首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The relationship between rain flow into the soil and forest structure was investigated in a dense deciduous Betula ermanii forest in northern Japan. The forest floor was covered with dwarf bamboo Sasa kurilensis. Observation was conducted from mid-July to late October in 1998. Leaf fall of Betula started in early September and ended in late October. Stemflow was proportional to rainfall and tree size [diameter at breast height (DBH)], and for the same rainfall, stemflow increased with leaf fall. On the contrary, throughfall decreased with leaf fall. Throughfall was intercepted also by Sasa in proportion to its leaf area. Multiple linear regression analysis revealed that stemflow and throughfall of Betula and Sasa were predictable as functions of rainfall and forest structural characteristics, such as DBH, tree density, and stand leaf mass. The rain interception by plants tended to decrease from summer to autumn, but the difference in the interception was about 2% between July (fully expanded leaves) and late October (lack of leaves). About 96 and 87% of rainfall reached the above- and below-Sasa layers, respectively. Thus, this study showed that understory Sasa is a major component of rain interception within the stand and that rain flow into the soil can be estimated by using rainfall and the forest structural parameters, such as DBH, tree density and stand leaf mass.  相似文献   

2.
The effects of understory dwarf bamboo (Sasa kurilensis) on soil water and the growth of overstory trees were studied in a dense secondary forest of Betula ermanii in northern Japan. Four plots were established in a Betula ermanii forest with Sasa kurilensis in the understory. The Sasa was removed in two of the plots. The annual increment of the trunk diameter for each tree was measured in the first two years from the commencement of the experiment. Soil water potential was similar in the plots following significant rainfall, but was found to be greater in the plot without Sasa between rainfall events. This suggests that the removal of Sasa slows the reduction of soil water after rainfall. The relative growth rate of the trunk diameter of Betula ermanii increased with tree size in all of the plots because taller trees strongly suppressed smaller ones in the dense forest. The growth rates of Betula ermanii were higher in the plots without Sasa. However, the difference in growth rates between all of the plots tended to be smaller in smaller size classes, possibly because smaller trees were strongly suppressed by larger ones, irrespective of the presence/absence of Sasa. Therefore, the removal of Sasa increased soil water and encouraged the growth of larger Betula ermanii in dense forest during the first two years after the Sasa was removed. The present study suggests that Sasa can reduce the growth of larger Betula ermanii in dense forest by limiting available soil water to these trees.  相似文献   

3.
To evaluate the effect of understory dwarf bamboo (Sasa senanensis) on soil respiration in forest ecosystems, we compared soil respiration rates between four deciduous broad-leaved forest sites representing two levels of understory Sasa (with and without) and two levels of forest stand age (50-year-old stand and 1-year-old stand after clearcut). The understory Sasa enhances the soil respiration rate both before and after the clearcutting of deciduous broad-leaved forest. The Sasa sites had larger total belowground biomass compared with the non-Sasa sites, which could be attributed to Sasa presence. Our results also suggest that clearcutting decreases temperature-normalized soil respiration rates (R 15) and temperature sensitivity (Q 10) in both Sasa and non-Sasa ecosystems. Clearcutting significantly reduced the fine root biomass of trees and Sasa. The fine roots of trees and Sasa had high specific respiration rates compared with larger roots and rhizomes at Sasa and non-Sasa sites, respectively. Therefore, we hypothesize that the loss of fine roots after clearcutting is responsible for the reduction in soil respiration rate. A comparison with other studies revealed a positive linear relationship between total (tree and Sasa) fine root biomass and R 15, suggesting that fine root biomass controls soil respiration at the landscape scale. The Q 10 value is also likely to be related to fine root biomass, although the relationship was not significant. We conclude that understory Sasa increases belowground biomass, especially fine roots, and the spatial variation in soil respiration at the landscape scale.  相似文献   

