首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microbial enhanced oil recovery (MEOR) is an emerging oil extraction technology that utilizes microorganisms to facilitate recovery of crude oil in depleted petroleum reservoirs. In the present study, effects of wheat bran utilization were investigated on stimulation of indigenous MEOR. Biostimulation conditions were optimized with the response surface methodology. The co-application of wheat bran with KNO3 and NH4H2PO4 significantly promoted indigenous MEOR (IMEOR) and exhibited sequential aerobic (O-), facultative (An-) and anaerobic (A0-) metabolic stages. The surface tension of fermented broth decreased by approximately 35%, and the crude oil was highly emulsified. Microbial community structure varied largely among and in different IMEOR metabolic stages. Pseudomonas sp., Citrobacter sp., and uncultured Burkholderia sp. dominated the O-, An- and early A0-stages. Bacillus sp., Achromobacter sp., Rhizobiales sp., Alcaligenes sp. and Clostridium sp. dominated the later A0-stage. This study illustrated occurrences of microbial community succession driven by wheat bran stimulation and its industrial potential.  相似文献   

2.
Shikimic acid is an important metabolic intermediate with various applications. This paper presents a novel control strategy for the construction of shikimic acid producing strains, without completely blocking the aromatic amino acid biosynthesis pathways. Growth phase-dependent expression and gene deletion was performed to regulate the aroK gene expression in the shikimic acid producing Escherichia coli strain, SK4/rpsM. In this strain, the aroL and aroK genes were deleted, and the aroB, aroG*, ppsA, and tktA genes were overexpressed. The relative amount of shikimic acid that accumulated in SK4/rpsM was 1.28-fold higher than that in SK4/pLac. Furthermore, a novel shikimic acid production pathway, combining the expression of the dehydroquinate dehydratase-shikimate dehydrogenase (DHQ-SDH) enzyme from woody plants, was constructed in E. coli strains. The results demonstrated that a growth phase-dependent control of the aroK gene leads to higher SA accumulation (5.33 g/L) in SK5/pSK6. This novel design can achieve higher shikimic acid production by using the same amount of medium used by the current methods and can also be widely used for modifying other metabolic pathways.  相似文献   

3.
The goal of this study was to evaluate the microbial communities in the gut and feces from female finishing Landrace pigs with high and low feed conversion ratio (FCR) by 16S rRNA gene amplicon sequencing. Many potential biomarkers can distinguish between high and low FCR groups in the duodenum, ileum, cecum, colon, and rectum, according to linear discriminant analysis effect sizes. The relative abundance of microbes were tested by Mann–Whitney test between the high and low FCR groups in different organs: Campylobacter, Prevotella and Sphaerochaeta were different in the duodenum (P < 0.05); Sanguibacter, Kingella and Anaeroplasma in jejunum; Anaeroplasma, Arthrobacter, Kingella, Megasphaera and SMB53 in the ileum; Butyricicoccus, Campylobacter, Mitsuokella, and Coprobacillus in the cecum; Lactococcus and Peptococcus in the colon; Staphylococcus in the rectum; and Rothia in feces. The prevalence of microbial genera in certain locations could potentially be used as biomarkers to distinguish between high and low FCR. Functional prediction clustering analysis suggested that bacteria in the hindgut mainly participated in carbohydrate metabolism and amino acid metabolism, and different in the relative abundance of metabolic pathways, as predicted from the microbial taxa present, were identified by comparing the high and low groups of each location. The results may provide insights for the alteration of the intestinal microbial communities to improve the growth rate of pigs.  相似文献   

