首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sugars are important molecules that function not only as primary metabolites, but also as nutrients and signal molecules in plants. The sugar transport protein genes family SWEET has been recently identified. The availability of the Dendrobium officinale and Phalaenopsis equestris genome sequences offered the opportunity to study the SWEET gene family in this two orchid species. We identified 22 and 16 putative SWEET genes, respectively, in the genomes of D. officinale and P. equestris using comprehensive bioinformatics analysis. Based on phylogenetic comparisons with SWEET proteins from Arabidopsis and rice, the DoSWEET and PeSWEET proteins could be divided into four clades; among these, clade II specifically lacked PeSWEETs and clade IV specifically lacked DoSWEETs, and there were orthologs present between D. officinale and P. equestris. Protein sequence alignments suggest that there is a predicted serine phosphorylation site in each of the highly conserved MtN3/saliva domain regions. Gene expression analysis in four tissues showed that three PeSWEET genes were most highly expressed in the flower, leaf, stem, and root, suggesting that these genes might play important roles in growth and development in P. equestris. Analysis of gene expression in different floral organs showed that five PeSWEET genes were highly expressed in the column (gynostemium), implying their possible involvement in reproductive development in this species. The expression patterns of seven PeSWEETs in response to different abiotic stresses showed that three genes were upregulated significantly in response to high temperature and two genes were differently expressed at low temperature. The results of this study lay the foundation for further functional analysis of SWEET genes in orchids.  相似文献   

2.
Two repeated DNA sequences isolated from a partial genomic DNA library of Helianthus annuus, p HaS13 and p HaS211, were shown to represent portions of the int gene of a Ty3 /gypsy retroelement and of the RNase-Hgene of a Ty1 /copia retroelement, respectively. Southern blotting patterns obtained by hybridizing the two probes to BglII- or DraI-digested genomic DNA from different Helianthus species showed p HaS13 and p HaS211 were parts of dispersed repeats at least 8 and 7 kb in length, respectively, that were conserved in all species studied. Comparable hybridization patterns were obtained in all species with p HaS13. By contrast, the patterns obtained by hybridizing p HaS211 clearly differentiated annual species from perennials. The frequencies of p HaS13- and p HaS211-related sequences in different species were 4.3x10(4)-1.3x10(5) copies and 9.9x10(2)-8.1x10(3) copies per picogram of DNA, respectively. The frequency of p HaS13-related sequences varied widely within annual species, while no significant difference was observed among perennial species. Conversely, the frequency variation of p HaS211-related sequences was as large within annual species as within perennials. Sequences of both families were found to be dispersed along the length of all chromosomes in all species studied. However, Ty3 /gypsy-like sequences were localized preferentially at the centromeric regions, whereas Ty1/ copia-like sequences were less represented or absent around the centromeres and plentiful at the chromosome ends. These findings suggest that the two sequence families played a role in Helianthusgenome evolution and species divergence, evolved independently in the same genomic backgrounds and in annual or perennial species, and acquired different possible functions in the host genomes.  相似文献   

3.
Studying Pneumocystis has proven to be a challenge from the perspective of propagating a significant amount of the pathogen in a facile manner. The study of several fungal pathogens has been aided by the use of invertebrate model hosts. Our efforts to infect the invertebrate larvae Galleria mellonella with Pneumocystis proved futile since P. murina neither caused disease nor was able to proliferate within G. mellonella. It did, however, show that the pathogen could be rapidly cleared from the host.  相似文献   

4.
5.
A revision of Penstemon sect. Saccanthera subsect. Serrulati includes a new species (P. salmonensis), a new variety (P. triphyllus var. infernalis), and the elevation of a subspecies to species (P. curtiflorus), bringing the total number of species to eight, which are keyed and described, complete with nomenclature and type citations.  相似文献   

