首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Key message

Association analyses of resistance to Rhynchosporium commune in a collection of European spring barley germplasm detected 17 significant resistance quantitative trait loci. The most significant association was confirmed as Rrs1.

Abstract

Rhynchosporium commune is a fungal pathogen of barley which causes a highly destructive and economically important disease known as rhynchosporium. Genome-wide association mapping was used to investigate the genetic control of host resistance to R. commune in a collection of predominantly European spring barley accessions. Multi-year disease nursery field trials revealed 8 significant resistance quantitative trait loci (QTL), whilst a separate association mapping analysis using historical data from UK national and recommended list trials identified 9 significant associations. The most significant association identified in both current and historical data sources, collocated with the known position of the major resistance gene Rrs1. Seedling assays with R. commune single-spore isolates expressing the corresponding avirulence protein NIP1 confirmed that this locus is Rrs1. These results highlight the significant and continuing contribution of Rrs1 to host resistance in current elite spring barley germplasm. Varietal height was shown to be negatively correlated with disease severity, and a resistance QTL was identified that co-localised with the semi-dwarfing gene sdw1, previously shown to contribute to disease escape. The remaining QTL represent novel resistances that are present within European spring barley accessions. Associated markers to Rrs1 and other resistance loci, identified in this study, represent a set of tools that can be exploited by breeders for the sustainable deployment of varietal resistance in new cultivars.
  相似文献   

2.

Background

Map-based cloning of quantitative trait loci (QTLs) in polyploidy crop species remains a challenge due to the complexity of their genome structures. QTLs for seed weight in B. napus have been identified, but information on candidate genes for identified QTLs of this important trait is still rare.

Results

In this study, a whole genome genetic linkage map for B. napus was constructed using simple sequence repeat (SSR) markers that covered a genetic distance of 2,126.4 cM with an average distance of 5.36 cM between markers. A procedure was developed to establish colinearity of SSR loci on B. napus with its two progenitor diploid species B. rapa and B. oleracea through extensive bioinformatics analysis. With the aid of B. rapa and B. oleracea genome sequences, the 421 homologous colinear loci deduced from the SSR loci of B. napus were shown to correspond to 398 homologous loci in Arabidopsis thaliana. Through comparative mapping of Arabidopsis and the three Brassica species, 227 homologous genes for seed size/weight were mapped on the B. napus genetic map, establishing the genetic bases for the important agronomic trait in this amphidiploid species. Furthermore, 12 candidate genes underlying 8 QTLs for seed weight were identified, and a gene-specific marker for BnAP2 was developed through molecular cloning using the seed weight/size gene distribution map in B. napus.

Conclusions

Our study showed that it is feasible to identify candidate genes of QTLs using a SSR-based B. napus genetic map through comparative mapping among Arabidopsis and B. napus and its two progenitor species B. rapa and B. oleracea. Identification of candidate genes for seed weight in amphidiploid B. napus will accelerate the process of isolating the mapped QTLs for this important trait, and this approach may be useful for QTL identification of other traits of agronomic significance.
  相似文献   

3.
Premature flowering reduces the yield and quality of the harvested fleshy taproot in radish. However, there has been little molecular marker research on the radish late-bolting trait. In this study, F2 and F2:3 populations derived from a cross of “Ninengo” (late-bolting) and “Maer” (early-bolting) were analyzed to map late-bolting genes. Five hundred insertion and deletion (InDel) markers were designed according to the whole-genome resequencing data of the two parents. A genetic map was constructed based on the F2 population, and a late-bolting gene was detected in a 1.1-cM region between the markers InDel520 and InDel535 on chromosome R02 that explained the highest (76.4%) phenotypic variance. RsFLC2 was identified as a candidate gene in this region. Notably, “Ninengo” contains a 1627-bp insertion near the 5′ end of the first intron of RsFLC2. Allelic variation analyses in the F2 population further validated that RsFLC2was associated with the late-bolting trait in radish. The expression pattern of RsFLC2 was significantly different between “Ninengo” and “Maer” during vernalization. Vernalization suppressed RsFLC2 expression, and the 1627-bp insertion in the first intron weakened gene repression in “Ninengo” plants, resulting in late-bolting. This study lays a foundation for uncovering the molecular mechanism of late-bolting and marker-assisted selection for breeding late-bolting varieties of radish.  相似文献   

