首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
To investigate whether fetal endothelial cell proliferation and migration are modulated by the A2A adenosine receptor (A2AAR), nitric oxide (NO) and the vascular endothelial growth factor (VEGF) signaling pathway, we isolated human umbilical vein endothelial cells from normal pregnancy (n?=?23), preterm delivery (n?=?4), and late-onset (LOPE, n?=?10) and early-onset preeclampsia (EOPE, n?=?8). We used the non-selective adenosine receptor agonist (NECA) and the selective agonist (CGS-21680) and/or selective antagonist (ZM-241385) for A2AAR. Also, the nitric oxide synthase (NOS) inhibitor, l-NAME, was used in co-incubation with CGS-21680. Compared to normal pregnancy, EOPE exhibited low cell proliferation and migration associated with reduced expressions of A2AAR and VEGF and NO synthesis (i.e., total and phosphorylated serine1177 endothelial NOS and nitrite formation). In contrast, LOPE exhibited the opposite behavior in all these markers compared to normal pregnancy or EOPE. Cell proliferation and migration were increased by CGS-21680 (or NECA) in all analyzed groups (EOPE>LOPE>normal pregnancy) compared to their respective basal conditions, an effect that was associated with high NO and VEGF synthesis and blocked by ZM-241385 with significantly different IC50 for each group (EOPE>LOPE>normal pregnancy). The differences seem independent of gestational age. l-NAME blocked the CGS-21680-mediated cell proliferation and migration in normal pregnancy and LOPE (IC50?=?36.2?±?2.5 and 8.6?±?2.2 nM, respectively) as well as the VEGF expression in normal pregnancy. Therefore, the A2AAR/NO/VEGF signaling pathway exhibits a pro-angiogenic effect in normal pregnancies and LOPE, whereas impairment in this pathway seems related to the reduced angiogenic capacity of the fetal endothelium in EOPE.  相似文献   

2.
Adenosine can show anti-inflammatory as well as pro-inflammatory activities. The contribution of the specific adenosine receptor subtypes in various cells, tissues and organs is complex. In this study, we examined the effect of the adenosine A2A receptor agonist CGS 21680 and the A2BR antagonist PSB-1115 on acute inflammation induced experimentally by 2,4,6-trinitrobenzenesulfonic acid (TNBS) on rat ileum/jejunum preparations. Pre-incubation of the ileum/jejunum segments with TNBS for 30 min resulted in a concentration-dependent inhibition of acetylcholine (ACh)-induced contractions. Pharmacological activation of the A2AR with CGS 21680 (0.1–10 μM) pre-incubated simultaneously with TNBS (10 mM) prevented concentration-dependently the TNBS-induced inhibition of the ACh contractions. Stimulation of A2BR with the selective agonist BAY 60-6583 (10 μM) did neither result in an increase nor in a further decrease of ACh-induced contractions compared to the TNBS-induced inhibition. The simultaneous pre-incubation of the ileum/jejunum segments with TNBS (10 mM) and the selective A2BR antagonist PSB-1115 (100 μM) inhibited the contraction-decreasing effect of TNBS. The effects of the A2AR agonist and the A2BR antagonist were in the same range as the effect induced by 1 μM methotrexate. The combination of the A2AR agonist CGS 21680 and the A2BR antagonist PSB-1115 at subthreshold concentrations of both agents found a significant amelioration of the TNBS-diminished contractility. Our results demonstrate that the activation of A2A receptors or the blockade of the A2B receptors can prevent the inflammation-induced disturbance of the ACh-induced contraction in TNBS pre-treated small intestinal preparations. The combination of both may be useful for the treatment of inflammatory bowel diseases.  相似文献   