6.
A genetic transformation system has been developed for callus cells of Crataegus aronia using Agrobacterium tumefaciens. Callus culture was established from internodal stem segments incubated on Murashige and Skoog (MS) medium supplemented with 5 mg l−1 Indole-3-butyric acid (IBA) and 0.5 mg l−1 6-benzyladenine (BA). In order to optimize the callus culture system with respect to callus growth and coloration, different types and concentrations of plant growth regulators were tested. Results indicated that the best average fresh weight of red colored callus was obtained on MS medium supplemented with 2 mg l−1 2,4-dichlorophenoxyacetic acid (2,4-D) and 1.5 mg l−1 kinetin (Kin) (callus maintenance medium). Callus cells were co-cultivated with Agrobacterium harboring the binary plasmid pCAMBIA1302 carrying the mgfp5 and hygromycin phosphotransferase (hptII) genes conferring green fluorescent protein (GFP) activity and hygromycin resistance, respectively. Putative transgenic calli were obtained 4 weeks after incubation of the co-cultivated explants onto maintenance medium supplemented with 50 mg l−1 hygromycin. Molecular analysis confirmed the integration of the transgenes in transformed callus. To our knowledge, this is the first time to report an Agrobacterium-mediated transformation system in Crataegus aronia.  相似文献   

7.
Here we evaluate the origins and relationships of Mexican and Central American Diplazium hybrids derived from crosses involving either D. plantaginifolium or D. ternatum. Based on study of live plants and herbarium specimens, we distinguish D. ×verapax from the similar D. riedelianum and present evidence that the former is a sterile hybrid derived from a cross between D. plantaginifolium and D. werckleanum. We also describe new hybrids, D. ×torresianum and D. ×subternatum from Mexico and northern Central America. Both involve D. ternatum as one parent. Diplazium. cristatum is the other putative parent of D. ×torresianum, and D. plantaginifolium is the second parent of D. ×subternatum. We also designate lectotypes for D. cordovense and D. dissimile.  相似文献   

8.
To construct an evolutionary hypothesis for the genus Frankia, gyrB (encoding gyrase B), nifH (encoding nitrogenase reductase) and glnII (encoding glutamine synthetase II) gene sequences were considered for 38 strains. The overall clustering pattern among Frankia strains based on the three analyzed sequences varied among themselves and with the previously established 16S rRNA gene phylogeny and they did not reliably reflect clear evolution of the four discerned Frankia clusters (1, 2, 3 and 4). Based on concatenated gyrB, nifH and glnII, robust phylogenetic trees were observed with the three treeing methods (Maximum Likelihood, Parsimony and Neighbor-Joining) and supported by strong bootstrap and posterior probability values (>75%) for overall branching. Cluster 4 (non-infective and/or non-nitrogen-fixing Frankia) was positioned at a deeper branch followed by cluster 3 (Rhamnaceae and Elaeagnaceae infective Frankia), while cluster 2 represents uncultured Frankia microsymbionts of the Coriariaceae, Datiscaceae, Rosaceae and of Ceanothus sp. (Rhamnaceae); Cluster 1 (Betulaceae, Myricaceae and Casuarinaceae infective Frankia) appears to have diverged more recently. The present study demonstrates the utility of phylogenetic analyses based upon concatenated gyrB, nifH and glnII sequences to help resolve previously unresolved or poorly resolved nodes and will aid in describing species among the genus Frankia.  相似文献   