4.
Erianthus arundinaceus, a member of the Saccharum complex, is of interest as a potential resource for sugarcane improvement and as a bioenergy crop. Genetic analyses of germplasm collections of E. arundinaceus are being used increasingly. To expand the genomic resources in E. arundinaceus, we aimed at developing simple sequence repeat markers. Using pyrosequencing on the 454 GS FLX system, we sequenced genomic DNA from “JW630” collected in Japan. A total of 1682 candidate loci were used to design the primers, and 1234 primer pairs amplified fragments of the expected size in the primer screening with three wild E. arundinaceus accessions (JW630, “JW4,” and “IJ76-349”). The efficiency of genotyping was validated with a subset of 174 primer pairs and 8 E. arundinaceus accessions. Of these primer pairs, 171 amplified fragments in all accessions tested and 162 detected polymorphic loci. The average values of genetic parameters were estimated as 0.30 (range, 0.09–0.49) for polymorphic information content, 1.65 (0.00–5.87) for marker index, and 2.78 (0.00–8.75) for resolving power. Using these parameters, we selected 61 primer pairs with large discriminatory power for the analyzed loci. Of the 174 primer pairs, 45 (25.9%) were also applicable to Saccharum and 33 (19.0%) to Miscanthus species. These markers would provide a valuable tool for estimating genetic diversity and constructing linkage maps in E. arundinaceus, which would be useful for genetic study and breeding.  相似文献   

5.
Most commercially important rootstocks for peach [Prunus persica (L.) Batsch] had been selected for resistance to one or more of the root-knot nematode (RKN) species: Meloidogyne incognita, M. arenaria, and M. javanica. The peach root-knot nematode, M. floridensis (MF), is a relatively newly discovered threat to peach and is not controlled by resistance genes in “Nemared,” “Nemaguard,” and “Okinawa.” The “Flordaguard” peach seedling rootstock, conventionally bred to provide resistance to MF, has solely been used for low-chill peach production in Florida for over 20 years and has already shown signs of resistance breakdown. A source of high resistance to the pathogenic MF isolate (“MFGnv14”) was identified from wild peach Prunus kansuensis Rehder (Kansu peach), thereby suggesting the potential for broadening spectrum and increasing durability of resistance in peach rootstocks through interspecific hybridization with P. kansuensis. Using 12 F2 and BC1F1 populations derived from crosses between Okinawa or Flordaguard peach and P. kansuensis populations, we examined the genetic control for MF resistance by identifying associated microsatellite markers and determining genomic location of the resistance locus. One microsatellite marker (UDP98-025) showed strong and consistent association with resistance based on root-galling index. The resistance locus was mapped on the subtelomeric region of linkage group 2, co-localizing with other previously reported RKN resistance genes in Prunus. Segregation of gall-index-based resistance observed in F2 and BC1F1 populations is compatible with the involvement of a multiallelic locus wherein a dominant (Mf1) or recessive (mf3) resistance allele is inherited from P. kansuensis, and susceptibility alleles (mf2) from peach.  相似文献   

6.

Key message

The portfolio of available Reduced height loci (Rht-B1, Rht-D1, and Rht24) can be exploited for hybrid wheat breeding to achieve the desired heights in the female and male parents, as well as in the hybrids, without adverse effects on other traits relevant for hybrid seed production.

Abstract

Plant height is an important trait in wheat line breeding, but is of even greater importance in hybrid wheat breeding. Here, the height of the female and male parental lines must be controlled and adjusted relative to each other to maximize hybrid seed production. In addition, the height of the resulting hybrids must be fine-tuned to meet the specific requirements of the farmers in the target regions. Moreover, this must be achieved without adversely impacting traits relevant for hybrid seed production. In this study, we explored Reduced height (Rht) loci effective in elite wheat and exploited their utilization for hybrid wheat breeding. We performed association mapping in a panel of 1705 wheat hybrids and their 225 parental lines, which besides the Rht-B1 and Rht-D1 loci revealed Rht24 as a major QTL for plant height. Furthermore, we found that the Rht-1 loci also reduce anther extrusion and thus cross-pollination ability, whereas Rht24 appeared to have no adverse effect on this trait. Our results suggest different haplotypes of the three Rht loci to be used in the female or male pool of a hybrid breeding program, but also show that in general, plant height is a quantitative trait controlled by numerous small-effect QTL. Consequently, marker-assisted selection for the major Rht loci must be complemented by phenotypic selection to achieve the desired height in the female and male parents as well as in the wheat hybrids.
  相似文献   