4.
The ability of clonal plants to spread horizontally and to share resources within genets has long been considered advantageous in spatially heterogeneous environments, yet our understanding of how such traits relate to its widespread success and dominance is still limited. Using a dwarf bamboo, Sasa kurilensis, that often dominates cool-temperate forest understorys, we investigated how population recovery over 20 years after an episodic die-off may be augmented by clonal expansion via rhizomes. Previous analyses on genet demography using 9-m2 plots showed that more productive genets were more likely to survive, spread laterally, and replace less productive ones. In this study, we examined whether the recovery of biomass in lower light microsites, where biomass recovery was initially slower, was supported by the spread of productive genets at larger scales, from surrounding higher-light microsites. We found that the biomass recovery in lower-light plots was more supported by genets that spread clonally into the plots. Such genets that spread from outside plots produced larger culms than those that had originally germinated there. Whereas genets that contributed much to the biomass of the low-light plots spread extensively from higher-light microsites, the spatial extent of genets that originally germinated in these plots was quite limited, so that the patterns of clonal expansion appeared to be unidirectional along the light gradient. Our findings suggest that clonal expansion of productive genets from higher-light into shaded microsites may be important for S. kurilensis to proliferate across heterogeneous light environments.  相似文献   

5.
To clarify the role of dense understory vegetation in the stand structure, and in carbon (C) and nitrogen (N) dynamics of forest ecosystems with various conditions of overstory trees, we: (i) quantified the above‐ and below‐ground biomasses of understory dwarf bamboo (Sasa senanensis) at the old canopy‐gap area and the closed‐canopy area and compared the stand‐level biomasses of S. senanensis with that of overstory trees; (ii) determined the N leaching, soil respiration rates, fine‐root dynamics, plant area index (PAI) of S. senanensis, and soil temperature and moisture at the tree‐cut patches (cut) and the intact closed‐canopy patches (control). The biomass of S. senanensis in the canopy‐gap area was twice that at the closed‐canopy area. It equated to 12% of total biomass above ground but 41% below ground in the stand. The concentrations of NO3? and NH4+ in the soil solution and soil respiration rates did not significantly change between cut and control plots, indicating that gap creation did not affect the C or N dynamics in the soil. Root‐length density and PAI of S. senanensis were significantly greater at the cut plots, suggesting the promotion of S. senanensis growth following tree cutting. The levels of soil temperature and soil moisture were not changed following tree cutting. These results show that S. senanensis is a key component species in this cool‐temperate forest ecosystem and plays significant roles in mitigating the loss of N and C from the soil following tree cutting by increasing its leaf and root biomass and stabilizing the soil environment.  相似文献   

6.
We investigated the changes in soil microbial biomass C (MBC), microbial biomass N (MBN) and N mineralization in Sasa kurilensis-present (SP) and S. kurilensis-removed (SR) stands in a Betula ermanii forest. The mean levels of MBC and MBN were significantly higher in the SR stand than in the SP, which may have positively influenced the N-mineralization rate as depicted by a significant positive correlation between these variables and the N-mineralization rate. N immobilization and subsequent N release along with decreased use of available soil N due to S. kurilensis removal may have ensured greater N availability in the SR stand.  相似文献   

7.
林下草本层是人工林生态系统的基础功能层,对维护人工林生态系统的健康、稳定和功能具有重要意义。了解陕北“三北”防护林建设对林下草本群落特征的影响,并解析林下草本群落发育与林分结构和土壤养分变化的响应关系,对合理评估防护林建设工作和指导未来生态建设具有重要价值。为此,调查了陕北典型风沙区和黄土区不同造林阶段防护林下草本地上生物量和物种多样性的变化,并分析其与林分结构和土壤养分的关系。结果表明:(1)风沙区不同造林阶段人工林下草本平均地上生物量(23.64 g/m2)显著低于黄土区(44.53 g/m2)。随造林年限增加,风沙区林下草本地上生物量和物种多样性逐渐升高,而黄土区林下草本地上生物量和物种多样性则逐渐降低。(2)风沙区人工林土壤有效氮和有机碳随造林年限的增加逐渐升高,而黄土区人工林下土壤有效氮和有机碳则无明显变化趋势。(3)风沙区早期林下草本地上生物量和物种多样性升高主要得益于土壤养分的提升。而黄土区早期林下草本生物量和物种多样性降低主要是人工林郁闭度增加所致。风沙区防护林的建设促进了林下草本的发育,而黄土区早期人工林下草本出现退化现象。建议对风沙区进行防护林建设,而黄土区以自然恢复为主。  相似文献   