4.
The genetic structure of susceptibility to type 1 diabetes (T1D) in the population of Tomsk was studied. We had a group of T1D patients (N = 285) and a population sample (N = 300) and we studied 58 SNPs localized in the 47 genes which products are involved in various metabolic pathways and processes as fibrogenesis, endothelial dysfunction, and inflammation. Genotyping was performed by mass spectrometry using the Sequenom MassARRAY system (United States). We compared the group of T1D patients and the population sample and found an association with the predisposition to disease for seven markers: rs3765124 of the ADAMDEC1 gene, genotype AA (p = 0.004), allele A (p = 0.033); rs1007856 of the ITGB5 gene, genotype TT (p = 0.015), allele T (p = 0.036); rs20579 of the LIG1 gene, genotype CC (p = 0.004), allele C (p = 0.002); rs12980602 of the IFNL2 gene, allele C (p = 0.029); rs4986819 of the PARP4 gene, allele C (p = 0.044); rs1143674 of the ITGA4 gene genotype GG (p = 0.002); rs679620 of the MMP3 gene, genotype AA (p = 0.008). Thus, the products of genes associated with T1D belong to different molecular classes: metalloproteases (ADAMDEC1, MMP3), cytokines (IL28A), cell surface receptors (ITGA4), adhesion molecules (ITGB5), DNA ligases (LIG1), and ribosyltransferase enzymes (PARP4). The ADAMDEC1, ITGA4, and ITGB5 genes belong to two biological processes: cell communication and signal transduction. The LIG1 and PARP4 genes regulate the metabolism of nucleic acids, MMP3 is involved in the regulation of protein metabolism, and the IFNL2 is involved in the immune response.  相似文献   

5.
Picrosides, the terpenoids synthesized by Picrorhiza kurroa, have ample usage in medicine. Identification of the regulatory enzymes involved in picroside biosynthesis needs to be explored for improving the level of these secondary metabolites. Current efforts are based on the analysis of secondary metabolism in picroside biosynthesis but its interpretation is limited by the lack of information on the involvement of primary metabolic pathways. The present study investigated the connection of primary metabolic enzymes with the picrosides levels in P. kurroa. The results showed changes in the catalytic activities as well as in the gene expression profiles of hexokinase, pyruvate kinase, isocitrate dehydrogenase, malate dehydrogenase, and NADP+-malic enzyme in congruence with picroside-I content under different conditions of P. kurroa growth, which indicates the role of these enzymes in the accumulation of picrosides. The significant correlation coefficients (p?<?0.05) observed between gene expression and enzyme activity underline the role of integrative studies for a better understanding of connecting links between metabolic pathways leading to picroside biosynthesis. This is apparently the first report on the involvement of glycolytic and TCA cycle enzymes in the accumulation of picrosides in P. kurroa.  相似文献   

6.
Environmental microbial communities are key players in the bioremediation of hydrocarbon pollutants. Here we assessed changes in bacterial abundance and diversity during the degradation of Tunisian Zarzatine oil by four indigenous bacterial consortia enriched from a petroleum station soil, a refinery reservoir soil, a harbor sediment and seawater. The four consortia were found to efficiently degrade up to 92.0% of total petroleum hydrocarbons after 2 months of incubation. Illumina 16S rRNA gene sequencing revealed that the consortia enriched from soil and sediments were dominated by species belonging to Pseudomonas and Acinetobacter genera, while in the seawater-derived consortia Dietzia, Fusobacterium and Mycoplana emerged as dominant genera. We identified a number of species whose relative abundances bloomed from small to high percentages: Dietzia daqingensis in the seawater microcosms, and three OTUs classified as Acinetobacter venetianus in all two soils and sediment derived microcosms. Functional analyses on degrading genes were conducted by comparing PCR results of the degrading genes alkB, ndoB, cat23, xylA and nidA1 with inferences obtained by PICRUSt analysis of 16S amplicon data: the two data sets were partly in agreement and suggest a relationship between the catabolic genes detected and the rate of biodegradation obtained. The work provides detailed insights about the modulation of bacterial communities involved in petroleum biodegradation and can provide useful information for in situ bioremediation of oil-related pollution.  相似文献   

7.
8.

Background

Histidine biosynthesis is one of the best characterized anabolic pathways. There is a large body of genetic and biochemical information available, including operon structure, gene expression, and increasingly larger sequence databases. For over forty years this pathway has been the subject of extensive studies, mainly in Escherichia coli and Salmonella enterica, in both of which details of histidine biosynthesis appear to be identical. In these two enterobacteria the pathway is unbranched, includes a number of unusual reactions, and consists of nine intermediates; his genes are arranged in a compact operon (hisGDC [NB]HAF [IE]), with three of them (hisNB, hisD and hisIE) coding for bifunctional enzymes. We performed a detailed analysis of his gene fusions in available genomes to understand the role of gene fusions in shaping this pathway.