7.
At an early stage of crop development, the rate of growth is largely determined by leaf characteristics. Plants with rapid leaf area development could save more water for transpiration and crop growth. In our study, a recombinant inbred family was used to identify quantitative trait loci (QTL) controlling leaf length (LL), leaf width (LW), and leaf area (LA) in wheat seedlings under well-watered (WW) and PEG-induced water-deficit (WD) conditions. A total of five QTL for LW, LL, and LA were detected, most of which were reported for the first time. A “constitutive” QTL for LW (Qheb.LW-3B), located on the long arm of chromosome 3B, was consistently detected under two water conditions, explaining 17.7 % of the phenotypic variance with a LOD value of 7.20 under WW condition and 13.3 % of the phenotypic variance with a LOD value of 4.87 under WD condition. The other four “adaptive” QTL were detected under a single water condition only. These QTL include the following: Qheb.LW-5B for LW (WW condition), Qheb.LL-3A, and Qheb.LL-5B for LL (WD condition) and Qheb.LA-3B for LA (WW condition). Four pairs of near isogenic lines (NILs) were developed to validate the effects of Qheb.LW-3B. The allele from the parent “CSCR6” increased the LW by an average of 8.2 % under WW condition and 13.8 % under WD condition, respectively. The position and effects of Qheb.LW-3B was confirmed. Qheb.LW-3B would be a valuable genetic resource to improve wheat seedling early establishment. The NILs we have generated would be useful for further characterization of Qheb.LW-3B, in studying its interaction with other traits of agronomic importance and in developing markers that can be reliably used to follow this major locus.  相似文献   

8.

Key message

QTLs and candidate gene markers associated with leaf morphological and color traits were identified in two immortalized populations of Brassica rapa, which will provide genetic information for marker-assisted breeding.

Abstract

Brassica rapa is an important leafy vegetable consumed worldwide and morphology is a key character for its breeding. To enhance genetic control, quantitative trait loci (QTLs) for leaf color and plant architecture were identified using two immortalized populations with replications of 2 and 4 years. Overall, 158 and 80 QTLs associated with 23 and 14 traits were detected in the DH and RIL populations, respectively. Among them, 23 common robust-QTLs belonging to 12 traits were detected in common loci over the replications. Through comparative analysis, five crucifer genetic blocks corresponding to morphology trait (R, J&U, F and E) and color trait (F, E) were identified in three major linkage groups (A2, A3 and A7). These might be key conserved genomic regions involved with the respective traits. Through synteny analysis with Arabidopsis, 64 candidate genes involved in chlorophyll biosynthesis, cell proliferation and elongation were co-localized within QTL intervals. Among them, SCO3, ABI3, FLU, HCF153, HEMB1, CAB3 were mapped within QTLs for leaf color; and CYCD3;1, CYCB2;4, AN3, ULT1 and ANT were co-localized in QTL regions for leaf size. These robust QTLs and their candidate genes provide useful information for further research into leaf architecture with crop breeding.
  相似文献   

9.
Days to flowering (DTF) is an important trait impacting cultivar performance in oilseed rape (Brassica napus L.), but the interaction of all loci controlling this trait in spring-type oilseed rape is not fully understood. We identified quantitative trait loci (QTL) for variation in DTF in a doubled haploid (DH) population from the Qinghai–Tibet Plateau that includes 217 lines derived from a cross between spring-type oilseed rape (B. napus L.) line No. 5246 and line No. 4512, the latter of which is responsive to the effective accumulated temperature (EAT). A linkage map was constructed for the DH population, using 202 SSR and 293 AFLP markers. At least 22 DTF QTL were found in multiple environments. Four major QTL were located on linkage groups A7, C2, C8 and C8. Among these QTL, cqDTFA7a and cqDTFC2a were identified in five environments and individually explained 10.4 and 23.0 % of the trait variation, respectively. cqDTFC8, a major QTL observed in spring environments, and a unique winter environment QTL, qDTFC8-3, were identified; these QTL explained 10.0 and 46.5 % of the phenotypic variation, respectively. Minor QTL (for example, cqDTFC2c) and epistatic interactions seemed evident in this population. Two closely linked SSR markers for cqDTFA7a and cqDTFC8 were developed (G1803 and S034). BnAP1, a B. napus gene with homology to Arabidopsis thaliana that was identified as a cqDTFA7a candidate gene, played a major role in this study. The allelic effects of the major and minor QTL on DTF were further validated in the DH population and in 93 breeding genotypes.  相似文献   

