首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Uridine adenosine tetraphosphate (Up4A) exerts potent relaxation in porcine coronary arteries that is reduced following myocardial infarction, suggesting a crucial role for Up4A in the regulation of coronary flow (CF) in cardiovascular disorders. We evaluated the vasoactive effects of Up4A on CF in atherosclerosis using ApoE knockout (KO) mice ex vivo and in vivo. Functional studies were conducted in isolated mouse hearts using the Langendorff technique. Immunofluorescence was performed to assess purinergic P2X1 receptor (P2X1R) expression in isolated mouse coronary arteries. In vivo effects of Up4A on coronary blood flow (CBF) were assessed using ultrasound. Infusion of Up4A (10?9–10?5 M) into isolated mouse hearts resulted in a concentration-dependent reduction in CF in WT and ApoE KO mice to a similar extent; this effect was exacerbated in ApoE KO mice fed a high-fat diet (HFD). The P2X1R antagonist MRS2159 restored Up4A-mediated decreases in CF more so in ApoE KO + HFD than ApoE KO mice. The smooth muscle to endothelial cell ratio of coronary P2X1R expression was greater in ApoE KO + HFD than ApoE KO or WT mice, suggesting a net vasoconstrictor potential of P2X1R in ApoE KO + HFD mice. In contrast, Up4A (1.6 mg/kg) increased CBF to a similar extent among the three groups. In conclusion, Up4A decreases CF more in ApoE KO + HFD mice, likely through a net upregulation of vasoconstrictor P2X1R. In contrast, Up4A increases CBF in vivo regardless of the atherosclerotic model.  相似文献   

2.
Coronary blood flow is tightly coupled to myocardial oxygen consumption to maintain a consistently high level of myocardial oxygen extraction. This tight coupling has been proposed to depend on periarteriolar, oxygen tension, signals released from cardiomyocytes (adenosine acting on K ATP + channels), and/or the endothelium (prostanoids, nitric oxide, endothelin [ET]) and autonomic influences (catecholamines), but the contribution of each of these regulatory pathways and their interactions are still incompletely understood. Until recently, experimental studies into the regulation of coronary blood flow during exercise were principally performed in the dog. We have performed several studies on the regulation of vasomotor tone in coronary resistance vessels in chronically instrumented exercising swine. These studies have shown that the coronary resistance vessels in swine lack significant α-adrenergic control, but that these vessels are subject to β-adrenergic feed-forward control during exercise, which is aided by a parasympathetic withdrawal. In addition, withdrawal of an ET-mediated vasoconstrictor influence also contributes to exercise-induced coronary vasodilation. Coronary blood flow regulation by endothelial and metabolic vasodilator pathways contributes to resting vasomotor tone regulation but does not appear to contribute to the exercise-induced coronary vasodilation. Furthermore, blockade of one vasodilator pathway is not compensated by an increased contribution of the other vasodilator mechanisms, suggesting that porcine coronary vasomotor control by endothelial and metabolic factors occurs in a linear additive rather than a nonlinear synergistic fashion.  相似文献   

3.
The vascular effects of arachidonic acid (AA) were addressed in the rat perfused heart in terms of metabolic pathways and effector mechanisms. Under basal perfusion pressure, AA elicited dilator responses. However, in hearts treated with nitroarginine to eliminate nitric oxide and to elevate perfusion pressure, the predominant effect of AA was vasoconstriction which was converted to a vasodilator effect by inhibition of cyclooxygenase or antagonism of TP receptors. The vasodilator effect of AA in nitroarginine- and indomethacin-treated hearts was greatly attenuated by clotrimazole, an inhibitor of cytochrome P450, and by inhibition of K(+) channels with tetraethylammonium; in the absence of indomethacin, clotrimazole enhanced the vasoconstrictor effect of AA. When endothelin was used to constrict the coronary vasculature, AA also produced cyclooxygenase-dependent vasoconstriction. In hearts constricted with the endoperoxide analogue, U46619, only endothelium-dependent vasodilator effects of AA were observed that were reduced by indomethacin or clotrimazole. These results indicate that the coronary vasoconstrictor effect of AA which is expressed with elevated tone, results from its conversion by cyclooxygenase to a product(s) that activates TP receptors. The vasodilator effect exhibits two endothelium-dependent components, one mediated by cyclooxygenase products and the other by a cytochrome P450-derived product that activates K(+) channels.  相似文献   

