首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Melampyrum sylvaticum is an endangered annual hemiparasitic plant that is found in only 19 small and isolated populations in the United Kingdom (UK). To evaluate the genetic consequences of this patchy distribution we compared levels of diversity, inbreeding and differentiation from ten populations from the UK with eight relatively large populations from Sweden and Norway where the species is more continuously distributed. We demonstrate that in both the UK and Scandinavia, the species is highly inbreeding (global F IS = 0.899). Levels of population differentiation were high (FST = 0.892) and significantly higher amongst UK populations (FST = 0.949) than Scandinavian populations (FST = 0.762; P < 0.01). The isolated populations in the UK have, on average, lower genetic diversity (allelic richness, proportion of loci that are polymorphic, gene diversity) than Scandinavian populations, and this diversity difference is associated with the smaller census size and population area of UK populations. From a conservation perspective, the naturally inbreeding nature of the species may buffer the species against immediate effects of inbreeding depression, but the markedly lower levels of genetic diversity in UK populations may represent a genetic constraint to evolutionary change. In addition, the high levels of population differentiation suggest that gene flow among populations will not be effective at replenishing lost variation. We thus recommend supporting in situ conservation management with ex situ populations and human-mediated seed dispersal among selected populations in the UK.  相似文献   

3.
The elucidation of species diversity and connectivity is essential for conserving coral reef communities and for understanding the characteristics of coral populations. To assess the species diversity, intraspecific genetic diversity, and genetic differentiation among populations of the brooding coral Seriatopora spp., we conducted phylogenetic and population genetic analyses using a mitochondrial DNA control region and microsatellites at ten sites in the Ryukyu Archipelago, Japan. At least three genetic lineages of Seriatopora (Seriatopora-A, -B, and -C) were detected in our specimens. We collected colonies morphologically similar to Seriatopora hystrix, but these may have included multiple, genetically distinct species. Although sexual reproduction maintains the populations of all the genetic lineages, Seriatopora-A and Seriatopora-C had lower genetic diversity than Seriatopora-B. We detected significant genetic differentiation in Seriatopora-B among the three populations as follows: pairwise F ST = 0.064–0.116 (all P = 0.001), pairwise G′′ST = 0.107–0.209 (all P = 0.001). Additionally, only one migrant from an unsampled population was genetically identified within Seriatopora-B. Because the peak of the settlement of Seriatopora larvae is within 1 d and almost all larvae are settled within 5 d of spawning, our observations may be related to low dispersal ability. Populations of Seriatopora in the Ryukyu Archipelago will probably not recover unless there is substantial new recruitment from distant populations.  相似文献   

4.
Anopheles darlingi Root is a primary vector of malaria in the neotropic region, a species not just highly anthropophilic but very efficient in transmitting Plasmodium species and considered the most important vector in the Amazon region. The main goal of this study was to determine the genetic structure of the A. darlingi populations using microsatellites (STR) in western and eastern regions of Colombia. DNA extraction was done with the cited protocol of band using the Genomic Prep? cell and tissue isolation commercial kits. We used the STR reported by Conn et al (Mol Ecol Notes 1: 223-225, 2001). The analysis with STR proved there was a high genetic diversity and significant alterations of the Hardy-Weinberg equilibrium. The greatest genetic diversity was recorded in Mitu (Vaupes) (Na = 14, Ho = 0.520). The lowest was in Pueblo Nuevo (Cordoba) (Na = 12, Ho = 0.457). The eastern region and the Mitu (Vaupes) populations presented the highest number of primer alleles (Ap = 30; Ap = 13; Ap = 9), with variations between 0.010 and 0.097. The AMOVA revealed that the whole population underwent moderate genetic differentiation (F ST = 0.063, p < 0.05). The same differentiation was noticed (0.06 < F ST > 0.06, p < 0.05) with five of the six populations included in this job, and there was a low differentiation in the Las Margaritas (Santander) area (F ST = 0.02s3, p < 0.05). Our results suggest a slight positive correlation, which does not show a statistical significance between the geographic and genetic distances, probably suggesting that the moderate genetic differentiation found between pairs of populations does not need to be explained for the hypothesis of separation by distance.  相似文献   