3.
4.
The G protein-coupled A2A adenosine receptor represents an important drug target. Crystal structures and modeling studies indicated that three disulfide bonds are formed between ECL1 and ECL2 (I, Cys712.69-Cys15945.43; II, Cys743.22-Cys14645.30, and III, Cys773.25-Cys16645.50). However, the A2BAR subtype appears to require only disulfide bond III for proper function. In this study, each of the three disulfide bonds in the A2AAR was disrupted by mutation of one of the cysteine residues to serine. The mutant receptors were stably expressed in Chinese hamster ovary cells and analyzed in cyclic adenosine monophosphate (cAMP) accumulation and radioligand binding studies using structurally diverse agonists: adenosine, NECA, CGS21680, and PSB-15826. Results were rationalized by molecular modeling. The observed effects were dependent on the investigated agonist. Loss of disulfide bond I led to a widening of the orthosteric binding pocket resulting in a strong reduction in the potency of adenosine, but not of NECA or 2-substituted nucleosides. Disruption of disulfide bond II led to a significant reduction in the agonists’ efficacy indicating its importance for receptor activation. Disulfide bond III disruption reduced potency and affinity of the small adenosine agonists and NECA, but not of the larger 2-substituted agonists. While all the three disulfide bonds were essential for high potency or efficacy of adenosine, structural modification of the nucleoside could rescue affinity or efficacy at the mutant receptors. At present, it cannot be excluded that formation of the extracellular disulfide bonds in the A2AAR is dynamic. This might add another level of G protein-coupled receptor (GPCR) modulation, in particular for the cysteine-rich A2A and A2BARs.  相似文献   

5.
Inhibitory and stimulatory adenosine receptors have been identified and characterized in both membranes and intact rat C6 glioma cells. In membranes, saturation experiment performed with [3H]DPCPX, selective A1R antagonist, revealed a single binding site with a K D = 9.4 ± 1.4 nM and B max = 62.7 ± 8.6 fmol/mg protein. Binding of [3H]DPCPX in intact cell revealed a K D = 17.7 ± 1.3 nM and B max = 567.1 ± 26.5 fmol/mg protein. On the other hand, [3H]ZM241385 binding experiments revealed a single binding site population of receptors with K D = 16.5 ± 1.3 nM and B max = 358.9 ± 52.4 fmol/mg protein in intact cells, and K D = 4.7 ± 0.6 nM and B max = 74.3 ± 7.9 fmol/mg protein in plasma membranes, suggesting the presence of A2A receptor in C6 cells. A1, A2A, A2B and A3 adenosine receptors were detected by Western-blotting and immunocytochemistry, and their mRNAs quantified by real time PCR assays. Giα and Gsα proteins were also detected by Western-blotting and RT-PCR assays. Furthermore, selective A1R agonists inhibited forskolin- and GTP-stimulated adenylyl cyclase activity and CGS 21680 and NECA stimulated this enzymatic activity in C6 cells. These results suggest that C6 glioma cells endogenously express A1 and A2 receptors functionally coupled to adenylyl cyclase inhibition and stimulation, respectively, and suggest these cells as a model to study the role of adenosine receptors in tumoral cells.  相似文献   

6.
Abstract: Rat medullary brain segments containing primarily nucleus tractus solitarius (NTS) were used for superfusion studies of evoked transmitter release and for isotherm receptor binding assays. Isotherm binding assays with [3H]CGS-21680 on membranes prepared from NTS tissue blocks indicated a single high-affinity binding site with a KD of 5.1 ± 1.4 nM and a Bmax of 20.6 ± 2.4 fmol/mg of protein. The binding density for [3H]CGS-21680 on NTS membranes was 23 times less than comparable binding on membranes from striatal tissue. Electrically stimulated (1 min at 25 mA, 2 ms, 3 Hz) release of [3H]norepinephrine ([3H]NE) from 400-µm-thick NTS tissue slices resulted in an S2/S1 ratio of 0.96 ± 0.02. Superfusion of single tissue slices with 0.1–100 nM CGS-21680, a selective adenosine A2a receptor agonist, for 5 min before the S2 stimulus produced a significant concentration-dependent increase in the S2/S1 fractional release ratio that was maximal (31.3% increase) at 1.0 nM. However, superfusion of tissue slices with CGS-21680 over the same concentration range for 20 min before the S2 stimulus did not alter the S2/S1 ratio significantly from control release ratios. The augmented release of [3H]NE mediated by 1.0 nM CGS-21680 with a 5-min tissue exposure was abolished by 1.0 and 10 nM CGS-15943 as well as by 100 nM 8-(3-chlorostyryl)caffeine, both A2a receptor antagonists, but not by 1.0 nM 8-cyclopentyl-1,3-dipropylxanthine, the A1 receptor antagonist. Taken together, these results suggest that CGS-21680 augmented the evoked release of [3H]NE in the NTS via activation of presynaptic A2a receptors within the same concentration range as the binding affinity observed for [3H]CGS-21680. It was also apparent that this population of presynaptic adenosine A2a receptors in the NTS desensitized within 20 min because the augmenting action of CGS-21680 on evoked transmitter release was not evident at the longer interval.  相似文献   