4.
Recent studies implicate channels of the transient receptor potential vanilloid family (e.g., TRPV1) in regulating vascular tone; however, little is known about these channels in the coronary circulation. Furthermore, it is unclear whether metabolic syndrome alters the function and/or expression of TRPV1. We tested the hypothesis that TRPV1 mediates coronary vasodilation through endothelium-dependent mechanisms that are impaired by the metabolic syndrome. Studies were conducted on coronary arteries from lean and obese male Ossabaw miniature swine. In lean pigs, capsaicin, a TRPV1 agonist, relaxed arteries in a dose-dependent manner (EC50 = 116 +/- 41 nM). Capsaicin-induced relaxation was blocked by the TRPV1 antagonist capsazepine, endothelial denudation, inhibition of nitric oxide synthase, and K+ channel antagonists. Capsaicin-induced relaxation was impaired in rings from pigs with metabolic syndrome (91 +/- 4% vs. 51 +/- 10% relaxation at 100 microM). TRPV1 immunoreactivity was prominent in coronary endothelial cells. TRPV1 protein expression was decreased 40 +/- 11% in obese pigs. Capsaicin (100 microM) elicited divalent cation influx that was abolished in endothelial cells from obese pigs. These data indicate that TRPV1 channels are functionally expressed in the coronary circulation and mediate endothelium-dependent vasodilation through a mechanism involving nitric oxide and K+ channels. Impaired capsaicin-induced vasodilation in the metabolic syndrome is associated with decreased expression of TRPV1 and cation influx.  相似文献   

5.
This study tested the hypothesis that in hypertensive arteries cyclooxygenase-1 (COX-1) remains as a major form, mediating prostacyclin (prostaglandin I2; PGI2) synthesis that may evoke a vasoconstrictor response in the presence of functional vasodilator PGI2 (IP) receptors. Two-kidney-one-clip (2K1C) hypertension was induced in wild-type (WT) mice and/or those with COX-1 deficiency (COX-1-/-). Carotid arteries were isolated for analyses 4 weeks after. Results showed that as in normotensive mice, the muscarinic receptor agonist ACh evoked a production of the PGI2 metabolite 6-keto-PGF and an endothelium-dependent vasoconstrictor response; both of them were abolished by COX-1 inhibition. At the same time, PGI2, which evokes contraction of hypertensive vessels, caused relaxation after thromboxane-prostanoid (TP) receptor antagonism that abolished the contraction evoked by ACh. Antagonizing IP receptors enhanced the contraction to the COX substrate arachidonic acid (AA). Also, COX-1-/- mice was noted to develop hypertension; however, their increase of blood pressure and/or heart mass was not to a level achieved with WT mice. In addition, we found that either the contraction in response to ACh or that evoked by AA was abolished in COX-1-/- hypertensive mice. These results demonstrate that as in normotensive conditions, COX-1 is a major contributor of PGI2 synthesis in 2K1C hypertensive carotid arteries, which leads to a vasoconstrictor response resulting from opposing dilator and vasoconstrictor activities of IP and TP receptors, respectively. Also, our data suggest that COX-1-/- attenuates the development of 2K1C hypertension in mice, reflecting a net adverse role yielded from all COX-1-mediated activities under the pathological condition.  相似文献   

6.
An ethylene-diamino-triethyl-ester derivative of arachidonic acid (AA-EDTA) was newly synthetized and tested for its coronary vasoactivity in isolated perfused cat coronary arteries. This arachidonic acid analog exerted a coronary vasodilator effect and significantly antagonized the coronary vasoconstrictor effect of LTD4. The constrictor response to the thromboxane analog carbocyclic thromboxane A2 was unaffected by AA-EDTA. These properties of AA-EDTA may be useful in counteracting the vasoconstrictor influence of leukotrienes in situations such as coronary artery vasospasm.  相似文献   