8.
The goal of this study was to evaluate the contribution of oak trees (Quercus spp.) and their associated mycorrhizal fungi to total community soil respiration in a deciduous forest (Black Rock Forest) and to explore the partitioning of autotrophic and heterotrophic respiration. Trees on twelve 75 × 75-m plots were girdled according to four treatments: girdling all the oaks on the plot (OG), girdling half of the oak trees on a plot (O50), girdling all non-oaks on a plot (NO), and a control (C). In addition, one circular plot (diameter 50 m) was created where all trees were girdled (ALL). Soil respiration was measured before and after tree girdling. A conservative estimate of the total autotrophic contribution is approximately 50%, as indicated by results on the ALL and OG plots. Rapid declines in carbon dioxide (CO2) flux from both the ALL and OG plots, 37 and 33%, respectively, were observed within 2 weeks following the treatment, demonstrating a fast turnover of recently fixed carbon. Responses from the NO and O50 treatments were statistically similar to the control. A non-proportional decline in respiration rates along the gradient of change in live aboveground biomass complicated partitioning of the overall rate of soil respiration and indicates that belowground carbon flux is not linearly related to aboveground disturbance. Our findings suggest that in this system there is a threshold disturbance level between 35 and 74% of live aboveground biomass loss, beyond which belowground dynamics change dramatically.  相似文献   

9.

Aims

Plant species and functional groups are known to drive the community of belowground invertebrates but whether their effects are consistent across environmental gradients is less well understood. We aimed to determine if plant effects on belowground communities are consistent across a successional gradient in boreal forests of northern Sweden.

Methods

We performed two plant removal experiments across ten stands that form a 364-year post-fire boreal forest chronosequence. Through the removal of plant functional groups (mosses or dwarf shrubs) and of individual species of dwarf shrubs, we aimed to determine if the effects of functional groups and species on the soil micro-arthropod community composition varied across this chronosequence.

Results

Removal of mosses had a strong negative impact on the abundance and diversity of Collembola and Acari and this effect was consistent across the chronosequence. Only specific Oribatid families declined following dwarf-shrub species removals, with some of these responses being limited to old forest stands.

Conclusions

Our results show that the impacts of plants on micro-arthropods is consistent across sites that vary considerably in their stage of post-fire ecosystem development, despite these stages differing greatly in plant productivity, fertility, humus accumulation and moss development. In addition, mosses are a much stronger driver of the micro-arthropod community than vascular plants.  相似文献   

10.
Recently, a dwarf bamboo species,Sasa kurilensis; Poaceae, has invaded into alpine snow-meadows in the wilderness area of the Taisetsu Mountains, northern Japan. This dwarf bamboo species has a wide distribution range from lowland to alpine sites of snowy regions. Because of the formation of dense evergreen culms and an extensive rhizome system, other plants are excluded following invasion by this dwarf bamboo, resulting in low species diversity. Dwarf bamboo originally inhabited the leeward slopes of alpine dwarf pine (Pinus pumila) clumps in alpine regions. During the last 32 years, however, dwarf bamboo has expanded its distribution area by up to 47% toward snow-meadows, especially on southeastern facing slopes. This rapid change may be related to the decrease in soil moisture and expansion of the annual growing period caused by the recent acceleration of snowmelt time. A multiyear census revealed that the density of bamboo culms increased 30-150% during 2 years, and the annual expansion of bamboo rhizomes was 39 cm on average. In addition to the expansion of bamboo clumps by vegetative growth, the possibility of migration by seed dispersal was also suggested by a genet analysis. With the increase in culm density, the species richness of snow-meadow vegetation decreased to less than one-quarter of the original level due to intense shading by dwarf bamboo. The rapid vegetation change in these almost pristine alpine environments isolated from the human activity implies that global climate change already influences the alpine ecosystem.  相似文献   