Results

The analysis of HisA structures revealed that several gene elongation events are at the root of this protein family: internal duplication have been identified by structural superposition of the modules composing the TIM-barrel protein.Several his gene fusions happened in distinct taxonomic lineages; hisNB originated within γ-proteobacteria and after its appearance it was transferred to Campylobacter species (ε-proteobacteria) and to some Bacteria belonging to the CFB group. The transfer involved the entire his operon. The hisIE gene fusion was found in several taxonomic lineages and our results suggest that it probably happened several times in distinct lineages.Gene fusions involving hisIE and hisD genes (HIS4) and hisH and hisF genes (HIS7) took place in the Eukarya domain; the latter has been transferred to some δ-proteobacteria.

Conclusion

Gene duplication is the most widely known mechanism responsible for the origin and evolution of metabolic pathways; however, several other mechanisms might concur in the process of pathway assembly and gene fusion appeared to be one of the most important and common.
  相似文献   

9.
Peppermint (Mentha piperita) is known as an important medicinal plant throughout the world. In the present study, after exposing peppermint plants under drought stress, the qRT-PCR was use to analyze the expression of genes involved in menthol biosynthesis pathway and encoding: limonene synthase (lS), limon-3-hydroxylase (l3oh), trans-isopiperitenol dehydrogenase (ipd), isopiperitenone reductase (ipr), pulegone reductase (pr), menthol dehydrogenase (mdeh), and menthofuran synthase (mfs), which also evaluated the morphological and physiological traits. The results revealed that due to water stress, the gene expression levels of ipd, ipr, and mfs were increased, whereas the gene expression level of pr and mdeh was decreased under water stress conditions. The most of essential oil components (menthol, menthofuran, and plugene), which were analyzed by gas chromatography–mass spectrometry (GC–MS), was positively correlated with genes expression. Drought stress decreased morphological and induces increasing contents of pulegone and menthofuran and reduction in menthol percentages. Results from this study suggest that up-regulation of mfs might contribute to the altered of menthofuran as well as down-regulation of mdeh might cause the reduction of menthol. Furthermore, increasing ls gene expression levels might induce more essential oil yield, while reduction of mfs gene expression levels causes an improvement of essential oil quality.  相似文献   

10.

Background

Genome evolution in intracellular microbial symbionts is characterized by gene loss, generating some of the smallest and most gene-poor genomes known. As a result of gene loss these genomes commonly contain metabolic pathways that are fragmented relative to their free-living relatives. The evolutionary retention of fragmented metabolic pathways in the gene-poor genomes of endosymbionts suggests that they are functional. However, it is not always clear how they maintain functionality. To date, the fragmented metabolic pathways of endosymbionts have been shown to maintain functionality through complementation by host genes, complementation by genes of another endosymbiont and complementation by genes in host genomes that have been horizontally acquired from a microbial source that is not the endosymbiont. Here, we demonstrate a fourth mechanism.

Results

We investigate the evolutionary retention of a fragmented pathway for the essential nutrient pantothenate (vitamin B5) in the pea aphid, Acyrthosiphon pisum endosymbiosis with Buchnera aphidicola. Using quantitative analysis of gene expression we present evidence for complementation of the Buchnera pantothenate biosynthesis pathway by host genes. Further, using complementation assays in an Escherichia coli mutant we demonstrate functional replacement of a pantothenate biosynthesis enzyme, 2-dehydropantoate 2-reductase (E.C. 1.1.1.169), by an endosymbiont gene, ilvC, encoding a substrate ambiguous enzyme.