5.
Acacia senegal is endemic to dry forest and woodland ecosystems of Sub-Saharan Africa and provides both ecological and socio-economic benefits. However, these ecosystems are threatened by escalating human disturbances and fragmentation. To investigate the human impacts on genetic diversity and structure of A. senegal, we studied genetic variability and differentiation of 330 individual trees from 11 natural A. senegal populations, grouped into lightly and heavily disturbed, using 12 polymorphic nuclear microsatellite markers. Gene diversity (H E ) ranged from H E = 0.570 to H E = 0.632. Significant differences (P < 0.05) between the levels of disturbances are reported for mean gene diversity, number of alleles and allelic richness with lightly disturbed populations showing higher values. Overall, the indirect estimates of average outcrossing rates ranged from 0.794 (Kiserian) to 0.999 (Kampi ya Moto) with a mean of 0.997 suggesting a predominantly outcrossing species. There was no significant relationship (P > 0.05) detected between genetic and geographic distances, showing lack of isolation by distance. Analysis of population structure using unweighted pair group method with arithmetic mean and Bayesian model suggests presence of three gene pools as most probable, although most individuals showed mixed ancestry. The diversity and genetic structure reported in this study revealed negative impacts of human disturbance on A. senegal within this ecosystem. We recommend in-situ conservation strategies to safeguard the woodland ecosystem from further deforestation.  相似文献   

6.
With increasing temperature and anthropogenic activity, endangered alpine species in the high altitudes of the Qinghai-Tibet Plateau face high risk of extinction; however, they have received little attention in the past. In this study, we used 12 nuclear and nine chloroplast microsatellites (simple sequence repeats, SSR) to assess genetic diversity within and among the only two populations of the highly endangered alpine species Sinadoxa corydalifolia (Adoxaceae). We identified only one individual exhibiting clonal reproduction across all 160 extant plants. The levels of genetic variability were estimated to be very low, with the allele number Na = 3.2 and the expected heterozygosity He = 0.368. The genetic differentiation is extremely high between the two regional populations (FST = 0.214), with a limited rate of gene flow in the recent past. In addition, numerous endemic alleles were found for each subpopulation within each population. Our analyses suggest that it is critical not only to conserve all surviving individuals of the two populations in situ but also to mediate gene flow artificially between subpopulations within each population in this endangered species.  相似文献   

7.
The distribution of genetic diversity among natural populations is significantly shaped by geographical and environmental heterogeneity. The key objectives of this study were to outline the population genetic structure and to investigate the effects of historical and current factors in shaping the population structure of an endemic tropical tree, Hagenia abyssinica. We used 11 polymorphic microsatellites to estimate genetic variability and evaluate gene flow among natural populations of H. abyssinica. Further, we employed ecological niche modeling approaches, to analyze the demographic history and map potential distributions of H. abyssinica during the Last Glacial Maximum and the present. Significant levels of genetic diversity (H O = 0.477, H E = 0.439) were observed among the sampled locations. High coefficient of genetic differentiation (F ST = 0.32) and considerable genetic variation within the sampled locations (68.01%) were detected. Our results indicated the existence of three genetic groups with limited gene exchange and revealed positive correlations (r = 0.425, P < 0.05) between genetic diversity and geo-graphic distance. The ecological niche modeling (ENM) results support the existence of three distribution zones during the Last Glacial Maximum (LGM), with high probability of occurrence (0.8–1.0), and indicated slight distribution disturbances during and after the LGM. The fundamental patterns of genetic diversity and population structuring of H. abyssinica result from a combination of both environmental and geographical factors, including long-term isolation by distance and characteristic life history of this species. Our ENM results identified three zones that could have served as glacial refugia for this species and lay a foundation for further studies, outlining demographic histories and population structures of Afromontane species.  相似文献   

