breeding values were estimated across the whole population. The effects of marker density, level of pre-selection and number of sibs tested and genotyped for the sib-trait were studied.

Results

Within-family genomic breeding values increased genetic gain by 15% and reduced rate of inbreeding by 15%. Genetic gain was robust to a reduction in marker density, with only moderate reductions, even for very low densities. Pre-selection of candidates down to approximately 10% of the candidates before genotyping also had minor effects on genetic gain, but depended somewhat on marker density. The number of test-individuals, i.e. individuals tested for the sib-trait, affected genetic gain, but the fraction of the test-individuals genotyped only affected the relative contribution of each trait to genetic gain.

Conclusions

A combination of genomic within-family breeding values, based on low-density genotyping, and conventional BLUP family breeding values was shown to be a possible low marker density implementation of genomic selection for species with large full-sib families for which the costs of genotyping must be kept low without compromising the effect of genomic selection on genetic gain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号