7.
Myocardial infarction (MI) is associated with endothelial dysfunction resulting in an imbalance in endothelium-derived vasodilators and vasoconstrictors. We have previously shown that despite increased endothelin (ET) plasma levels, the coronary vasoconstrictor effect of endogenous ET is abolished after MI. In normal swine, nitric oxide (NO) and prostanoids modulate the vasoconstrictor effect of ET. In light of the interaction among NO, prostanoids, and ET combined with endothelial dysfunction present after MI, we investigated this interaction in control of coronary vasomotor tone in the remote noninfarcted myocardium after MI. Studies were performed in chronically instrumented swine (18 normal swine; 13 swine with MI) at rest and during treadmill exercise. Furthermore, endothelial nitric oxide synthase (eNOS) and cyclooxygenase protein levels were measured in the anterior (noninfarcted) wall of six normal and six swine with MI. eNOS inhibition with N(ω)-nitro-L-arginine (L-NNA) and cyclooxygenase inhibition with indomethacin each resulted in coronary vasoconstriction at rest and during exercise, as evidenced by a decrease in coronary venous oxygen levels. The effect of l-NNA was slightly decreased in swine with MI, although eNOS expression was not altered. Conversely, in accordance with the unaltered expression of cyclooxygenase-1 after MI, the effect of indomethacin was similar in normal and MI swine. L-NNA enhanced the vasodilator effect of the ET(A/B) receptor blocker tezosentan but exclusively during exercise in both normal and MI swine. Interestingly, this effect of L-NNA was blunted in MI compared with normal swine. In contrast, whereas indomethacin increased the vasodilator effect of tezosentan only during exercise in normal swine, indomethacin unmasked a coronary vasodilator effect of tezosentan in MI swine both at rest and during exercise. In conclusion, the present study shows that endothelial control of the coronary vasculature is altered in post-MI remodeled myocardium. Thus the overall vasodilator influences of NO as well as its inhibition of the vasoconstrictor influence of ET on the coronary resistance vessels were reduced after MI. In contrast, while the overall prostanoid vasodilator influence was maintained, its inhibition of ET vasoconstrictor influences was enhanced in post-MI remote myocardium.  相似文献   

8.
The secretion of angiogenic factors by vascular endothelial cells is one of the key mechanisms of angiogenesis. Here we report on the isolation of a new potent angiogenic factor, diuridine tetraphosphate (Up4U) from the secretome of human endothelial cells. The angiogenic effect of the endothelial secretome was partially reduced after incubation with alkaline phosphatase and abolished in the presence of suramin. In one fraction, purified to homogeneity by reversed phase and affinity chromatography, Up4U was identified by MALDI-LIFT-fragment-mass-spectrometry, enzymatic cleavage analysis and retention-time comparison. Beside a strong angiogenic effect on the yolk sac membrane and the developing rat embryo itself, Up4U increased the proliferation rate of endothelial cells and, in the presence of PDGF, of vascular smooth muscle cells. Up4U stimulated the migration rate of endothelial cells via P2Y2-receptors, increased the ability of endothelial cells to form capillary-like tubes and acts as a potent inducer of sprouting angiogenesis originating from gel-embedded EC spheroids. Endothelial cells released Up4U after stimulation with shear stress. Mean total plasma Up4U concentrations of healthy subjects (N = 6) were sufficient to induce angiogenic and proliferative effects (1.34±0.26 nmol L-1). In conclusion, Up4U is a novel strong human endothelium-derived angiogenic factor.  相似文献   

9.
A significant endothelium-dependent vasodilation persists after inhibition of nitric oxide synthase (NOS) and cyclooxygenase (COX) in the coronary vasculature, which has been linked to the activation of cytochrome P-450 (CYP) epoxygenases expressed in endothelial cells and subsequent generation of vasodilator epoxyeicosatrienoic acids. Here, we investigated the contribution of CYP 2C9 metabolites to regulation of porcine coronary vasomotor tone in vivo and in vitro. Twenty-six swine were chronically instrumented. Inhibition of CYP 2C9 with sulfaphenazole (5 mg/kg iv) alone had no effect on bradykinin-induced endothelium-dependent coronary vasodilation in vivo but slightly attenuated bradykinin-induced vasodilation in the presence of combined NOS/COX blockade with N(ω)-nitro-L-arginine (20 mg/kg iv) and indomethacin (10 mg/kg iv). Sulfaphenazole had minimal effects on coronary resistance vessel tone at rest or during exercise. Surprisingly, in the presence of combined NOS/COX blockade, a significant coronary vasodilator response to sulfaphenzole became apparent, both at rest and during exercise. Subsequently, we investigated in isolated porcine coronary small arteries (~250 μm) the possible involvement of reactive oxygen species (ROS) in the paradoxical vasoconstrictor influence of CYP 2C9 activity. The vasodilation by bradykinin in vitro in the presence of NOS/COX blockade was markedly potentiated by sulfaphenazole under control conditions but not in the presence of the ROS scavenger N-(2-mercaptoproprionyl)-glycine. In conclusion, CYP 2C9 can produce both vasoconstrictor and vasodilator metabolites. Production of these metabolites is enhanced by combined NOS/COX blockade and is critically dependent on the experimental conditions. Thus production of vasoconstrictors slightly outweighed the production of vasodilators at rest and during exercise. Pharmacological stimulation with bradykinin resulted in vasodilator CYP 2C9 metabolite production when administered in vivo, whereas vasoconstrictor CYP 2C9 metabolites, most likely ROS, were dominant when administered in vitro.  相似文献   