10.
American lobsters (Homarus americanus H. Milne Edwards, 1837) are imported live to Europe and should according regulations be kept in land-based tanks until sold. In spite of the strict regulations aimed specifically at preventing the introduction of this species into the NE Atlantic, several specimens of H. americanus have been captured in the wild, especially in Oslofjord, Norway since 1999. One of the great concerns is interbreeding between the introduced American species and the local European lobster, H. gammarus (Linnaeus, 1758). For this reason an awareness campaign was launched in 2000 focusing on morphologically “unusual” lobsters caught in local waters. Morphological characters have been based on colour and sub-ventral spines on the rostrum. Two samples of H. americanus were used for comparisons, as well as samples of European lobster from Oslofjord collected in 1992. Previous genetic analyses (allozymes, mtDNA and microsatellite DNA) have demonstrated that the American lobster is distinct from its European counterpart, with several additional alleles at many loci in addition to different allelic frequency distribution of alleles of “shared” alleles. During the present study, thirteen microsatellite loci were tested in the initial screening, and the three most discriminating loci (Hgam98, Hgam197b and Hgam47b) were used in a detailed comparison between the two species. A total of 45 unusual lobsters were reported captured from Ålesund (west) to Oslofjord (southeast) from 2001 to 2005 and these were analysed for the three microsatellite loci. Nine specimens were identified as American lobsters. Comparisons between morphological and genetic characteristics revealed that morphological differences are not reliable in discrimination the two species, or to identify hybrids. Further, some loci display almost no overlapping in allele frequency distribution for the reference samples analysed, thus providing a reliable tool to identify hybrids.  相似文献   

11.

Key message

Using bulked segregant analysis combined with next-generation sequencing, we delimited the Brnye1 gene responsible for the stay-green trait of nye in pakchoi. Sequence analysis identified Bra019346 as the candidate gene.

Abstract

“Stay-green” refers to a plant trait whereby leaves remain green during senescence. This trait is useful in the cultivation of pakchoi (Brassica campestris L. ssp. chinensis), which is marketed as a green leaf product. This study aimed to identify the gene responsible for the stay-green trait in pakchoi. We identified a stay-green mutant in pakchoi, which we termed “nye”. Genetic analysis revealed that the stay-green trait is controlled by a single recessive gene, Brnye1. Using the BSA-seq method, a 3.0-Mb candidate region was mapped on chromosome A03, which helped us localize Brnye1 to an 81.01-kb interval between SSR markers SSRWN27 and SSRWN30 via linkage analysis in an F2 population. We identified 12 genes in this region, 11 of which were annotated based on the Brassica rapa annotation database, and one was a functionally unknown gene. An orthologous gene of the Arabidopsis gene AtNYE1, Bra019346, was identified as the potential candidate for Brnye1. Sequence analysis revealed a 40-bp insertion in the second exon of Bra019346 in nye, which generated the TAA stop codon. A candidate gene-specific Indel marker in 1561 F2 individuals showed perfect cosegregation with Brnye1 in the nye mutant. These results provide a foundation for uncovering the molecular mechanism of the stay-green trait in pakchoi.
  相似文献   