9.
10.
A yellow pigmented bacterium designated strain MBLN094T within the family Flavobacteriaceae was isolated from a halophyte Salicornia europaea on the coast of the Yellow Sea. This strain was a Gram-stain negative, aerobic, non-spore forming, rod-shaped bacterium. Phylogenetic analysis of the 16S rRNA gene sequence of strain MBLN094T was found to be related to the genus Zunongwangia, exhibiting 16S rRNA gene sequence similarity values of 97.0, 96.8, 96.4, and 96.3% to Zunongwangia mangrovi P2E16T, Z. profunda SM-A87T, Z. atlantica 22II14-10F7T, and Z. endophytica CPA58T, respectively. Strain MBLN094T grew at 20?37°C (optimum, 25?30°C), at pH 6.0?10.0 (optimum, 7.0?8.0), and with 0.5?15.0% (w/v) NaCl (optimum, 2.0?5.0%). Menaquinone MK-6 was the sole respiratory quinone. The polar lipids were phosphatidylethanolamine, two unidentified aminolipids, and four unidentified lipids. Major fatty acids were iso-C17:0 3-OH, summed feature 3 (C16:1ω6c and/or C16:1 ω7c), and iso-C15:0. The genomic DNA G + C content was 37.4 mol%. Based on these polyphasic taxonomic data, strain MBLN094T is considered to represent a novel species of the genus Zunongwangia, for which the name Zunongwangia flava sp. nov. is proposed. The type strain is MBLN094T (= KCTC 62279T = JCM 32262T).  相似文献   

11.
The maT clade of transposons is a group of transposable elements intermediate in sequence and predicted protein structure to mariner and Tc transposons, with a distribution thus far limited to a few invertebrate species. We present evidence, based on searches of publicly available databases, that the nematode Caenorhabditis briggsae has several maT-like transposons, which we have designated as CbmaT elements, dispersed throughout its genome. We also describe two additional transposon sequences that probably share their evolutionary history with the CbmaT transposons. One resembles a fold back variant of a CbmaT element, with long (380-bp) inverted terminal repeats (ITRs) that show a high degree (71%) of identity to CbmaT1. The other, which shares only the 26-bp ITR sequences with one of the CbmaT variants, is present in eight nearly identical copies, but does not have a transposase gene and may therefore be cross mobilised by a CbmaT transposase. Using PCR-based mobility assays, we show that CbmaT1 transposons are capable of excising from the C. briggsae genome. CbmaT1 excised approximately 500 times less frequently than Tcb1 in the reference strain AF16, but both CbmaT1 and Tcb1 excised at extremely high frequencies in the HK105 strain. The HK105 strain also exhibited a high frequency of spontaneous induction of unc-22 mutants, suggesting that it may be a mutator strain of C. briggsae.  相似文献   

12.
13.
14.
BACKGROUND: Wolbachia and Cardinium are endosymbiotic bacteria infecting many arthropods and manipulating host reproduction. Although these bacteria are maternally transmitted, incongruencies between phylogenies of host and parasite suggest an additional role for occasional horizontal transmission. Consistent with this view is the strong evidence for recombination in Wolbachia, although it is less clear to what extent recombination drives diversification within single host species and genera. Furthermore, little is known concerning the population structures of other insect endosymbionts which co-infect with Wolbachia, such as Cardinium. Here, we explore Wolbachia and Cardinium strain diversity within nine spider mite species (Tetranychidae) from 38 populations, and quantify the contribution of recombination compared to point mutation in generating Wolbachia diversity. RESULTS: We found a high level of genetic diversity for Wolbachia, with 36 unique strains detected (64 investigated mite individuals). Sequence data from four Wolbachia genes suggest that new alleles are 7.5 to 11 times more likely to be generated by recombination than point mutation. Consistent with previous reports on more diverse host samples, our data did not reveal evidence for co-evolution of Wolbachia with its host. Cardinium was less frequently found in the mites, but also showed a high level of diversity, with eight unique strains detected in 15 individuals on the basis of only two genes. A lack of congruence among host and Cardinium phylogenies was observed. CONCLUSIONS: We found a high rate of recombination for Wolbachia strains obtained from host species of the spider mite family Tetranychidae, comparable to rates found for horizontally transmitted bacteria. This suggests frequent horizontal transmission of Wolbachia and/or frequent horizontal transfer of single genes. Our findings strengthens earlier reports of recombination for Wolbachia, and shows that high recombination rates are also present on strains from a restrictive host range. Cardinium was found co-infecting several spider mite species, and phylogenetic comparisons suggest also horizontal transmission of Cardinium among hosts.  相似文献   

