首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The segmented double-stranded (ds) RNA genome of the simian rotavirus SA 11, after denaturation, can be translated in a cell-free protein synthesizing system. Of the 11 genome segments, 9 can be resolved on polyacrylamide gels and thus could be individually isolated and translated, providing a means of identifying the polypeptide encoded by each segment. On the basis of electrophoretic mobility of products in sodium dodecyl sulfate-polyacrylamide gels, the probable gene-coding assignments of dsRNA segments 1 to 6 were determined. RNA segments 1 to 4 code for polypeptides I1, I2, I3, and I4, respectively; segment 5 codes for a polypeptide very similar in mobility to a minor polypeptide present in SA 11-infected cells, O1A; and segment 6 codes for the major inner-capsid polypeptide I5.  相似文献   

2.
Four rotavirus SA11 temperature-sensitive (ts) mutants and seven rotavirus RRV ts mutants, isolated at the National Institutes of Health (NIH) and not genetically characterized, were assigned to reassortment groups by pairwise crosses with the SA11 mutant group prototypes isolated and characterized at Baylor College of Medicine (BCM). Among the NIH mutants, three of the RRV mutants and all four SA11 mutants contained mutations in single reassortment groups, and four RRV mutants contained mutations in multiple groups. One NIH mutant [RRVtsK(2)] identified the previously undefined 11th reassortment group (K) expected for rotavirus. Three NIH single mutant RRV viruses, RRVtsD(7), RRVtsJ(5), and RRVtsK(2), were in reassortment groups not previously mapped to genome segments. These mutants were mapped using classical genetic methods, including backcrosses to demonstrate reversion or suppression in reassortants with incongruent genotype and temperature phenotype. Once located to specific genome segments by genetic means, the mutations responsible for the ts phenotype were identified by sequencing. The reassortment group K mutant RRVtsK(2) maps to genome segment 9 and has a Thr280Ileu mutation in the capsid surface glycoprotein VP7. The group D mutant RRVtsD(7) maps to segment 5 and has a Leu140Val mutation in the nonstructural interferon (IFN) antagonist protein NSP1. The group J mutant RRVtsJ(5) maps to segment 11 and has an Ala182Gly mutation affecting only the NSP5 open reading frame. Rotavirus ts mutation groups are now mapped to 9 of the 11 rotavirus genome segments. Possible segment locations of the two remaining unmapped ts mutant groups are discussed.  相似文献   

3.
The genome of the UK bovine rotavirus, which consists of eleven segments of dsRNA was polyadenylated and reverse-transcribed into cDNA. Complementary cDNA strands were annealed and the termini of the duplexes completed using DNA polymerase I. Full-length DNA copies of RNA segments 7, 8 and 9 were cloned into the Pst I site of pBR322 and a clone containing the entire gene 7 was identified and sequenced. Gene 7 is 1059 nucleotides in length and contains a single long open reading frame capable of coding for a protein of 317 amino-acids. The known gene product of segment 7 is a protein with an estimated molecular weight of 33,000 daltons. When the UK bovine rotavirus gene 7 sequence was compared with the published data for the homologous gene (segment 8) of the simian rotavirus SA11, it was found to be identical to it in size and the arrangement of the proposed coding and non-coding regions, and very similar in nucleotide sequence (88% homology). Most of the base changes are silent and the predicted amino-acid sequences are almost identical (96% homology).  相似文献   

4.
Biochemical mapping of the simian rotavirus SA11 genome   总被引:24,自引:18,他引:6       下载免费PDF全文
  相似文献   

5.
Genetic studies of reassortant rotaviruses have demonstrated that gene segments 4 and 9 each segregate with the serotype-specific neutralization phenotype in vitro. Reassortant rotaviruses derived by coinfection of MA-104 cells with the simian strain SA11 and the antigenically distinct bovine strain NCDV were used to determine which viral genes coded for proteins which induced a protective immune response in vivo. In addition, reassortant rotaviruses containing only the gene segment 4 or 9 protein products (vp3 and vp7, respectively) from SA11 or NCDV were used to determine the serotypic specificities of both vp3 and vp7 in several mammalian rotavirus strains. vp3 and vp7 from the murine strain Eb were shown to be indistinguishable from the corresponding proteins from strain SA11. Adult mice orally inoculated with strain Eb developed neutralizing antibodies to both vp3 and vp7. The two naturally occurring bovine rotavirus strains NCDV and UK were shown to contain antigenically similar vp7 but distinct vp3 proteins. Mouse dams orally immunized with a reassortant virus containing only gene 9 from NCDV passively protected their progeny against UK challenge, whereas mouse dams orally immunized with a reassortant virus containing only gene 4 from NCDV did not. Finally, we constructed reassortant viruses that immunized against rotaviruses of two distinct serotypes. SA11 X NCDV reassortants that contained vp3 and vp7 from different parents induced a protective immune response against both parental serotypes. vp3 and vp7 were independently capable of inducing a protective immune response after oral immunization. An understanding of the serotypic specificities of both vp3 and vp7 of human rotavirus isolates will be necessary for the development of successful strategies to protect infants against severe rotavirus infections.  相似文献   