11.
Three-dimensional structure of a mixed broad-leaved forest in Japan   总被引:1,自引:0,他引:1  
An investigation was made in a mixed broad-leaved forest in Japan to determine the three-dimensional structure of the crowns of the component species. Vertical extensions and positions of foliage above a circle with a 20-cm diamter on the forest floor were measured using a grid of 177 points in the forest. The first leaf layer above a point was defined to be the highest aggregation of the foliage above the point, and the second leaf layer to be the one below. There were generally two leaf layers above each point, the first and the second. Each of the nineteen species in the plot belonged to either the first leaf layer or the second. Because the leaf layers varied in height from place to place in the forest, the two leaf layers were not separated clearly. Mean vertical depth of each leaf layer was about 2 m irrespective of the leaf layers and component species. Since the depths were similar among the species, species mean crown volumes (volumes of the spaces occupied by foliage) per unit land area mainly depended on horizontal extensions of their crowns, or the coverage. That is, species varied in their horizontal rather than vertical crown extensions. There was an upper limit (6 m) to the sum of vertical depths of the leaf layers above a point on the forest floor. On an average, about three species occurred above a point.  相似文献   

12.
13.
The nitrogen and phosphorus supply in a lowland rain forest with a nutrient-rich soil was investigated by means of the leaf N/P quotient. It was hypothesised a high N and P supply to the forest ecosystem with a N and P rich soil. Total N and extractable P were determined in the surface (10 cm) soil of three plots of the forest. Total N was analysed by the Kjeldahl method, and P was extracted with HCI and NH4F. The leaf N/P quotient was evaluated from the senesced leaves of 11 dominant tree species from the mature forest. Samples of 5 g of freshly fallen leaves were collected from three trees of each species. Nitrogen was analysed by microkjeldahl digestion with sulphuric acid and distilled with boric acid, and phosphorus was analysed by digestion with nitric acid and perchloric acid, and determined by photometry. Concentrations of total N (0.50%, n = 30) and extractable P (4.11 microg g(-1), n = 30) in the soil were high. As expected, P supply was sufficient, but contrary to expected, N supply was low (N/P = 11.8, n = 11).  相似文献   

14.
Wang C  Han S  Zhou Y  Yan C  Cheng X  Zheng X  Li MH 《PloS one》2012,7(3):e31042
Knowledge of the responses of soil nitrogen (N) availability, fine root mass, production and turnover rates to atmospheric N deposition is crucial for understanding fine root dynamics and functioning in forest ecosystems. Fine root biomass and necromass, production and turnover rates, and soil nitrate-N and ammonium-N in relation to N fertilization (50 kg N ha(-1) year(-1)) were investigated in a temperate forest over the growing season of 2010, using sequential soil cores and ingrowth cores methods. N fertilization increased soil nitrate-N by 16% (P<0.001) and ammonium-N by 6% (P<0.01) compared to control plots. Fine root biomass and necromass in 0-20 cm soil were 13% (4.61 vs. 5.23 Mg ha(-1), P<0.001) and 34% (1.39 vs. 1.86 Mg ha(-1), P<0.001) less in N fertilization plots than those in control plots. The fine root mass was significantly negatively correlated with soil N availability and nitrate-N contents, especially in 0-10 cm soil layer. Both fine root production and turnover rates increased with N fertilization, indicating a rapid underground carbon cycling in environment with high nitrogen levels. Although high N supply has been widely recognized to promote aboveground growth rates, the present study suggests that high levels of nitrogen supply may reduce the pool size of the underground carbon. Hence, we conclude that high levels of atmospheric N deposition will stimulate the belowground carbon cycling, leading to changes in the carbon balance between aboveground and underground storage. The implications of the present study suggest that carbon model and prediction need to take the effects of nitrogen deposition on underground system into account.  相似文献   