7.
Sepsis is a generalized infection accompanied by response of the body that manifests in a clinical and laboratory syndrome, namely, in the systemic inflammatory response syndrome (SIRS) from the organism to the infection. Although sepsis is a widespread and life-threatening disease, the assortment of drugs for its treatment is mostly limited by antibiotics. Therefore, the search for new cellular targets for drug therapy of sepsis is an urgent task of modern medicine and pharmacology. One of the most promising targets is the adenosine A2A receptor (A2AAR). The activation of this receptor, which is mediated by extracellular adenosine, manifests in almost all types of immune cells (lymphocytes, monocytes, macrophages, and dendritic cells) and results in reducing the severity of inflammation and reperfusion injury in various tissues. The activation of adenosine A2A receptor inhibits the proliferation of T cells and production of proinflammatory cytokines, which contributes to the activation of the synthesis of anti-inflammatory cytokines, thereby suppressing the systemic response. For this reason, various selective A2AAR agonists and antagonists may be considered to be drug candidates for sepsis pharmacotherapy. Nevertheless, they remain only efficient ligands and objects of pre-clinical and clinical trials. This review examines the molecular mechanisms of inflammatory response in sepsis and the structure and functions of A2AAR and its role in the pathogenesis of sepsis, as well as examples of using agonists and antagonists of this receptor for the treatment of SIRS and sepsis.  相似文献   

8.
Brain-derived neurotrophic factor (BDNF) and adenosine are widely recognized as neuromodulators of glutamatergic transmission in the adult brain. Most BDNF actions upon excitatory plasticity phenomena are under control of adenosine A2A receptors (A2ARs). Concerning gamma-aminobutyric acid (GABA)-mediated transmission, the available information refers to the control of GABA transporters. We now focused on the influence of BDNF and the interplay with adenosine on phasic GABAergic transmission. To assess this, we evaluated evoked and spontaneous synaptic currents recorded from CA1 pyramidal cells in acute hippocampal slices from adult rat brains (6 to 10 weeks old). BDNF (10–100 ng/mL) increased miniature inhibitory postsynaptic current (mIPSC) frequency, but not amplitude, as well as increased the amplitude of inhibitory postsynaptic currents (IPSCs) evoked by afferent stimulation. The facilitatory action of BDNF upon GABAergic transmission was lost in the presence of a Trk inhibitor (K252a, 200 nM), but not upon p75NTR blockade (anti-p75NTR IgG, 50 μg/mL). Moreover, the facilitatory action of BDNF onto GABAergic transmission was also prevented upon A2AR antagonism (SCH 58261, 50 nM). We conclude that BDNF facilitates GABAergic signaling at the adult hippocampus via a presynaptic mechanism that depends on TrkB and adenosine A2AR activation.  相似文献   