8.
Knowledge of larval dispersal and connectivity in coral reef species is crucial for understanding population dynamics, resilience, and evolution of species. Here, we use ten microsatellites and one mitochondrial marker (cytochrome b) to investigate the genetic population structure, genetic diversity, and historical demography of the powder-blue tang Acanthurus leucosternon across more than 1000 km of the scarcely studied Eastern African region. The global AMOVA results based on microsatellites reveal a low but significant F ST value (F ST = 0.00252 P < 0.001; D EST = 0.025 P = 0.0018) for the 336 specimens sampled at ten sample sites, while no significant differentiation could be found in the mitochondrial cytochrome b dataset. On the other hand, pairwise F ST, PCOA, and hierarchical analysis failed to identify any genetic breaks among the Eastern African populations, supporting the hypothesis of genetic homogeneity. The observed genetic homogeneity among Eastern African sample sites can be explained by the lengthy post-larval stage of A. leucosternon, which can potentiate long-distance dispersal. Tests of neutrality and mismatch distribution signal a population expansion during the mid-Pleistocene period.  相似文献   

9.
Understanding genetic connectivity is fundamental for ecosystem-based management of marine resources. Here we investigate the metapopulation structure of the edible sea cucumber Holothuria edulis Lesson, 1830 across Okinawa Island, Japan. This species is of economic and ecological importance and is distributed from the Red Sea to Hawai‘i. We examined sequence variation in fragments of mitochondrial cytochrome oxidase subunit I (COI) and 16S ribosomal RNA (16S), and nuclear histone (H3) at six locations across Okinawa Island. We found higher haplotype diversity for mtDNA (COI: Hd = 0.69 and 16S: Hd = 0.67) and higher heterozygosity of nDNA (H3: H E = 0.39) in populations from the west coast of Okinawa compared to individuals from populations on the east coast (COI: Hd = 0.40; 16S: Hd = 0.21; H3: H E = 0.14). Overall population structure was significant (AMOVA results for COI: Φ ST = 0.49, P < 0.0001; 16S: Φ ST = 0.34, P < 0.0001; H3: Φ ST = 0.12, P < 0.0001). One population in the east, Uruma, showed elevated pairwise Φ ST values in comparisons with all other sites and a marked reduction of genetic diversity (COI: Hd = 0.25 and 16S: Hd = 0.24), possibly as a consequence of a shift to a more dominant asexual reproduction mode. Recent reports have indicated that coastal development in this area influences many marine organisms, and ecosystem degradation in this location could cause the observed decrease of genetic diversity and isolation of H. edulis in Uruma. Our study should provide valuable data to help with the urgently needed management of sea cucumber populations in Okinawa, and indicates particular attention needs to be paid to vulnerable locations.  相似文献   

10.
To establish a management plan for endangered and rare species, genetic assessment must first be conducted. The genetic characteristics of plant species are affected by demographic history, reproductive strategy, and distributional range as well as anthropological effects. Abies koreana E. H. Wilson (Pinaceae), Korean fir, is endemic to Korea and found only in sub-alpine areas of the southern Korean Peninsula and Jejudo Island. This species has been designated as critically endangered by the International Union for Conservation of Nature due to a continuous decline in its range and population fragmentation. We genotyped 176 individuals from seven natural populations and two afforested populations on the Korean Peninsula using 19 microsatellite loci. STRUCTURE analysis revealed two genetic clusters in natural populations (F st  = 0.040 and R st  = 0.040) despite low differentiation. We did not detect a significant reduction in genetic diversity or the signature of a genetic bottleneck despite population fragmentation and small population size. We deduced that this species exhibits a metapopulation structure, with the population on Jirisan Mountain acting as a source of genetic diversity for other local small populations on the Korean Peninsula, through contemporary asymmetric gene flow. However, the majority of afforested individuals on the Korean Peninsula originated from a different gene cluster. Thus, we recommend a conservation strategy that maintains two genetically unique clusters.  相似文献   