15.
  • The reproductive characteristics of understory bamboo and the effects of dieback on overstory tree seedlings through temporal changes in the environment at the forest floor have only been examined in a few bamboo species, due to the unpredictable occurrence of flowering events and long intervals between them but provide valuable information on tree regeneration and succession in a forest with dense dwarf bamboo cover.
  • We investigated environmental conditions and assessed seedlings (< 30-cm tall) of the dwarf bamboo Sasa borealis and overstory tree species at 44–50 measurement points during 2016–2021, which included a S. borealis mass flowering event in 2017. We also conducted seed germination tests to determine germination rates and patterns in S. borealis. Environmental factors affecting seedling recruitment of S. borealis and of overstory trees were analysed using spatiotemporal generalized linear mixed models in the Bayesian framework.
  • We observed gradual temporal changes in the environment, including increasing canopy openness and decreasing maximum height of dead S. borealis culms. The seeds germinated slowly and the emergence of current-year S. borealis seedlings peaked in spring–summer in 2019. The tree seedling density after 2019 increased significantly compared to that before the dieback. The model results suggest that tree seedling establishment was enhanced by increased light availability.
  • Continuous field observation beginning before S. borealis dieback revealed gradually enhanced tree recruitment in response to slow decay of the remaining dead culms and slow recovery of S. borealis. The seedling regeneration pattern of understory bamboo partly contributes to a prolonged opportunity for overstory tree regeneration.
  相似文献   

16.
Winter climate change is an important environmental driver that alters the biogeochemical processes of forest soils. The decrease in snowpack amplifies soil freeze–thaw cycles and decreases the snowmelt water supply to soil. This study examined how snow decrease affects nitrogen (N) mineralization and nitrification in forest soil in northern Japan by conducting an in situ experimental snowpack manipulation experiment and a laboratory incubation of soil with different moisture, temperature and freeze–thaw magnitudes. For the incubation studies, surface mineral soil (0–10 cm) was collected from a cool-temperate natural mixed forest and incubated using the resin core method during the winter. In the field, there were two treatments: 50 and 100 % snow removal and control plots. The increase in the soil freeze–thaw cycle increased net N mineralization and marginally decreased the net nitrification in soil. The dissolved organic carbon (DOC) and DOC/DON ratio in soil increased with the decrease in snowpack especially during the snow melt period. These results suggested that the change in substrate quality by the increase in freeze–thaw cycles caused the significant enhancement of microbial ammonium production in soil. The lower soil moisture and higher gross immobilization of inorganic N by soil microbes may be maintaining the slow net nitrification and low nitrate leaching in freeze–thaw cycles with less snowpack. The results indicate that winter climate change would strongly impact N biogeochemistry through the increase in ammonium availability in soil for plants and microbes, whereas it would be unlikely that nitrate loss from surface soil would be enhanced.  相似文献   

17.
Atmospheric nitrogen (N) deposition greatly affects ecosystem processes and properties. However, few studies have simultaneously examined the responses of both the above- and belowground communities to N deposition. Here, we investigated the effects of 8 years of simulated N deposition on soil microbial communities and plant diversity in a subtropical forest. The quantities of experimental N added (g of N m−2 year−1) and treatment codes were 0 (N0, control), 6 (N1), 12 (N2), and 24 (N3). Phospholipid fatty acids (PLFAs) analysis was used to characterize the soil microbial community while plant diversity and coverage were determined in the permanent field plots. Microbial abundance was reduced by the N3 treatment, and plant species richness and coverage were reduced by both N2 and N3 treatments. Declines in plant species richness were associated with decreased abundance of arbuscular mycorrhizal fungi, increased bacterial stress index, and reduced soil pH. The plasticity of soil microbial community would be more related to the different responses among treatments when compared with plant community. These results indicate that long-term N deposition has greater effects on the understory plant community than on the soil microbial community and different conservation strategies should be considered.  相似文献   