6.
Clearance of chronic murine rotavirus infection in SCID mice can be demonstrated by adoptive transfer of immune CD8+ T lymphocytes from histocompatible donor mice immunized with a murine homotypic rotavirus (T. Dharakul, L. Rott, and H.B. Greenberg, J. Virol 64:4375-4382, 1990). The present study focuses on the protein specificity and heterotypic nature of cell-mediated clearance of chronic murine rotavirus infection in SCID mice. Heterotypic cell-mediated clearance was demonstrated in SCID mice infected with EDIM (murine) rotavirus after adoptive transfer of CD8+ T lymphocytes from BALB/c mice that were immunized with a variety of heterologous (nonmurine) rotaviruses including Wa (human, serotype 1), SA11 and RRV (simian, serotype 3), and NCDV and RF (bovine, serotype 6). This finding indicates the serotypic independence of T-cell-mediated rotavirus clearance. To further identify the rotavirus proteins that are capable of generating CD8+ T cells that mediate virus clearance, donor mice were immunized with SF-9 cells infected with a baculovirus recombinant expressing one of the following rotavirus proteins: VP1, VP2, NS53 (from RF), VP4, VP7, NS35 (from RRV), VP6, and NS28 (from SA11). SCID mice stopped shedding rotavirus after receiving CD8+ T cells from mice immunized with VP1, VP4, VP6, and VP7 but not with VP2, NS53, NS35, NS28, or wild-type baculovirus. These results suggest that heterotypic cell-mediated clearance of rotavirus in SCID mice is mediated by three of the major rotavirus structural proteins and by a putative polymerase protein.  相似文献   

7.
S Hallén  M Br?ndén  P A Dawson  G Sachs 《Biochemistry》1999,38(35):11379-11388
Mammalian sodium-dependent bile acid transporters (SBATs) responsible for bile salt uptake across the liver sinusoidal or ileal/renal brush border membrane have been identified and share approximately 35% amino acid sequence identity. Programs for prediction of topology and localization of transmembrane helices identify eight or nine hydrophobic regions for the SBAT sequences as membrane spanning. Analysis of N-linked glycosylation has provided evidence for an exoplasmic N-terminus and a cytoplasmic C-terminus, indicative of an odd number of transmembrane segments. To determine the membrane topography of the human ileal SBAT (HISBAT), an in vitro translation/translocation protocol was employed using three different fusion protein constructs. Individual HISBAT segments were analyzed for signal anchor or stop translocation (stop transfer) activity by insertion between a cytoplasmic anchor (HK M0) or a signal anchor segment (HK M1) and a glycosylation flag (HK beta). To examine consecutive HISBAT sequences, sequential hydrophobic sequences were inserted into the HK M0 vector or fusion vectors were made that included the glycosylated N-terminus of HISBAT, sequential hydrophobic sequences, and the glycosylation flag. Individual signal anchor (SA) and stop transfer (ST) properties were found for seven out of the nine predicted hydrophobic segments (H1, H2, H4, H5, H6, H7, and H9), supporting a seven transmembrane segment model. However, the H3 region was membrane inserted when translated in the context of the native HISBAT flanking sequences. Furthermore, results from translations of sequential constructs ending after H7 provided support for integration of H8. These data provide support for a SBAT transmembrane domain model with nine integrated segments with an exoplasmic N-terminus and a cytoplasmic C-terminus consistent with a recent predictive analysis of this transporter topology.  相似文献   

8.
DNA sequences complementary to the double-stranded RNA coding for the neutralization antigen (glycoprotein VP7) of simian rotavirus SA11 have been cloned. The VP7 gene consists of 1,062 nucleotides, containing an uninterrupted coding sequence of 978 nucleotides which specifies a glycoprotein of 326 amino acids. The significance of a second possible initiation site 30 nucleotides downstream from the first is discussed. Partial amino acid sequence of this glycoprotein showed unequivocally that the cloned segment (segment 9) codes for glycoprotein VP7 of SA11. The resulting amino acid sequence contained only one carbohydrate acceptor site. Possible sites of membrane interaction and antigenic determinants are discussed based on the analysis of the hydrophobicity and hydrophilicity profiles of VP7.  相似文献   