Conclusions

Earlier studies have speculated that missing enzyme steps in fragmented endosymbiont metabolic pathways are completed by adaptable endosymbiont enzymes from other pathways. Here, we experimentally demonstrate completion of a fragmented endosymbiont vitamin biosynthesis pathway by recruitment of a substrate ambiguous enzyme from another pathway. In addition, this work extends host/symbiont metabolic collaboration in the aphid/Buchnera symbiosis from amino acid metabolism to include vitamin biosynthesis.
  相似文献   

11.
S-Adenosyl-l-methionine (SAM), which exists in all living organisms, serves as an activated group donor in a range of metabolic reactions, including trans-methylation, trans-sulfuration and trans-propylamine. Compared with its chemical synthesis and enzyme catalysis production, the microbial production of SAM is feasible for industrial applications. The current clinical demand for SAM is constantly increasing. Therefore, vast interest exists in engineering the SAM metabolism in cells for increasing product titers. Here, we provided an overview of updates on SAM microbial productivity improvements with an emphasis on various strategies that have been used to enhance SAM production based on increasing the precursor and co-factor availabilities in microbes. These strategies included the sections of SAM-producing microbes and their mutant screening, optimization of the fermentation process, and the metabolic engineering. The SAM-producing strains that were used extensively were Saccharomyces cerevisiae, Pichia pastoris, Candida utilis, Scheffersomyces stipitis, Kluyveromyces lactis, Kluyveromyces marxianus, Corynebacterium glutamicum, and Escherichia coli, in addition to others. The optimization of the fermentation process mainly focused on the enhancement of the methionine, ATP, and other co-factor levels through pulsed feeding as well as the optimization of nitrogen and carbon sources. Various metabolic engineering strategies using precise control of gene expression in engineered strains were also highlighted in the present review. In addition, some prospects on SAM microbial production were discussed.  相似文献   

12.
13.
14.
15.
We investigated whether maternal over-nutrition during pregnancy and lactation affects the offspring’s lipid metabolism at weaning by assessing liver lipid metabolic gene expressions and analysing its mechanisms on the development of metabolic abnormalities. Female Sprague–Dawley rats were fed with standard chow diet (CON) or high-fat diet (HFD) for 8 weeks, and then continued feeding during gestation and lactation. The offspring whose dams were fed with HFD had a lower birth weight but an increased body weight with impaired glucose tolerance, higher serum cholesterol, and hepatic steatosis at weaning. Microarray analyses showed that there were 120 genes differently expressed between the two groups. We further verified the results by qRT-PCR. Significant increase of the lipogenesis (Me1, Scd1) gene expression was found in HFD (P<0.05), and up-regulated expression of genes (PPAR-α, Cpt1α, Ehhadh) involved in β-oxidation was also observed (P<0.05), but the Acsl3 gene was down-regulated (P<0.05). Maternal over-nutrition could not only primarily induce lipogenesis, but also promote lipolysis through an oxidation pathway as compensation, eventually leading to an increased body weight, impaired glucose tolerance, elevated serum cholesterol and hepatic steatosis at weaning. This finding may provide some evidence for a healthy maternal diet in order to reduce the risk of metabolic diseases in the early life of the offspring.  相似文献   

16.
In Escherichia coli and Salmonella typhimurium, L-threonine is cleaved non-oxidatively to propionate via 2-ketobutyrate by biodegradative threonine deaminase, 2-ketobutyrate formate-lyase (or pyruvate formate-lyase), phosphotransacetylase and propionate kinase. In the anaerobic condition, L-threonine is converted to the energy-rich keto acid and this is subsequently catabolised to produce ATP via substrate-level phosphorylation, providing a source of energy to the cells. Most of the enzymes involved in the degradation of L-threonine to propionate are encoded by the anaerobically regulated tdc operon. In the recent past, extensive structural and biochemical studies have been carried out on these enzymes by various groups. Besides detailed structural and functional insights, these studies have also shown the similarities and differences between the other related enzymes present in the metabolic network. In this paper, we review the structural and biochemical studies carried out on these enzymes.  相似文献   