18.
长白山阔叶红松林土壤无机氮空间异质性   总被引:5,自引:2,他引:5  
Xu Y  Zhang JH  Han SJ  Wang ST  Wang CG  Wang SQ 《应用生态学报》2010,21(7):1627-1634
利用地统计学方法,研究了长白山阔叶红松林内土壤表层(0~10cm)铵态氮和硝态氮的空间异质性.结果表明:长白山阔叶红松林内土壤表层铵态氮和硝态氮的半方差函数可用球状模型或高斯模型拟合.土壤表层铵态氮和硝态氮的空间分布均呈现中等程度的空间自相关,结构比范围分别在0.70%~41.47%和32.26%~52.66%;铵态氮的空间自相关尺度小于硝态氮,变程分别为8.87和9.76m.土壤表层铵态氮和硝态氮在空间上呈斑块状分布;铵态氮的空间异质性程度高于硝态氮,硝态氮与土壤水分呈显著负相关关系(r=-0.3743,P0.05),而铵态氮与土壤水分无显著的相关关系.  相似文献   

19.
The presence of a legume in a nitrogen (N)-limited forest ecosystem may not only create ??islands of N fertility?? but also affect the phosphorus (P) availability. The main objective of this study was to compare the effect of a pine (Pinus canariensis) and a leguminous (Adenocarpus viscosus) species on the spatial pattern and variability of different labile organic-N (microbial biomass-N [MB-N] and dissolved organic-N [DON]), as well as inorganic-N (IN) and ?CP fractions (NH4-N, NO3-N, and PO4-P), in a forest soil of the Canary Islands (Spain). Assuming some litter quantity and quality differences between these two species, we expected to find higher soil labile organic-N concentrations under isolated individuals of P. canariensis than under isolated individuals of A. viscosus. We also expected to find higher concentrations and spatial dependence (percentage of total variance explained by spatial autocorrelation) of NO3-N beneath A. viscosus than beneath P. canariensis canopies, and higher spatial scaling of soil variables under the influence of P. canariensis canopies than under the presence of A. viscosus individuals. Moreover, we tested whether the soil variables measured under isolated individuals of both species showed a different spatial variability than the same soil variables measured under overlapping pine canopies inside a pine forest. To test these hypotheses, soil samples under isolated mature individuals of each species were collected in the winter and summer, whereas under a pine forest canopy, the sampling was performed only in the winter. The winter MB-N and DON concentrations were significantly higher beneath the pine individual, whereas the winter NO3-N, NO3-N-to-IN ratio, and PO4-P were significantly higher under the leguminous individual; these differences were not observed in the summer samples. We found higher spatial ranges under the pine than under the legume canopy in the winter sampling, and the spatial dependence of NO3-N was twice as high beneath the legumes as under the pines at both sampling dates. The soil spatial variability was higher (up to 17 times higher) under isolated individuals than inside the pine forest. The results of this study suggest that both the morphological and physiological characteristics of P. canariensis and A. viscosus, as well as the spatial pattern of P. canariensis, may influence the spatial pattern and variability of soil resources.  相似文献   

20.
处于暖温带与亚热带过渡区的甘肃小陇山是我国重要的生物多样性保护区域之一。以甘肃小陇山建立的6 hm2暖温带针阔混交林森林动态样地为基础,以样地中所有胸径(DBH)≥1 cm的木本植物为对象,分析群落结构和物种组成,探讨物种对不同生境的选择偏好。结果表明: 样地内共有木本植物41735株,除去分枝和萌生的独立个体有29251株,共计124种,包含33科65属,其中重要值≥1的树种有28个,占总多度的82.9%。样地中重要值最大的前4个种依次是锐齿槲栎、白桦、小叶乌药和榛,也是该群落乔木层与灌木层的优势树种。样地内所有植株的径级分布整体表现为倒“J”型,群落自我更新良好。指示种分析发现,样地中有11个物种对不同生境表现出一定的偏好,其中2个物种(铁木和四蕊枫)表现出明显的生境偏好。冗余分析和偏分析表明,样地内的物种多度分布主要受地形影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号