12.
We constructed a high-density genetic linkage map of bronze loquat (Eriobotrya deflexa) by using a three-way cross of loquat (Eriobotrya japonica) × (loquat × bronze loquat) and simple sequence repeat (SSR) and random amplified polymorphic DNA (RAPD) markers. The positions of the SSR loci used in this study were previously identified on reference maps of pears (Pyrus spp.) and apples (Malus spp.). The map of bronze loquat (‘Taiwan loquat No. 1’) consisted of 308 loci including 167 SSRs (8 loquat, 57 pear, and 102 apple SSRs), 140 RAPDs, and the loquat canker resistance gene Pse-a on 19 linkage groups covering a genetic distance of 1036 cM. Almost all loquat linkage groups were aligned to the pear consensus map by using at least two pear or apple SSRs, suggesting that positions and linkages of SSR loci were well conserved between loquat and pear and between loquat and apple. The constructed map may be used to determine the location of genes and quantitative trait loci of interest and to analyze genome synteny in the tribe Pyreae, subfamily Spiraeoideae of the family Rosaceae.  相似文献   

13.
Peach belongs to the genus Prunus, which includes Prunus persica and its relative species, P. mira, P. davidiana, P. kansuensis, and P. ferganensis. Of these, P. ferganensis have been classified as a species, subspecies, or geographical population of P. persica. To explore the genetic difference between P. ferganensis and P. persica, high-throughput sequencing was used in different peach accessions belonging to different species. First, low-depth sequencing data of peach accessions belonging to four categories revealed that similarity between P. ferganensis and P. persica was similar to that between P. persica accessions from different geographical populations. Then, to further detect the genomic variation in P. ferganensis, the P. ferganensis accession “Xinjiang Pan Tao 1” and the P. persica accession “Xia Miao 1” were sequenced with high depth, and sequence reads were assembled. The results showed that the collinearity of “Xinjiang Pan Tao 1” with the reference genome “Lovell” was higher than that of “Xia Miao 1” and “Lovell” peach. Additionally, the number of genetic variants, including single nucleotide polymorphisms (SNPs), structural variations (SVs), and the specific genes annotated from unmapped sequence in “Xia Miao 1” was higher than that in “Xinjiang Pan Tao 1” peach. The data showed that there was a close distance between “Xinjiang Pan Tao 1” (P. ferganensis) and reference genome which belong to P. persica, comparing “Xia Miao 1” (P. persica) and reference ones. The results accompany with phylogenetic tree and structure analysis confirmed that P. ferganensis should be considered as a geographic population of P. persica rather than a subspecies or a distinct species. Furthermore, gene ontology analysis was performed using the gene comprising large-effect variation to understand the phenotypic difference between two accessions. The result revealed that the pathways of gene function affected by SVs but SNPs and insertion-deletions markedly differed between the two peach accessions.  相似文献   

14.
Net form net blotch (NFNB), caused by Pyrenophora teres f. teres Drechs., is prevalent in barley-growing regions worldwide. A population of 132 recombinant inbred lines (RILs) developed from a cross of the barley varieties ‘Falcon’ and ‘Azhul’ were used to evaluate resistance to NFNB due to their differential reactions to isolates of P. teres f. teres from Australia, Canada, Japan, and the USA. Falcon is a six-rowed, hulless feed barley harboring resistance to NFNB, while Azhul is a six-rowed, hulless food barley with high levels of susceptibility to many P. teres f. teres isolates. Seedling disease resistance data were collected on seedlings of parents, RILs, and checks in a growth chamber. The population was genotyped using Illumina’s GoldenGate assay, and quantitative trait loci (QTL) were detected on chromosomes 2H, 3H, 4H, and 6H. We identified a single genetic region on barley chromosome 4H that provided varying levels of resistance to all P. teres f. teres isolates evaluated.  相似文献   