11.
Pentadesma butyracea Sabine, a rain forest food tree species, plays a vital role in the socio-economic livelihood of some West African rural communities due to its various products. However, its scattered populations are threatened in Benin. Defining appropriate conservation strategies requires a good knowledge of mating patterns and their consequences for population genetics. The outcrossing rate, levels of correlated paternity and fine-scale spatial genetic structure of adults and maternal sibships were estimated for one small population and three large populations in Benin using microsatellite markers. Similar outcrossing rates (88–95%) were found in all populations, showing that P. butyracea is mainly an outbreeding species. We found no evidence of inbreeding depression from a decay of inbreeding with age. The spatial genetic structure within the large populations (Sp statistic?=?0.003–0.038) was consistent with isolation-by-distance expectations, showing that gene dispersal is spatially limited. Limited pollen dispersal is highlighted by the decay of the degree of correlated paternity between sibships with spatial distance. The mean pollen dispersal distance was estimated between 50 m and 450 m, but up to 21% pollen may migrate from external sources. The smallest population displayed slightly higher correlated paternity than the large populations (r p ?=?0.37 vs. r p ?=?0.17–0.30). In conclusion, our results suggest that small populations may show a reduction in sire numbers in seed, while the fragmented populations, large and small, are connected through gene flow. There is little inbreeding and no evidence of inbreeding depression.  相似文献   

12.
The uplift of mountains and climatic oscillations are important for understanding of the demographic history and genetic structure of species. We investigated the biogeographic history of the boreal tree species Ulmus lamellosa (Ulmaceae) in China, by using a combined phylogeographic and paleodistribution modeling approach. In this study, 14 populations of endangered U. lamellosa were analyzed by using chloroplast DNA (cpDNA) sequences. A high level of genetic differentiation (Φ ST = 86.22%) among populations with a significant phylogeographic pattern (N ST > G ST, P < 0.05) was found in U. lamellosa. Ten haplotypes were detected by combining chloroplast DNA data, and haplotype 3 (H3) was found to be common and widespread. The intraspecific divergence of all U. lamellosa cpDNA haplotypes (9.27 Ma; 95% HPD 5.17–13.33 Ma) most probably began in the late Miocene. The pairwise difference among haplotypes and neutrality tests (Tajima’s D and Fu’s Fs statistic) indicated that populations of U. lamellosa, except group I, have not experienced recent sudden expansions. Multiple refuge areas were identified across the entire distribution ranges of U. lamellosa. The low level of gene flow (Nm = 0.14) among populations may have resulted from isolation resulting from distance and complex topography during climatic oscillations; this isolation was probably the major process that shaped the present distribution of haplotypes. These results support the hypothesis that U. lamellosa persisted in situ during glaciations and occupied multiple localized glacial refugia, contrary to the hypotheses of large-scale range contraction and long-distance southward migration.  相似文献   

13.
Rare species consisting of small populations are subject to random genetic drift, which reduces genetic diversity. Thus, determining the relationship between population size and genetic diversity would provide key information for planning a conservation strategy for rare species. We used six microsatellite markers to investigate seven extant populations of the rare conifer Pseudotsuga japonica, which is endemic to the Kii Peninsula and Shikoku Island regions that are geographically separated by the Kii Channel in southwest Japan. The population differentiation of P. japonica was relatively high (FST = 0.101) for a coniferous species, suggesting limited gene flow among populations. As expected, significant regional differentiation (AMOVA; p?<?0.05) indicated genetic divergence across the Kii Channel. A strong positive correlation between census population size and the number of rare alleles (r?=?0.862, p?<?0.05) was found, but correlations with major indices of genetic diversity were not significant (allelic richness: r?=?0.649, p?=?0.104, expected heterozygosity: r?=?0.361, p?=?0.426). The observed order of magnitude of correlation with three genetic diversity indices corresponded with the theoretically expected order of each index’ sensitivity (i.e., the rate of decline per generation) to the bottleneck event. Thus, features that exhibit a faster response, i.e., the number of rare alleles, would have been subject to deleterious effects of the recent decline in population size, which is presumably caused by the development of extensive artificial plantations of other tree species over the last several decades. Finally, we propose a conservation plan for P. japonica based on our findings.  相似文献   