15.
16.
New combinations are proposed in anticipation of the Polygonaceae treatment in the forthcoming volume of Intermountain Flora: Polygonum kelloggii var. esotericum, P. kelloggii var. watsonii , Rumex densiflorus var. pycnanthus , R. salicifolius var. utahensis, and R. occidentalis var. tomentellus. Typifications are proposed to facilitate ongoing studies in Polygonaceae and to maintain current usage.  相似文献   

17.
18.
Mitochondria play essential roles in development and disease. The characterisation of mitochondrial proteins is therefore of particular importance. The slowmo (slmo) gene of Drosophila melanogaster has been shown to encode a novel type of mitochondrial protein, and is essential in the developing central nervous system. The Slmo protein contains a conserved PRELI/MSF1p domain, found in proteins from a wide variety of eukaryotic organisms. However, the function of the proteins of this family is currently unknown. In this study, the evolutionary relationships between members of the PRELI/MSF1p family are described, and we present the first analysis of two novel Drosophila genes predicted to encode proteins of this type. The first of these, preli-like (prel), is expressed ubiquitously during embryonic development, whilst the second, real-time (retm), is expressed dynamically in the developing gut and central nervous system. retm encodes a member of a novel conserved subclass of larger PRELI/MSF1p domain proteins, which also contain the CRAL-TRIO motif thought to mediate the transport of small hydrophobic ligands. Here we provide evidence that, like Slmo, both the Prel and Retm proteins are localised to the mitochondria, indicating that the function of the PRELI/MSF1p domain is specific to this organelle.Edited by P. Simpson  相似文献   

19.
Seol E  Jung Y  Lee J  Cho C  Kim T  Rhee Y  Lee S 《Plant cell reports》2008,27(7):1197-1206
Notocactus scopa cv. Soonjung was subjected to in planta Agrobacterium tumefaciens-mediated transformation with vacuum infiltration, pin-pricking, and a combination of the two methods. The pin-pricking combined with vacuum infiltration (20-30 cmHg for 15 min) resulted in a transformation efficiency of 67-100%, and the expression of the uidA and nptII genes was detected in transformed cactus. The established in planta transformation technique generated a transgenic cactus with higher transformation efficiency, shortened selection process, and stable gene expression via asexual reproduction. All of the results showed that the in planta transformation method utilized in the current study provided an efficient and time-saving procedure for the delivery of genes into the cactus genome, and that this technique can be applied to other asexually reproducing succulent plant species.  相似文献   

20.
The Gossypium MIC-3 (Meloidogyne Induced Cotton-3) gene family is of great interest for molecular evolutionary studies because of its uniqueness to Gossypium species, multi-gene content, clustered localization, and root-knot nematode resistance-associated features. Molecular evolution of the MIC-3 gene family was studied in 15 tetraploid and diploid Gossypium genotypes that collectively represent seven phylogenetically distinct genomes. Synonymous (dS) and non-synonymous (dN) nucleotide substitution rates suggest that the second of the two exons of the MIC-3 genes has been under strong positive selection pressure, while the first exon has been under strong purifying selection to preserve function. Based on nucleotide substitution rates, we conclude that MIC-3 genes are evolving by a birth-and-death process and that a ‘gene amplification’ mechanism has helped to retain all duplicate copies, which best fits with the “bait and switch” model of R-gene evolution. The data indicate MIC-3 gene duplication events occurred at various rates, once per 1 million years (MY) in the allotetraploids, once per ~2 MY in the A/F genome clade, and once per ~8 MY in the D-genome clade. Variations in the MIC-3 gene family seem to reflect evolutionary selection for increased functional stability, while also expanding the capacity to develop novel “switch” pockets for responding to diverse pests and pathogens. Such evolutionary roles are congruent with the hypothesis that members of this unique resistance gene family provide fitness advantages in Gossypium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号