10.
The aim of this study was to analyze the contribution of nitric oxide, prostacyclin and endothelium-dependent hyperpolarizing factor to endothelium-dependent vasodilation induced by acetylcholine in rat aorta from control and ouabain-induced hypertensive rats. Preincubation with the nitric oxide synthase inhibitor N-omega-nitro-l-arginine methyl esther (L-NAME) inhibited the vasodilator response to acetylcholine in segments from both groups but to a greater extent in segments from ouabain-treated rats. Basal and acetylcholine-induced nitric oxide release were higher in segments from ouabain-treated rats. Preincubation with the prostacyclin synthesis inhibitor tranylcypromine or with the cyclooxygenase inhibitor indomethacin inhibited the vasodilator response to acetylcholine in aortic segments from both groups. The Ca2+-dependent potassium channel blocker charybdotoxin inhibited the vasodilator response to acetylcholine only in segments from control rats. These results indicate that hypertension induced by chronic ouabain treatment is accompanied by increased endothelial nitric oxide participation and impaired endothelium-dependent hyperpolarizing factor contribution in acetylcholine-induced relaxation. These effects might explain the lack of effect of ouabain treatment on acetylcholine responses in rat aorta.  相似文献   

11.
Previous studies showed that nitric oxide (NO) plays an important role in coronary arteriolar dilation to increases in myocardial oxygen consumption (MVO(2)). We sought to evaluate coronary microvascular responses to endothelium-dependent and to endothelium-independent vasodilators in an in vivo model. Microvascular diameters were measured using intravital microscopy in 10 normal (N) and 9 hyperglycemic (HG; 1 wk alloxan, 60 mg/kg iv) dogs during suffusion of acetylcholine (1, 10, and 100 microM) or nitroprusside (1, 10, and 100 microM) to test the effects on endothelium-dependent and -independent dilation. During administration of acetylcholine, coronary arteriolar dilation was impaired in HG, but was normal during administration of nitroprusside. To examine a physiologically important vasomotor response, 10 N and 7 HG control, 5 HG and 5 N during superoxide dismutase (SOD), and 5 HG and 4 N after SQ29,548 (SQ; thromboxane A(2)/prostaglandin H(2) receptor antagonist) dogs were studied at three levels of MVO(2): at rest, during dobutamine (DOB; 10 microg. kg(-1). min(-1) iv), and during DOB with rapid atrial pacing (RAP; 280 +/- 10 beats/min). During dobutamine, coronary arterioles dilated similarly in all groups, and the increase in MVO(2) was similar among the groups. However, during the greater metabolic stimulus (DOB+RAP), coronary arterioles in N dilated (36 +/- 4% change from diameter at rest) significantly more than HG (16 +/- 3%, P < 0.05). In HG+SQ and in HG+SOD, coronary arterioles dilated similarly to N, and greater than HG (P < 0.05). MVO(2) during DOB+RAP was similar among groups. Normal dogs treated with SOD and SQ29,548 were not different from untreated N dogs. Thus, in HG dogs, dilation of coronary arterioles is selectively impaired in response to administration of the endothelium-dependent vasodilator acetylcholine and during increases in MVO(2).  相似文献   