14.
In this study, we assessed geographic patterns of genetic variations in nuclear and chloroplast genomes of two related native oaks in Japan, Quercus aliena and Q. serrata, in order to facilitate development of genetic guidelines for transfer of planting stocks for each species. A total of 12 populations of Q. aliena and 44 populations of Q. serrata were analyzed in this study. Genotyping of nuclear microsatellites in Q. aliena was done with only nine populations (n = 212) due to limited numbers of individuals in two populations, while all 12 populations (n = 89) were used in sequencing chloroplast DNA (cpDNA). In Q. serrata, 43 populations (n = 1032) were genotyped by nuclear microsatellite markers, while cpDNA of 44 populations (n = 350) was sequenced. As anticipated, geographic patterns detected in the variations of Q. aliena’s nuclear genome and its chloroplast haplotype distribution clearly distinguished northern and southern groups of populations. However, those of Q. serrata were inconsistent. The geographic distribution of its chloroplast haplotypes tends to show the predicted differentiation between northern and southern lineages, but geographic signals in the genetic structure of its nuclear microsatellites are weak. Therefore, treating northern and southern regions of Japan as genetically distinct transferrable zones for planting stocks is highly warranted for Q. aliena. For Q. serrata, the strong NE-SW geographic structure of cpDNA should be considered.  相似文献   

15.
Most perennial herbaceous plants are able to reproduce vegetatively as well as sexually. Sometimes, such plants may lose the capacity for sexual reproduction. We have studied the case of sterility in triploid populations (2n = 3x = 45) of Gladiolus tenuis M.Bieb. in a considerable part of its area of distribution. Initially, we recorded the presence of a large clone of G. tenuis to the east of the Volga River, as a result of isozyme analysis. We also used AFLP fingerprinting to genotype 55 samples from 10 populations of G. tenuis and one population of the closely related G. imbricutus L. This analysis revealed an extremely low genetic diversity in sterile triploid populations of G. tenuis and a rather high genetic diversity in fertile tetraploid populations (2n = 4x = 60) over most of the area of this species. Genetic distances between fertile and sterile populations of G. tenuis were similar to those between different species of gladioli. It appears that a single sterile genotype has spread vegetatively over 800 km, propagating by daughter corms. The study of the reproductive features of G. tenuis suggests that the cause of sterility may be self-incompatibility between individuals of the clone.  相似文献   

16.
Phylogeographic patterns of Ammopiptanthus in northwestern China were examined with internal transcribed spacer (ITS) and three chloroplast intergenic spacers (trnH–psbA, trnL–trnF, and trnS–trnG). Two ITS genotypes (a–b) and 8 chloroplast haplotypes (A–H) were detected. Both ITS genotypes and chloroplast lineages were split in two geographic regions: western Xinjiang and the Alxa Desert. This lineage split was also supported by AMOVA analysis and the Mantel test. AMOVA showed that 89.81 % of variance in Ammopiptanthus occurred between the two geographic regions, and correlation between genetic distances and geographical distances was significant (r = 0.757, p < 0.0001). All populations in western Xinjiang shared haplotype A with high frequency, and range expansion was strongly supported by negative Fu’s FS value, and mismatch distribution analysis, whereas populations in the Alxa Desert had higher genetic diversity and structure. We speculate that the cold and dry climate during the early Quaternary fragmented habitats of the species, limiting gene flow between regions, and interglacial periods most likely led to the range expansion in western Xinjiang. The low genetic diversity of Ammopiptanthus indicate a significant extinction risk, and protective measures should be taken immediately.  相似文献   

17.
Capparis spinosa L. (caper bush) is an economically and ecologically important perennial shrub that grows across different regions of Iran. In this study, the genetic diversity and population structure of Iranian genepool of C. spinosa is evaluated using Inter Simple Sequence Repeat (ISSR) markers. Using 10 ISSR primers, 387 DNA fragments (bands) were amplified from the genomic DNA of 92 individuals belonging to twenty-one populations of C. spinosa, of which 378 (97.7%) were polymorphic. High level of genetic diversity (percentage of polymorphic loci = 98.2%, h = 0.1382, I = 0.243), high genetic differentiation (Gst = 0.5234) and low gene flow (Nm = 0.4553) among populations were observed. Caper bush populations were divided into 4 groups in the dendrogram, PCoA plot and Bayesian clustering results, mostly corresponded to their geographic regions. The results showed that there are value in sampling Iranian caper bush populations to look for valuable alleles for use in plant breeding programs.  相似文献   