9.
Receptor activity of rotavirus nonstructural glycoprotein NS28.   总被引:29,自引:18,他引:11       下载免费PDF全文
K S Au  W K Chan  J W Burns    M K Estes 《Journal of virology》1989,63(11):4553-4562
Rotavirus morphogenesis involves the budding of subviral particles through the rough endoplasmic reticulum (RER) membrane of infected cells. During this process, particles acquire the outer capsid proteins and a transient envelope. Previous immunocytochemical and biochemical studies have suggested that a rotavirus nonstructural glycoprotein, NS28, encoded by genome segment 10, is a transmembrane RER protein and that about 10,000 Mr of its carboxy terminus is exposed on the cytoplasmic side of the RER. We have used in vitro binding experiments to examine whether NS28 serves as a receptor that binds subviral particles and mediates the budding process. Specific binding was observed between purified simian rotavirus SA11 single-shelled particles and RER membranes from SA11-infected monkey kidney cells and from SA11 gene 10 baculovirus recombinant-infected insect cells. Membranes from insect cells synthesizing VP1, VP4, NS53, VP6, VP7, or NS26 did not possess binding activity. Comparison of the binding of single-shelled particles to microsomes from infected monkey kidney cells and from insect cells indicated that a membrane-associated component(s) from SA11-infected monkey kidney cells interfered with binding. Direct evidence showing the interaction of NS28 and its nonglycosylated 20,000-Mr precursor expressed in rabbit reticulocyte lysates and single-shelled particles was obtained by cosedimentation of preformed receptor-ligand complexes through sucrose gradients. The domain on NS28 responsible for binding also was characterized. Reduced binding of single-shelled particles to membranes was seen with membranes treated with (i) a monoclonal antibody previously shown to interact with the C terminus of NS28, (ii) proteases known to cleave the C terminus of NS28, and (iii) the Enzymobead reagent. VP6 on single-shelled particles was suggested to interact with NS28 because (i) a monoclonal antibody to the subgroup I epitope on VP6 reduced particle binding, (ii) a purified polyclonal antiserum raised against recombinant baculovirus-produced VP6 reduced ligand binding, and (iii) a monoclonal antibody to a conserved epitope on VP6 augmented ligand binding. These experimental data provide support for the hypothesized receptor role of NS28 before the budding stage of rotavirus morphogenesis.  相似文献   

10.
Gene protein products of SA11 simian rotavirus genome   总被引:33,自引:18,他引:15  
When MA104 cells were infected with SA11 rotavirus, 12 protein classes, absent in mock-infected cells, could be distinguished by polyacrylamide gel electrophoresis. At least two of these proteins were glycosylated, and their synthesis could be blocked with tunicamycin. The oligosaccharides of both glycoproteins were cleaved by endo-beta-N-acetylglucosaminidase H, suggesting that they were residues of the "high-mannose" type. Of the 12 viral polypeptides observed in infected cells, 1 was probably the apoprotein of one of these glycoproteins; 5, including 1 glycoprotein, were structural components of the virions, whereas the other 6, including a second and possibly third glycoprotein, were nonstructural viral proteins. When the 11 double-stranded RNA genome segments of SA11 were translated, after denaturation, in an RNA-dependent cell-free translation system, at least 11 different polypeptides were synthesized. Ten of these polypeptides had electrophoretic migration patterns equal to those of viral proteins observed in tunicamycin-treated infected cells. Nine of the 11 double-stranded RNA genome segments were resolved by polyacrylamide gel electrophoresis and were translated individually. Two were not resolved from each other and therefore were translated together. Correlation of each synthesized polypeptide with an individual RNA segment allowed us to make a probable gene-coding assignment for the different SA11 genome segments.  相似文献   

11.
Bluetongue virus (BTV) is the causative agent of a major disease of livestock (bluetongue). For over two decades, it has been widely accepted that the 10 segments of the dsRNA genome of BTV encode for 7 structural and 3 non-structural proteins. The non-structural proteins (NS1, NS2, NS3/NS3a) play different key roles during the viral replication cycle. In this study we show that BTV expresses a fourth non-structural protein (that we designated NS4) encoded by an open reading frame in segment 9 overlapping the open reading frame encoding VP6. NS4 is 77-79 amino acid residues in length and highly conserved among several BTV serotypes/strains. NS4 was expressed early post-infection and localized in the nucleoli of BTV infected cells. By reverse genetics, we showed that NS4 is dispensable for BTV replication in vitro, both in mammalian and insect cells, and does not affect viral virulence in murine models of bluetongue infection. Interestingly, NS4 conferred a replication advantage to BTV-8, but not to BTV-1, in cells in an interferon (IFN)-induced antiviral state. However, the BTV-1 NS4 conferred a replication advantage both to a BTV-8 reassortant containing the entire segment 9 of BTV-1 and to a BTV-8 mutant with the NS4 identical to the homologous BTV-1 protein. Collectively, this study suggests that NS4 plays an important role in virus-host interaction and is one of the mechanisms played, at least by BTV-8, to counteract the antiviral response of the host. In addition, the distinct nucleolar localization of NS4, being expressed by a virus that replicates exclusively in the cytoplasm, offers new avenues to investigate the multiple roles played by the nucleolus in the biology of the cell.  相似文献   