12.
Purinergic signaling has considerable impact on the functioning of the nervous system, including the special senses. Purinergic receptors are expressed in various cell types in the retina, cochlea, taste buds, and the olfactory epithelium. The activation of these receptors by nucleotides, particularly adenosine-5′-triphosphate (ATP) and its breakdown products, has been shown to tune sensory information coding to control the homeostasis and to regulate the cell turnover in these organs. While the purinergic system of the retina, cochlea, and taste buds has been investigated in numerous studies, the available information about purinergic signaling in the olfactory system is rather limited. Using functional calcium imaging, we identified and characterized the purinergic receptors expressed in the vomeronasal organ of larval Xenopus laevis. ATP-evoked activity in supporting and basal cells was not dependent on extracellular Ca2+. Depletion of intracellular Ca2+ stores disrupted the responses in both cell types. In addition to ATP, supporting cells responded also to uridine-5′-triphosphate (UTP) and adenosine-5′-O-(3-thiotriphosphate) (ATPγS). The response profile of basal cells was considerably broader. In addition to ATP, they were activated by ADP, 2-MeSATP, 2-MeSADP, ATPγS, UTP, and UDP. Together, our findings suggest that supporting cells express P2Y2/P2Y4-like purinergic receptors and that basal cells express multiple P2Y receptors. In contrast, vomeronasal receptor neurons were not sensitive to nucleotides, suggesting that they do not express purinergic receptors. Our data provide the basis for further investigations of the physiological role of purinergic signaling in the vomeronasal organ and the olfactory system in general.  相似文献   

13.
The perfused rat liver responds in several ways to NAD+ infusion (20–100 μM). Increases in portal perfusion pressure and glycogenolysis and transient inhibition of oxygen consumption and gluconeogenesis are some of the effects that were observed. Extracellular NAD+ is also extensively transformed in the liver. The purpose of the present work was to determine the main products of extracellular NAD+ transformation under various conditions and to investigate the possible contribution of these products for the metabolic effects of the parent compound. The experiments were done with the isolated perfused rat liver. The NAD+ transformation was monitored by HPLC. Confirming previous findings, the single-pass transformation of 100 μM NAD+ ranged between 75% at 1.5 min after starting infusion to 95% at 8 min. The most important products of single-pass NAD+ transformation appearing in the outflowing perfusate were nicotinamide, ADP-ribose, uric acid, and inosine. The relative proportions of these products presented some variations with the time after initiation of NAD+ infusion and the perfusion conditions, but ADP-ribose was always more abundant than uric acid and inosine. Cyclic ADP-ribose (cADP-ribose) as well as adenosine were not detected in the outflowing perfusate. The metabolic effects of ADP-ribose were essentially those already described for NAD+. These effects were sensitive to suramin (P2XY purinergic receptor antagonist) and insensitive to 3,7-dimethyl-1-(2-propargyl)-xanthine (A2 purinergic receptor antagonist). Inosine, a known purinergic A3 agonist, was also active on metabolism, but uric acid and nicotinamide were inactive. It was concluded that the metabolic and hemodynamic effects of extracellular NAD+ are caused mainly by interactions with purinergic receptors with a highly significant participation of its main transformation product ADP-ribose.  相似文献   

14.
Acetylcholine acts on the different components of the coronary arterial wall by 1) initiating endothelium-dependent relaxation of the smooth muscle cells; 2) inhibiting the exocytotic release of norepinephrine (NE), which could result in either vasodilator or vasoconstrictor effects depending on whether the main action of NE is alpha- or beta-adrenergic, respectively; and 3) activating the contractile process of the smooth muscle cells. These different effects of the cholinergic transmitter are muscarinic in nature. Their relative importance varies among species, or when acetylcholine is given exogenously rather than released from cholinergic nerves.  相似文献   