15.
FLOWERING LOCUS T (FT), a major effect gene, regulates flowering time in Arabidopsis. We analyzed evolutionary changes distinguishing two FT homeologous loci in B. rapa, described genetic variation in homologs isolated and reported expression pattern of FT in B. juncea. Synteny analysis confirmed presence of two FT genomic copies in B. rapa ssp. pekinensis and resolved pre-existing anomalies regarding copy number in “AA” genome. Synteny analysis of B. rapa homeologous regions CR1 (129 kb) and CR2 (232 kb) revealed differential gene fractionation and wide-spread re-arrangements. Seven genomic DNA (gDNA) variants (2.1–2.2 kb) and 10 complementary DNA (cDNA) variants (528 bp) were isolated from 6 Brassica species. The gDNA variants shared 72–99 % similarity within Brassica and 58–60 % between Arabidopsis and Brassica. FT cDNA variants shared 92–100 % similarity within Brassica and 87 % between Arabidopsis and Brassica. Phylogenetic analysis of FT gDNA, cDNA and protein sequences revealed two major clades, differentiating homologs derived from species containing shared “BB” and “CC” genomes. Phylogram based on Brassica FT gDNA differentiated homeologs derived from AA-LF (Least fractioned) and AA-MF1 (Moderately fractioned) sub-genomes. Analysis of FT expression pattern in B. juncea revealed increasing levels correlating with attainment of physiological maturity; highest levels were detected in older leaves implying conservation in spatio-temporal expression pattern vis-à-vis Arabidopsis. In conclusion, our study reveals that polyploidy in Brassicas resulted in expansion of FT gene copies with homologs charting independent evolutionary course through accumulation of mutations. However, expression domains of FT remained conserved across Brassicaceae to preserve the critical function of FT in controlling flowering time.  相似文献   

16.
The quality of wheat depends on a large complex of genes and environmental factors. The objective of this study was to identify quantitative trait loci controlling technological quality traits and their stability across environments, and to assess the impact of interaction between alleles at loci Glu-1 and Glu-3 on grain quality. DH lines were evaluated in field experiments over a period of 4 years, and genotyped using simple sequence repeat markers. Lines were analysed for grain yield (GY), thousand grain weight (TGW), protein content (PC), starch content (SC), wet gluten content (WG), Zeleny sedimentation value (ZS), alveograph parameter W (APW), hectolitre weight (HW), and grain hardness (GH). A number of QTLs for these traits were identified in all chromosome groups. The Glu-D1 locus influenced TGW, PC, SC, WG, ZS, APW, GH, while locus Glu-B1 affected only PC, ZS, and WG. Most important marker-trait associations were found on chromosomes 1D and 5D. Significant effects of interaction between Glu-1 and Glu-3 loci on technological properties were recorded, and in all types of this interaction positive effects of Glu-D1 locus on grain quality were observed, whereas effects of Glu-B1 locus depended on alleles at Glu-3 loci. Effects of Glu-A3 and Glu-D3 loci per se were not significant, while their interaction with alleles present at other loci encoding HMW and LMW were important. These results indicate that selection of wheat genotypes with predicted good bread-making properties should be based on the allelic composition both in Glu-1 and Glu-3 loci, and confirm the predominant effect of Glu-D1d allele on technological properties of wheat grains.  相似文献   

17.
Zoysia japonica Steud. (2n?=?4×?=?40) is a C4 turfgrass well-adapted for the warm-humid and transitional climatic zones of the USA. Its use is limited to warmer climates because of a relative lack of winter hardiness compared to C3 grasses. Molecular markers associated with this trait would be useful for effective selection of winter hardy germplasm before field testing. A pseudo-F2 mapping population of 175 individuals was developed from crosses between Z. japonica cultivars “Meyer” (freeze-tolerant) and “Victoria” (freeze-susceptible) and used to generate a high-density genetic map of 104 SSR markers and 2359 sequencing-derived SNP markers. The map covers 324 Mbp and 2520 cM as well as the 20 chromosomes for the zoysiagrass haploid genome. Phenotypic data on winter injury, establishment, and turf quality collected in North Carolina and Indiana in 2014–2016 were used in conjunction with this map to identify quantitative trait loci (QTL) associated with winter hardiness. Fifty-six QTL associated with winter injury, establishment, and turf quality were identified over six environments. Twelve of those were identified in two or more environments. Furthermore, seven regions of interest were identified on chromosomes 8, 11, and 13 where co-location of QTL for three or more traits occurred. Within these regions, analysis with NCBI basic local alignment search tool (BLAST) identified proteins related to cold and other abiotic stresses tolerance. These QTL and associated markers could be valuable in implementing marker-assisted selection for winter hardiness in zoysiagrass breeding programs.  相似文献   