9.
Neonatal brain hypoxic ischemia (HI) often results in long-term motor and cognitive impairments. Post-ischemic inflammation greatly effects outcome and adenosine receptor signaling modulates both HI and immune cell function. Here, we investigated the influence of adenosine A1 receptor deficiency (A1R?/?) on key immune cell populations in a neonatal brain HI model. Ten-day-old mice were subjected to HI. Functional outcome was assessed by open locomotion and beam walking test and infarction size evaluated. Flow cytometry was performed on brain-infiltrating cells, and semi-automated analysis of flow cytometric data was applied. A1R?/? mice displayed larger infarctions (+33 %, p?<?0.05) and performed worse in beam walking tests (44 % more mistakes, p?<?0.05) than wild-type (WT) mice. Myeloid cell activation after injury was enhanced in A1R?/? versus WT brains. Activated B lymphocytes expressing IL-10 infiltrated the brain after HI in WT, but were less activated and did not increase in relative frequency in A1R?/?. Also, A1R?/? B lymphocytes expressed less IL-10 than their WT counterparts, the A1R antagonist DPCPX decreased IL-10 expression whereas the A1R agonist CPA increased it. CD4+ T lymphocytes including FoxP3+ T regulatory cells, were unaffected by genotype, whereas CD8+ T lymphocyte responses were smaller in A1R?/? mice. Using PCA to characterize the immune profile, we could discriminate the A1R?/? and WT genotypes as well as sham operated from HI-subjected animals. We conclude that A1R signaling modulates IL-10 expression by immune cells, influences the activation of these cells in vivo, and affects outcome after HI.  相似文献   

10.
Adenosine is a neuromodulator that operates via the most abundant inhibitory adenosine A1 receptors (A1Rs) and the less abundant, but widespread, facilitatory A2ARs. It is commonly assumed that A1Rs play a key role in neuroprotection since they decrease glutamate release and hyperpolarize neurons. In fact, A1R activation at the onset of neuronal injury attenuates brain damage, whereas its blockade exacerbates damage in adult animals. However, there is a down-regulation of central A1Rs in chronic noxious situations. In contrast, A2ARs are up-regulated in noxious brain conditions and their blockade confers robust brain neuroprotection in adult animals. The brain neuroprotective effect of A2AR antagonists is maintained in chronic noxious brain conditions without observable peripheral effects, thus justifying the interest of A2AR antagonists as novel protective agents in neurodegenerative diseases such as Parkinsons and Alzheimers disease, ischemic brain damage and epilepsy. The greater interest of A2AR blockade compared to A1R activation does not mean that A1R activation is irrelevant for a neuroprotective strategy. In fact, it is proposed that coupling A2AR antagonists with strategies aimed at bursting the levels of extracellular adenosine (by inhibiting adenosine kinase) to activate A1Rs might constitute the more robust brain neuroprotective strategy based on the adenosine neuromodulatory system. This strategy should be useful in adult animals and especially in the elderly (where brain pathologies are prevalent) but is not valid for fetus or newborns where the impact of adenosine receptors on brain damage is different.  相似文献   

11.

Background

Cancer is the second most common cause of death globally. The anticancer effects of Tanshinone IIA (Tan IIA) has been confirmed by numerous researches. However, the underlying mechanism remained to be integrated in systematic format. Systems biology embraced the complexity of cancer; therefore, a system study approach was proposed in the present study to explore the anticancer mechanism of Tan IIA based on network pharmacology.

Method

Agilent Literature Search (ALS), a text-mining tool, was used to pull protein targets of Tan IIA. Then, pharmacological clustering was applied to classify obtained hits, the anticancer module was analysed further. The top ten essential nodes in the anticancer module were obtained by ClusterONE. Functional units in the anticancer module were catalogued and validated by Gene Ontology (GO) analysis. Meanwhile, KEGG and Cell Signalling Technology Pathway were employed to provide pathway data for potential anticancer pathways construction. Finally, the pathways were plotted using Cytoscape 3.5.1. Furthermore, in vitro experiments with five carcinoma cell lines were conducted.

Results

A total of 258 proteins regulated by Tan IIA were identified through ALS and were visualized by protein network. Pharmacological clustering further sorted 68 proteins that intimately involved in cancer pathogenesis based on Gene Ontology. Subsequently, pathways on anticancer effect of Tan IIA were delineated. Five functional units were clarified according to literature: including regulation on apoptosis, proliferation, sustained angiogenesis, autophagic cell death, and cell cycle. The GO analysis confirmed the classification was statistically significant. The inhibiting influence of Tan IIA on p70 S6K/mTOR pathway was revealed for the first time. The in vitro experiments displayed the selectivity of Tan IIA on HeLa, MDA-MB-231, HepG2, A549, and ACHN cell lines, the IC50 values were 0.54 μM, 4.63 μM, 1.42 μM, 17.30 μM and 204.00 μM, respectively. This result further reinforced the anticancer effect of Tan IIA treatment.