12.
ABSTRACT: BACKGROUND: Bluetongue virus (BTV) is a double-stranded RNA (dsRNA) virus of the Reoviridae family, which encodes its genes in ten linear dsRNA segments. BTV mRNAs are synthesised by the viral RNA-dependent RNA polymerase (RdRp) as exact plus sense copies of the genome segments. Infection of mammalian cells with BTV rapidly replaces cellular protein synthesis with viral protein synthesis, but the regulation of viral gene expression in the Orbivirus genus has not been investigated. RESULTS: Using an mRNA reporter system based on genome segment 10 of BTV fused with GFP we identify the protein characteristic of this genus, non-structural protein 1 (NS1) as sufficient to upregulate translation. The wider applicability of this phenomenon among the viral genes is demonstrated using the untranslated regions (UTRs) of BTV genome segments flanking the quantifiable Renilla luciferase ORF in chimeric mRNAs. The UTRs of viral mRNAs are shown to be determinants of the amount of protein synthesised, with the pre-expression of NS1 increasing the quantity in each case. The increased expression induced by pre-expression of NS1 is confirmed in virus infected cells by generating a replicating virus which expresses the reporter fused with genome segment 10, using reverse genetics. Moreover, NS1-mediated upregulation of expression is restricted to mRNAs which lack the cellular 3[PRIME] poly(A) sequence identifying the 3[PRIME] end as a necessary determinant in specifically increasing the translation of viral mRNA in the presence of cellular mRNA. CONCLUSIONS: NS1 is identified as a positive regulator of viral protein synthesis. We propose a model of translational regulation where NS1 upregulates the synthesis of viral proteins, including itself, and creates a positive feedback loop of NS1 expression, which rapidly increases the expression of all the viral proteins. The efficient translation of viral reporter mRNAs among cellular mRNAs can account for the observed replacement of cellular protein synthesis with viral protein synthesis during infection.  相似文献   

13.
In vitro translation of the three bacteriophage phi 6 RNAs.   总被引:4,自引:3,他引:1       下载免费PDF全文
In vitro translation of the three single-stranded RNAs transcribed in vitro by bacteriophage phi 6 RNA polymerase revealed that the large RNA codes for phage proteins P1, P2, P4, and P7, the medium RNA codes for P3, P6, and P10, and the smaller RNA for P5, P8, and P9.  相似文献   

14.
Antibodies specific for the major outer capsid protein (VP7) of the simian rotavirus SA11 were obtained by immunization of rabbits with a synthetic peptide, Ser-Ala-Ala-Phe-Tyr-Tyr-Arg-Val, corresponding to the eight carboxy-terminal amino acids of the viral protein predicted from the nucleotide sequence of the gene segment 9 of the SA11 genome. As the carboxy-terminal region of the VP7 of human rotavirus Wa has an identical sequence, cross-reactivity of the raised antibodies was observed with this strain.  相似文献   

15.
In previous communications we reported that the eight RNA segments of influenza A/PR/8/34 (HON1) virus could be distinguished from corresponding segments of influenza A/Hong Kong/8/68 (H3N2) virus by migration on polyacrylamide-urea gels. Examination of the RNA patterns of the two parent viruses and recombinants derived from them in concert with serological identification of surface proteins and analysis of the other proteins on sodium dodecyl sulfate gradient gels permitted the identification of the genes coding for hemagglutinin, neuraminidase, and the P1, P2, and P3 proteins (Palese and Schulman, 1976; P. Palese et al., Virology, in press). In the present report we have extended these observations using similar techniques to examine other recombinants and have identified the genes coding for the remaining virus-specific moving RNA segment as 1) and segment 6 of Hong Kong virus coding for the respective nucleoproteins, and that segment 7 of both viruses codes for the membtane protein and RNA segment 8 codes for the nonstructural protein. This completes the mapping of the influenza A virus genome.  相似文献   