17.
In this study, we analysed metagenomes along with biogeochemical profiles from Skagerrak (SK) and Bothnian Bay (BB) sediments, to trace the prevailing nitrogen pathways. NO3 ? was present in the top 5 cm below the sediment-water interface at both sites. NH4 + increased with depth below 5 cm where it overlapped with the NO3 ? zone. Steady-state modelling of NO3 ? and NH4 + porewater profiles indicates zones of net nitrogen species transformations. Bacterial protease and hydratase genes appeared to make up the bulk of total ammonification genes. Genes involved in ammonia oxidation (amo, hao), denitrification (nir, nor), dissimilatory NO3 ? reduction to NH4 + (nfr and otr) and in both of the latter two pathways (nar, nap) were also present. Results show ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) are similarly abundant in both sediments. Also, denitrification genes appeared more abundant than DNRA genes. 16S rRNA gene analysis showed that the relative abundance of the nitrifying group Nitrosopumilales and other groups involved in nitrification and denitrification (Nitrobacter, Nitrosomonas, Nitrospira, Nitrosococcus and Nitrosomonas) appeared less abundant in SK sediments compared to BB sediments. Beggiatoa and Thiothrix 16S rRNA genes were also present, suggesting chemolithoautotrophic NO3 ? reduction to NO2 ? or NH4 + as a possible pathway. Our results show the metabolic potential for ammonification, nitrification, DNRA and denitrification activities in North Sea and Baltic Sea sediments.  相似文献   

18.
Physicochemical and microbiological characteristics of formation waters low-temperature heavy oil reservoirs (Russia) were investigated. The Chernoozerskoe, Yuzhno-Suncheleevskoe, and Severo-Bogemskoe oilfields, which were exploited without water-flooding, were shown to harbor scant microbial communities, while microbial numbers in the water-flooded strata of the Vostochno-Anzirskoe and Cheremukhovskoe oilfields was as high as 106 cells/mL. The rates of sulfate reduction and methanogenesis were low, not exceeding 1982 ng S2–/(L day) and 9045 nL СН4/(L day), respectively, in the samples from water-flooded strata. High-throughput sequencing of microbial 16S rRNA gene fragments in the community of injection water revealed the sequences of the Proteobacteria (74.7%), including Betaproteobacteria (40.2%), Alphaproteobacteria (20.7%), Gammaproteobacteria (10.1%), Deltaproteobacteria (2.0%), and Epsilonproteobacteria (1.6%), as well as Firmicutes (7.9%), Bacteroidetes (4.1%), and Archaea (0.2%). DGGE analysis of microbial mcrA genes in the community of injection water revealed methanogens of the genera Methanothrix, Methanospirillum, Methanobacterium, Methanoregula, Methanosarcina, and Methanoculleus, as well as unidentified Thermoplasmata. Pure cultures of bacteria of the genera Rhodococcus, Pseudomonas, Gordonia, Cellulomonas, etc., capable of biosurfactant production when grown on heavy oil, were isolated. Enrichment cultures of fermentative bacteria producing significant amounts of volatile organic acids (acetic, propionic, and butyric) from sacchariferous substrates were obtained. These acids dissolve the carbonates of oil-bearing rock efficiently. Selection of the efficient microbial technology for enhanced recovery of heavy oil from terrigenous and carbonate strata requires model experiments with microbial isolates and the cores of oil-bearing rocks.  相似文献   

19.
Herbaceous model species, especially Arabidopsis has provided a wealth of information about the genes involved in floral induction and development of inflorescences and flowers. While the genus Populus is an important model system for the molecular biology of woody plant. These two genuses differ in many ways. This study was designed to improve understanding of flower development in poplar at a system level, as its regulatory pathway to a large extent remains poorly known, owing to the presently limited mutant pool. To address this issue, a poplar GeneChip was employed to detect genes expressed during the whole floral developmental process. Using the expressed floral genes, a systematic gene network was constructed with the aid of functional association with Arabidopsis. The results suggested that autonomous, gibberellin, vernalization, photoperiod, ethylene, brassinosteroid, stress-induced and floral suppression pathways are involved in poplar flowering. Modularity analysis revealed several pathways in common with Arabidopsis, such as autonomous, gibberellin, vernalization and photoperiod pathways. In addition, brassinosteroid, stress-induced and floral suppression pathways were implicated as additional novel pathways. Notably, a difference in vernalization between Arabidopsis and poplar was revealed. Autonomous, gibberellin, vernalization, photoperiod, ethylene, brassinosteroid, stress-induced and floral suppression pathways integrated into a systematic gene network in floral development of poplar. Compared to Arabidopsis, brassinosteroid, stress-induced and floral suppression pathways are additional in poplar, and FLC is absent in vernalization pathway in poplar. Preliminary conclusions drawn here provide a basis for both identification of key genes and elucidation of molecular mechanisms involved in poplar floral development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号