18.
The objectives of conservation and sustainable forest management require in depth study of genomes of woody plants and definition of their intraspecific genetic diversity. In recent years, an approach was developed based on the study of “candidate genes” that can potentially be involved in the formation of adaptive traits. In this study, we investigated nucleotide polymorphism of several adaptive candidate genes in the populations of Siberian larch (Larix sibirica Ledeb.) in the Urals. Representatives of this genus are among the most valuable and widely distributed forest tree species in Russia. From ten selected gene loci in the genome of L. sibirica, we isolated and investigated three loci, one of which (ABA-WDS) was sequenced in L. sibirica for the first time. The total length of the analyzed sequence in each individual amounted to 2865 bp. The length of locus alignment was from 360 bp to 1395 bp. In total, we identified 200 polymorphic positions. The most conservative is locus 4CL1-363, and the most polymorphic is locus sSPcDFD040B03103-274. The studied populations of L. sibirica are characterized by a high level of nucleotide polymorphism in comparison with other species and genuses (Picea, Pinus, Pseudotsuga, Abies) conifers plants (Hd = 0.896; π = 0.007; θW = 0.015). The most selectively neutral polymorphism (D T =–0.997) was attributed to locus 4CL1-363, and polymorphism with high probability of adaptability (D T =–1.807) was determined for the ABA-WDS locus. We identified 54 SNP markers, only five of which were nonsynonymous (9.26%) replacements. The average frequency of SNPs in the three studied loci of L. sibirica was one SNP in 53 bp. We detected unique SNP markers for eight populations, which could potentially be used to identify populations. Populations that are characterized by the highest number of unique SNP markers can be recommended for selection in order to preserve the gene pool of the species.  相似文献   

19.

Key message

Co-localized intervals and candidate genes were identified for major and stable QTLs controlling pod weight and size on chromosomes A07 and A05 in an RIL population across four environments.

Abstract

Cultivated peanut (Arachis hypogaea L.) is an important legume crops grown in > 100 countries. Hundred-pod weight (HPW) is an important yield trait in peanut, but its underlying genetic mechanism was not well studied. In this study, a mapping population (Xuhua 13 × Zhonghua 6) with 187 recombinant inbred lines (RILs) was developed to map quantitative trait loci (QTLs) for HPW together with pod length (PL) and pod width (PW) by both unconditional and conditional QTL analyses. A genetic map covering 1756.48 cM was constructed with 817 markers. Additive effects, epistatic interactions, and genotype-by-environment interactions were analyzed using the phenotyping data generated across four environments. Twelve additive QTLs were identified on chromosomes A05, A07, and A08 by unconditional analysis, and five of them (qPLA07, qPLA05.1, qPWA07, qHPWA07.1, and qHPWA05.2) showed major and stable expressions in all environments. Conditional QTL mapping found that PL had stronger influences on HPW than PW. Notably, qHPWA07.1, qPLA07, and qPWA07 that explained 17.93–43.63% of the phenotypic variations of the three traits were co-localized in a 5 cM interval (1.48 Mb in physical map) on chromosome A07 with 147 candidate genes related to catalytic activity and metabolic process. In addition, qHPWA05.2 and qPLA05.1 were co-localized with minor QTL qPWA05.2 to a 1.3 cM genetic interval (280 kb in physical map) on chromosome A05 with 12 candidate genes. This study provides a comprehensive characterization of the genetic components controlling pod weight and size as well as candidate QTLs and genes for improving pod yield in future peanut breeding.
  相似文献   

20.
The extremely high diversity of spined loach biotypes in the Lower Danube has been detected by biochemical genetic investigation and cytometric analysis of 358 specimens collected in the riverbed and shallow channels. Along with two diploid species (C. elongatoides and C. “tanaitica”), six hybrid forms were revealed, namely, diploid C. elongatoides-“tanaitica”; triploid C. 2 elongatoides-“tanaitica,” C. elongatoides-2 “tanaitica,” and C. 2 elongatoides-species-1; and tetraploid C. 3 elongatoides-“tanaitica” and C. elongatoides-species-2-2 “tanaitica.” In addition, specimens with recombinant genotypes were also found. In spite of the apomictic mode of reproduction, the polyploids did not possess clonal structure, but according to the level of polymorphism and the genotype distribution, they were isomorphous to parental diploid species. Thus, in contrast to the polyploidy in Cobitids of the Dnieper, which have appeared in the basin due to the expansion, the polyploids of the Lower Danube are autochthonous and were derived by crossing with local diploid species. The process is apparently proceeds without any limitations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号