16.
The effect of NS1 protein on the efficiency of influenza virus mRNA translation was evaluated by determining the accumulation of nucleoprotein (NP) or M1 mRNAs in the cytoplasm of cells expressing either of these genes alone or in combination with the NS1 gene, as well as the total cell accumulation of NP or M1 protein. Coexpression of NS1, but not of NS2 protein, led to increases in the translation of these mRNAs in the range of 5- to 100-fold. This translation enhancement was specific for viral mRNAs, since the translation of neither cat nor lacZ mRNAs was affected by the coexpression of NS1 protein. The use of chimeric cat genes containing the 5'-extracistronic sequences of the influenza virus mRNAs corresponding to segment 2, 7, or 8 indicated that these sequences can in part account for the observed effect. The enhancement of viral mRNA translation mediated by NS1 protein was due to an increase in the translation initiation rate, since the sizes of NP-specific polysomes, but not those of lacZ-specific polysomes, was significantly higher in cells coexpressing NS1 protein than in those expressing only the NP gene.  相似文献   

17.
Summary A clone panel containing various segments of human chromosome 11 has been selected and used for regional assignment of the gene for human lysosomal acid phosphatase (ACP2) to the short arm of chromosome 11, in the region 11p11 11p12. Further evidence has also been presented to update the regional assignment of the gene for lactate dehydrogenase A (LDHA) to 11p12 11p13, and to support a previous assignment of the genes for the two components of the human cell-surface antigens of the SA11 (previously designated AL) group, SA11-1 and SA11-3 (previously designated AL-a1 and AL-a3), to 11pter 11p13. This regional clone panel will be useful for rapid regional mapping of other genes assigned to chromosome 11.  相似文献   

18.
Protein coding assignment of avian reovirus strain S1133.   总被引:8,自引:2,他引:6       下载免费PDF全文
Avian reovirus S1133 encodes 10 primary translation products, 8 of which are structural components of the viral particle and 2 of which are nonstructural proteins. The identity of the gene that codes for each of these polypeptides was determined by in vitro translation of denatured individual genome segments.  相似文献   

19.
Using human chromosome painting probes, we looked for homologies between human and mountain zebra (Equus zebra hartmannae, Equidae, Perissodactyla) karyotypes. Except for two very short segments, all euchromatic regions were found to have a human homologous chromosome segment. Conserved syntenies previously described in various mammalian orders were detected. Each synteny corresponded to a chromosomal region homologous to two parts of human chromosomes: HSA3 and HSA21, HSA7 and HSA16, HSA12 and HSA22, and HSA16 and HSA19. Chromosomal segments homologous to a part of HSA11 and HSA19p are found syntenic in zebra, horse and donkey, suggesting that this group of synteny has been inherited from an Equidae or Perissodactyla common ancestor. A synteny of segments homologous to parts of HSA4 and HSA8 was observed in zebra and horse. It also exists in the rabbit (Lagomorpha) and several Carnivora species. A second group of taxa which does not have this region of synteny is composed of primates, Chiroptera and Insectivora, and possibly also Cetacea and Scandantia. Thus, the presence or absence of this region of synteny may separate two groups of eutherian mammals.  相似文献   

20.
We investigated properties of the rotavirus genome segment 11 protein. A rotavirus SA11 genome segment 11 cDNA which contains the entire coding region was sequenced and inserted into the baculovirus transfer vector pVL941. Recombinants containing gene 11 cDNA were selected, and the gene 11 product expressed in Spodoptera frugiperda cells infected with these recombinants was inoculated into guinea pigs to produce hyperimmune antiserum. Characterization of the antiserum showed that it recognized a primary translation product with a molecular weight of 26,000 (26K protein) in recombinant-infected insect cells, in SA11-infected monkey kidney cells, and in cell-free translation reactions programmed with SA11 mRNA. A modified 28K product was also detected but only in SA11-infected monkey kidney cells. The 26K 28K proteins were shown to be phosphorylated in infected monkey kidney cells, and the 26K protein was phosphorylated in insect cells. We were unable to identify what type of modification caused the molecular weight shift to 28,000 in infected monkey kidney cells. Large amounts of the gene 11 product were detected by immunofluorescence in discrete foci in the cytoplasm of infected monkey kidney cells. Viruses of all known serotypes were also detected by immunofluorescence by using hyperimmune antiserum to the SA11 gene 11 product. The antiserum reacted with particle-depleted cytosol fractions but did not react with purified virus particles by immunoprecipitation or immunoblotting; it also did not neutralize virus infectivity in plaque reduction neutralization assays. Therefore, we conclude that the primary gene 11 product is a nonstructural phosphoprotein which we designated NS26.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号