Conclusions

The current study provides a systematic methodology for discovering the coordination of the anticancer pathways regulated by Tan IIA via protein network. And it also offers a valuable guidance for systematic study on the therapeutic values of other herbs and their active compounds.
  相似文献   

12.
The neurotransmitter gamma-aminobutyric acid (GABA) and subtypes of GABA receptors were recently identified in adult testes. Since adult Leydig cells possess both the GABA biosynthetic enzyme glutamate decarboxylase (GAD), as well as GABAA and GABAB receptors, it is possible that GABA may act as auto-/paracrine molecule to regulate Leydig cell function. The present study was aimed to examine effects of GABA, which may include trophic action. This assumption is based on reports pinpointing GABA as regulator of proliferation and differentiation of developing neurons via GABAA receptors. Assuming such a role for the developing testis, we studied whether GABA synthesis and GABA receptors are already present in the postnatal testis, where fetal Leydig cells and, to a much greater extend, cells of the adult Leydig cell lineage proliferate. Immunohistochemistry, RT-PCR, Western blotting and a radioactive enzymatic GAD assay evidenced that fetal Leydig cells of five-six days old rats possess active GAD protein, and that both fetal Leydig cells and cells of the adult Leydig cell lineage possess GABAA receptor subunits. TM3 cells, a proliferating mouse Leydig cell line, which we showed to possess GABAA receptor subunits by RT-PCR, served to study effects of GABA on proliferation. Using a colorimetric proliferation assay and Western Blotting for proliferating cell nuclear antigen (PCNA) we demonstrated that GABA or the GABAA agonist isoguvacine significantly increased TM3 cell number and PCNA content in TM3 cells. These effects were blocked by the GABAA antagonist bicuculline, implying a role for GABAA receptors. In conclusion, GABA increases proliferation of TM3 Leydig cells via GABAA receptor activation and proliferating Leydig cells in the postnatal rodent testis bear a GABAergic system. Thus testicular GABA may play an as yet unrecognized role in the development of Leydig cells during the differentiation of the testicular interstitial compartment.  相似文献   

13.
Human umbilical vein endothelial cells (HUVEC) from gestational diabetes exhibit reduced adenosine uptake and increased nitric oxide (NO) synthesis. Adenosine transport via human equilibrative nucleoside transporters 1 (hENT1) is reduced by NO by unknown mechanisms in HUVEC. We examined whether gestational diabetes-reduced adenosine transport results from lower hENT1 gene (SLC29A1) expression. HUVEC from gestational diabetes exhibit reduced SLC29A1 promoter activity when transfected with pGL3-hENT1(-2154) compared with pGL3-hENT1(-1114) constructs, an effect blocked by N(G)-nitro-L-arginine methyl ester (L-NAME, NOS inhibitor), but unaltered by S-nitroso-N-acetyl-L,D-penicillamine (SNAP, NO donor). In cells from gestational diabetes transfected with pGL3-hENT1(-2154), L-NAME increased, but SNAP did not alter promoter activity and hENT1 expression. However, in cells from normal pregnancies L-NAME increased, but SNAP reduced promoter activity and hENT1 expression. Adenovirus-silenced eNOS expression increased hENT1 expression and activity in cells from normal or gestational diabetic pregnancies. Thus, reduced adenosine transport may result from downregulation of SLC29A1 expression by NO in HUVEC from gestational diabetes. These findings explain the accumulation of extracellular adenosine detected in cultures of HUVEC from gestational diabetes. In addition, fetal endothelial dysfunction could be involved in the abnormal fetal development and growth seen in gestational diabetes.  相似文献   