15.
Previous studies demonstrated a decreased flow reserve in the hypertrophied myocardium early after myocardial infarction (MI). Previously, we reported that exacerbation of hemodynamic abnormalities and neurohumoral activation during exercise caused slight impairment of myocardial O(2) supply in swine with a recent MI. We hypothesized that increased metabolic coronary vasodilation [via ATP-sensitive K(+) (K(ATP)(+)) channels and adenosine] may have partially compensated for the increased extravascular compressive forces and increased vasoconstrictor neurohormones, thereby preventing a more severe impairment of myocardial O(2) balance. Chronically instrumented swine were exercised on a treadmill up to 85% of maximum heart rate. Under resting conditions, adenosine receptor blockade [8-phenyltheophylline (8-PT), 5 mg/kg i.v.] and K(ATP)(+) channel blockade (glibenclamide, 3 mg/kg i.v.) produced similar decreases in myocardial O(2) supply in normal and MI swine. However, while glibenclamide's effect waned in normal swine during exercise (P < 0.05), it was maintained in MI swine. 8-PT's effect was maintained during exercise and was not different between normal and MI swine. Finally, in normal swine combined treatment with 8-PT and glibenclamide produced a vasoconstrictor response that equaled the sum of the responses to blockade of the individual pathways. In contrast, in MI swine the vasoconstrictor response to 8-PT and glibenclamide was similar to that produced by glibenclamide alone. In conclusion, despite significant hemodynamic abnormalities in swine with a recent MI, myocardial O(2) supply and O(2) consumption in remodeled myocardium are still closely matched during exercise. This close matching is supported by increased K(ATP)(+) channel-mediated coronary vasodilation. Although the net vasodilator influence of adenosine was unchanged in remodeled myocardium, it became exclusively dependent on K(ATP)(+) channel opening.  相似文献   

16.
The addition of prostaglandin (PG) D2 contracted helical strips of dog cerebral, coronary, renal and femoral arteries; the contraction was greatest in cerebral arteries. The contractile response of cerebral arteries was potentiated by aspirin and attenuated by polyphloretin phosphate. In the arterial strips contracted with PGF, PGD2 elicited a concetration-related relaxation; the relaxation was greatest in mesenteric arteries. In mesenteric arterial strips contracted with norepinephrine, a lesser degree of relaxation was induced, and in the K+-contracted arteries, only a contraction was induced. Treatment with PGD2 attenuated the contractile responses of cerebral and mesentric arteries to PGF or PGE2; this inhibitory effect was approximately 10 times greater in mesenteric arteries. However, the response to serotonin (for cerebral arteries) or norepinephrine (for mesenteric) was unaffected. It may be concluded that the heterogeneity of response to PGD2 of a variety of dog arteries is due to different contributions of vasoconstrictor and vasodilator mechanisms. PGD2 appears top share the mechanism underlying arterial contraction with PGF and PGE2, and interferes with the effect of these PG's possibly on receptor sites.  相似文献   

17.

Background and Aims

Endothelial small- and intermediate-conductance KCa channels, SK3 and IK1, are key mediators in the endothelium-derived hyperpolarization and relaxation of vascular smooth muscle and also in the modulation of endothelial Ca2+ signaling and nitric oxide (NO) release. Obesity is associated with endothelial dysfunction and impaired relaxation, although how obesity influences endothelial SK3/IK1 function is unclear. Therefore we assessed whether the role of these channels in the coronary circulation is altered in obese animals.

Methods and Results

In coronary arteries mounted in microvascular myographs, selective blockade of SK3/IK1 channels unmasked an increased contribution of these channels to the ACh- and to the exogenous NO- induced relaxations in arteries of Obese Zucker Rats (OZR) compared to Lean Zucker Rats (LZR). Relaxant responses induced by the SK3/IK1 channel activator NS309 were enhanced in OZR and NO- endothelium-dependent in LZR, whereas an additional endothelium-independent relaxant component was found in OZR. Fura2-AM fluorescence revealed a larger ACh-induced intracellular Ca2+ mobilization in the endothelium of coronary arteries from OZR, which was inhibited by blockade of SK3/IK1 channels in both LZR and OZR. Western blot analysis showed an increased expression of SK3/IK1 channels in coronary arteries of OZR and immunohistochemistry suggested that it takes place predominantly in the endothelial layer.