18.
Identification of population units is crucial for management and monitoring programs, especially for endangered wild species. The roughskin sculpin (Trachidermus fasciatus Heckel) is a small catadromous fish and has been listed as a second class state protected aquatic animal since 1988 in China. To achieve sustainable conservation of this species, it is necessary to clarify the existing genetic structure both between and within populations. Here, population genetic structure among eight populations of T. fasciatus were analyzed by using 16 highly polymorphic microsatellites. High levels of genetic variation were observed in all populations. All pairwise F ST estimates were significant after false discovery rate correction (overall average F ST = 0.054). Furthermore, both STRUCTURE and discriminant analysis of principal components (DAPC) analysis showed that the eight populations were grouped into six clusters. BAYESASS analysis showed generally low recent and asymmetric migration among populations. All these results suggested significant genetic structure across populations. However, there was no isolation by distance relationship among populations, likely resulting from barriers to gene flow created by habitat fragmentation. Our results highlight the need for in situ conservation efforts for T. fasciatus across its entire distribution range, through maximizing habitat size and quality to preserve overall genetic diversity and evolutionary potential.  相似文献   

19.
The fine-scale genetic structure and how it varies between generations depends on the spatial scale of gene dispersal and other fundamental aspects of species’ biology, such as the mating system. Such knowledge is crucial for the design of genetic conservation strategies. This is particularly relevant for species that are increasingly fragmented such as Boswellia papyrifera. This species occurs in dry tropical forests from Ethiopia, Eritrea and Sudan and is an important source of frankincense, a highly valued aromatic resin obtained from the bark of the tree. This study assessed the genetic diversity and fine-scale spatial genetic structure (FSGS) of two cohorts (adults and seedlings) from two populations (Guba-Arenja and Kurmuk) in Western Ethiopia and inferred intra-population gene dispersal in the species, using microsatellite markers. The expected heterozygosity (H E) was 0.664–0.724. The spatial analyses based on kinship coefficient (F ij) revealed a significant positive genetic correlation up to a distance of 130 m. Spatial genetic structure was relatively weak (Sp = 0.002–0.014) indicating that gene dispersal is extensive within the populations. Based on the FSGS patterns found, we estimate indirectly gene dispersal distances of 103 and 124 m for the two populations studied. The high heterozygosity, the low fixation index and the low Sp values found in this study are consistent with outcrossing as the (predominant) mating system in B. papyrifera. We suggest that seed collection for ex situ conservation and reforestation programmes of B. papyrifera should use trees separated by distances of at least 100 m but preferably 150 m to limit genetic relatedness among seeds from different trees.  相似文献   

20.
Liposcelis bostrychophila (Psocoptera: Liposcelidae) is a widely distributed pest that can cause considerable economic losses and pose human health risks. Rapid development of insecticide resistance has made L. bostrychophila increasingly difficult to control. To obtain information potentially useful for pest management, genetic diversity and differentiation of L. bostrychophila from five geographic locations in China was studied using inter-simple sequence repeat (ISSR). A total of 104 loci were found by ISSR markers and amplified using 9 selected primers. The percentage of polymorphic bands (PPB) was 91.4%. Shannon’s information index (I) and Nei’s gene diversity (He) indicated high genetic diversity at the species level. Population differentiation (Gst = 0.484) was average in these populations. Analysis of molecular variation (AMOVA) indicated that genetic variation was mainly distributed within populations. Gene flow (Nm = 0.534) was moderate. Cluster analysis showed that genotypes isolated from the same locations displayed higher genetic similarity and permitted the grouping of isolates of L. bostrychophila into three distinct clusters. The correlation between genetic distance and geographic distance was not significant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号