14.
Cholesterol affects diverse biological processes, in many cases by modulating the function of integral membrane proteins. In this study we have investigated the role of cholesterol in the adenosine-dependent regulation of ion transport in colonic epithelial cells. We observed that methyl-β-cyclodextrin (MβCD), a cholesterol-sequestering molecule, enhanced adenosine A2A receptor-activated transepithelial short circuit current (Isc), but only from the basolateral side. Cholesterol is a major constituent of membrane microdomains, called lipid rafts that also contain sphingolipids. However, studies with the sphingomyelin-degrading enzyme, sphingomyelinase, and the cholesterol-binding agent, filipin, indicated that the change in the level of cholesterol alone was sufficient to control the adenosine-modulated Isc. Cholesterol depletion had a major effect on the functional selectivity of A2A receptors. Under control conditions, adenosine activated Isc more potently than the specific A2A agonist, CGS-21680, and the current was inhibited by XE991, an inhibitor of cAMP-dependent K+ channels. Following cholesterol depletion, CGS-21680 activated Isc more potently than adenosine, and the current was inhibited by clotrimazole, an inhibitor of Ca2+-activated K+ (IK1) channels. Co-immunoprecipitation experiments revealed that A2A receptors associate with IK1 channels following cholesterol depletion. These results suggest that cholesterol content in colonic epithelia affects adenosine-mediated anion secretion by controlling agonist-selective signaling.  相似文献   

15.
Time-resolved FTIR difference spectroscopy has been used to study photosystem I (PSI) particles with three different benzoquinones [plastoquinone-9 (PQ), 2,6-dimethyl-1,4-benzoquinone (DMBQ), 2,3,5,6-tetrachloro-1,4-benzoquinone (Cl4BQ)] incorporated into the A1 binding site. If PSI samples are cooled in the dark to 77 K, the incorporated benzoquinones are shown to be functional, allowing the production of time-resolved (P700+A1??P700A1) FTIR difference spectra. If samples are subjected to repetitive flash illumination at room temperature prior to cooling, however, the time-resolved FTIR difference spectra at 77 K display contributions typical of the P700 triplet state (3P700), indicating a loss of functionality of the incorporated benzoquinones, that occurs because of double protonation of the incorporated benzoquinones. The benzoquinone protonation mechanism likely involves nearby water molecules but does not involve the terminal iron–sulfur clusters FA and FB. These results and conclusions resolve discrepancies between results from previous low-temperature FTIR and EPR studies on similar PSI samples with PQ incorporated.  相似文献   

16.
Activity of the A3 adenosine receptor (AR) allosteric modulators LUF6000 (2-cyclohexyl-N-(3,4-dichlorophenyl)-1H-imidazo [4,5-c]quinolin-4-amine) and LUF6096 (N-{2-[(3,4-dichlorophenyl)amino]quinolin-4-yl}cyclohexanecarbox-amide) was compared at four A3AR species homologs used in preclinical drug development. In guanosine 5′-[γ-[35S]thio]triphosphate ([35S]GTPγS) binding assays with cell membranes isolated from human embryonic kidney cells stably expressing recombinant A3ARs, both modulators substantially enhanced agonist efficacy at human, dog, and rabbit A3ARs but provided only weak activity at mouse A3ARs. For human, dog, and rabbit, both modulators increased the maximal efficacy of the A3AR agonist 2-chloro-N 6-(3-iodobenzyl)adenosine-5′-N-methylcarboxamide as well as adenosine > 2-fold, while slightly reducing potency in human and dog. Based on results from N 6-(4-amino-3-[125I]iodobenzyl)adenosine-5′-N-methylcarboxamide ([125I]I-AB-MECA) binding assays, we hypothesize that potency reduction is explained by an allosterically induced slowing in orthosteric ligand binding kinetics that reduces the rate of formation of ligand-receptor complexes. Mutation of four amino acid residues of the human A3AR to the murine sequence identified the extracellular loop 1 (EL1) region as being important in selectively controlling the allosteric actions of LUF6096 on [125I]I-AB-MECA binding kinetics. Homology modeling suggested interaction between species-variable EL1 and agonist-contacting EL2. These results indicate that A3AR allostery is species-dependent and provide mechanistic insights into this therapeutically promising class of agents.  相似文献   