Conclusions

Obesity may induce activation of adaptive vascular mechanisms to preserve the dilator function in coronary arteries. Increased function and expression of SK3/IK1 channels by influencing endothelial Ca2+ dynamics might contribute to the unaltered endothelium-dependent coronary relaxation in the early stages of obesity.  相似文献   

18.
Here we elaborated an analytical approach for the simulation of dose-response curves mediated by cellular receptors coupled to PLC and Ca2+ mobilization. Based on a mathematical model of purinergic Ca2+ signaling in taste cells, the analysis of taste cells responsiveness to nucleotides was carried out. Consistently with the expression of P2Y2 and P2Y4 receptors in taste cells, saturating ATP and UTP equipotently mobilized intracellular Ca2+. Cellular responses versus concentration of BzATP, a P2Y2 agonist and a P2Y4 antagonist, implicated high and low affinity BzATP receptors. Suramin modified the BzATP dose-response curve in a manner that suggested the low affinity receptor to be weakly sensitive to this P2Y antagonist. Given that solely P2Y2 and P2Y11 are BzATP receptors, their high sensitivity to suramin is poorly consistent with the suramin effects on BzATP responses. We simulated a variety of dose-response curves for different P2Y receptor sets and found that the appropriate fit of the overall pharmacological data was achievable only with dimeric receptors modeled as P2Y2/P2Y4 homo- and heterodimers. Our computations and analytical analysis of experimental dose-response curves raise the possibility that ATP responsiveness of mouse taste cells is mediated by P2Y2 and P2Y4 receptors operative mostly in the dimeric form.  相似文献   

19.
The aim of this study was to clarify whether or not arachidonic acid metabolic disorders are caused by a substrate inavailability and whether such disorders might contribute to circulatory disturbances in the diabetic myocardium. Norepinephrine induced a decrease in the conductivity of both coronary arterial bed and myocardial microcirculation in alloxan-diabetic dogs. It was markedly (p < 0.05) attenuated both by indomethacin and acetylsalicylic acid pretreatments indicating an imbalance among the vasoactive prostanoids in diabetes. TXA2 release from the diabetic coronary rings was found to be elevated and could be normalized after the blockade of vascular adrenoceptors by phentolamine (p < 0.05). PGIZ synthesis was also enhanced by adrenergic blockade in the diabetic arterial rings. After pretreatment with l4C arachidonic acid, in order to measure substrate availability, the arachidonic acid metabolic rate was less in the diabetic coronary arteries than in healthy vessels (p < 0.05). Ten µmol/1 norepinephrine decreased arachidonic acid metabolism in the presence of prelabelled substrate in the diabetic animals, compared to an increase observed in metabolically healthy dogs. Therefore diabetes appears to diminish arachidonic acid metabolism and uptake independent of adrenoceptors and to induce an imbalance between vasoconstrictor and vasodilator cyclooxygenase products, resulting in elevated TXA2 release controlled by adrenergic mechanisms which may contribute to an impairment in myocardial microcirculation.Abbreviations 6-oxo-PGF1 6-oxo prostaglandin F1 - HPLC High Pressure Liquid Chromatograph - LAD Left Anterior Descending (coronary artery) - PGI2 Prostacyclin - TXA2 Thromboxane  相似文献   

20.
We previously reported that canine collateral-dependent coronary arteries exhibit impaired relaxation to adenosine but not sodium nitroprusside. In contrast, exercise training enhances adenosine sensitivity of normal porcine coronary arteries. These results stimulated the hypothesis that chronic coronary occlusion and exercise training produce differential effects on cAMP- versus cGMP-mediated relaxation. To test this hypothesis, Ameroid occluders were surgically placed around the proximal left circumflex coronary artery (LCx) of female Yucatan miniature swine 8 wk before initiating sedentary or exercise training (treadmill run, 16 wk) protocols. Relaxation to the cAMP-dependent vasodilators adenosine (10(-7) to 10(-3) M) and isoproterenol (3 x 10(-8) to 3 x 10(-5) M) were impaired in collateral-dependent LCx versus nonoccluded left anterior descending (LAD) arterial rings isolated from sedentary but not exercise-trained pigs. Furthermore, adenosine-mediated reductions in simultaneous tension and myoplasmic free Ca(2+) were impaired in LCx versus LAD arteries isolated from sedentary but not exercise-trained pigs. In contrast, relaxation in response to the cAMP-dependent vasodilator forskolin (10(-9) to 10(-5) M) and the cGMP-dependent vasodilator sodium nitroprusside (10(-9) to 10(-4) M) was not different in LCx versus LAD arteries of sedentary or exercise-trained animals. These data suggest that chronic occlusion impairs receptor-dependent, cAMP-mediated relaxation; receptor-independent cAMP- and cGMP-mediated relaxation were unimpaired. Importantly, exercise training restores cAMP-mediated relaxation of collateral-dependent coronary arteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号