17.
The structure of the human A2A adenosine receptor has been elucidated by X-ray crystallography with a high affinity non-xanthine antagonist, ZM241385, bound to it. This template molecule served as a starting point for the incorporation of reactive moieties that cause the ligand to covalently bind to the receptor. In particular, we incorporated a fluorosulfonyl moiety onto ZM241385, which yielded LUF7445 (4-((3-((7-amino-2-(furan-2-yl)-[1, 2, 4]triazolo[1,5-a][1, 3, 5]triazin-5-yl)amino)propyl)carbamoyl)benzene sulfonyl fluoride). In a radioligand binding assay, LUF7445 acted as a potent antagonist, with an apparent affinity for the hA2A receptor in the nanomolar range. Its apparent affinity increased with longer incubation time, suggesting an increasing level of covalent binding over time. An in silico A2A-structure-based docking model was used to study the binding mode of LUF7445. This led us to perform site-directed mutagenesis of the A2A receptor to probe and validate the target lysine amino acid K153 for covalent binding. Meanwhile, a functional assay combined with wash-out experiments was set up to investigate the efficacy of covalent binding of LUF7445. All these experiments led us to conclude LUF7445 is a valuable molecular tool for further investigating covalent interactions at this receptor. It may also serve as a prototype for a therapeutic approach in which a covalent antagonist may be needed to counteract prolonged and persistent presence of the endogenous ligand adenosine.  相似文献   

18.
The present study was carried out to elucidate the distribution of calcium-independent phospholipase A2 (iPLA2) in the normal monkey brain. iPLA2 immunoreactivity was observed in structures derived from the telencephalon, including the cerebral neocortex, amygdala, hippocampus, caudate nucleus, putamen, and nucleus accumbens, whereas structures derived from the diencephalon, including the thalamus, hypothalamus and globus pallidus were lightly labeled. The midbrain, vestibular, trigeminal and inferior olivary nuclei, and the cerebellar cortex were densely labeled. Immunoreactivity was observed on the nuclear envelope of neurons, and dendrites and axon terminals at electron microscopy. Western blot analysis showed higher levels of iPLA2 protein in the cytosolic, than the nuclear fraction, but little or no protein in the membrane fraction. Similarly, subcellular fractionation studies of iPLA2 activity in rat brain cortical cell cultures showed greater enzymatic activity in the cytosolic, than the nuclear fraction, and the least activity in non-nuclear membranes. The association of iPLA2 with the nuclear envelope suggests a role of the enzyme in nuclear signaling, such as during neuronal proliferation and differentiation or death. In addition, the localization of iPLA2 in dendrites and axon terminals suggests a role of the enzyme in neuronal signaling.  相似文献   

19.

Introduction  

The reduction of the inflammatory status represents one of the most important targets in rheumatoid arthritis (RA). A central role of A2A and A3 adenosine receptors (ARs) in mechanisms of inflammation has been reported in different pathologies. The primary aim of this study was to investigate the A2A and A3ARs and their involvement in RA progression measured by Disease Activity Score in 28 or 44 joints (DAS28 or DAS).  相似文献   

20.
A selective agonist radioligand for A2B adenosine receptors (A2BARs) is currently not available. Such a tool would be useful for labeling the active conformation of the receptors. Therefore, we prepared BAY 60-6583, a potent and functionally selective A2BAR (partial) agonist, in a tritium-labeled form. Despite extensive efforts, however, we have not been able to establish a radioligand binding assay using [3H]BAY 60-6583. This is probably due to its high non-specific binding and its moderate affinity, which had previously been overestimated based on functional data. As an alternative, we evaluated the non-selective A2BAR agonist [3H]NECA for its potential to label A2BARs. [3H]NECA showed specific, saturable, and reversible binding to membrane preparations of Chinese hamster ovary (CHO) or human embryonic kidney (HEK) cells stably expressing human, rat, or mouse A2BARs. In competition binding experiments, the AR agonists 2-chloroadenosine (CADO) and NECA displayed significantly higher affinity when tested versus [3H]NECA than versus the A2B-antagonist radioligand [3H]PSB-603 while structurally diverse AR antagonists showed the opposite effects. Although BAY 60-6583 is an A2BAR agonist, it displayed higher affinity versus [3H]PSB-603 than versus [3H]NECA. These results indicate that nucleoside and non-nucleoside agonists are binding to very different conformations of the A2BAR. In conclusion, [3H]NECA is currently the only useful radioligand for determining the affinity of ligands for an active A2BAR conformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号