首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Persistence of methylpurines in DNA methylated in vitro and in vivo inEscherichia coli WP2 cells, by dimethyl sulphate (DMS) was studied, with particular reference to the minor products 7-methyladenine and 3-methyl-guanine, not previously investigated in this respect, but known to be removed from DNA in vitro by spontaneous hydrolysis at neutral pH.The half-life of 7-methyladenine in vivo was relatively short (2.6 ± 0.2 h) but not significantly shorter than in vitro at pH 7.2, 37°C. The half-life of 3-methylguanine was 3.6 ± 0.3 h in vivo, markedly shorter than in vitro, where its stability was somewhat greater than that of 7-methylguanine. Enzymatic excision of 3-methylguanine was therefore indicated to occur inE. coli.Previous findings that 7-methylguanine is probably not enzymatically excised from DNA in vivo, whereas 3-methyladenine is rapidly removed, were confirmed, and additional support for the concept of enzymatic removal of 3-methyladenine was obtained by showing extensive inhibition of its removal from cells treated with iodoacetamide prior to methylation.It is suggested that methylations of adenine or guanine in DNA at N-3 constitute blocks to template activity of DNA and stimulate a “repair” response of enzymatic removal of 3-methylpurines. Possible valence bond structures for 3-methylpurine residues in DNA are discussed, leading to the suggestion that ionized forms with positively charged amino groups may be the most effective blocks to template activity.  相似文献   

2.
M. Reddy  J. Gowrishankar 《Genetics》1997,147(3):991-1001
A genetic strategy was designed to examine the occurrence of mutations in stationary-phase populations. In this strategy, a parental population of cells is able to survive under both permissive and restrictive conditions whereas mutants at a particular target locus exhibit a conditional-lethal phenotype. Thus, by growing the population to stationary phase under restrictive conditions and then shifting it to permissive conditions, mutations that had arisen in stationary phase can be studied without confounding effects caused by the occurrence of similar mutations during growth of the population. In two different applications of this strategy, we have studied the reversion to Lac(+) in stationary phase of several Lac(-) mutations in Escherichia coli. Our results indicate that a variety of spontaneous point mutations and deletions, particularly those that are sensitive to the mechanisms of replication slippage (for their generation) and methyl-directed mismatch repair (for their correction), can arise in nondividing populations of cells within a colony. The frequency of their occurrence was also elevated in mutS strains, which are defective in such mismatch repair. These data have relevance to the ongoing debate on adaptive or directed mutations in bacteria.  相似文献   

3.
R Voss  R Falk 《Mutation research》1973,20(2):221-234
A selection system for the screening of reversions has been constructed and used to test reversions of lethals located in the proximal region of the X chromosome of Drosophila and of Kpn mutations.Spontaneous and induced reversions have been screened, X-rays and ethyl methanesulphonate (EMS) being the mutagens used in the induction experiments.No genuine back-mutation was found in 6·105 gametes scored. Sterile reversions of all four lethals tested were obtained. Their frequency suggested that at least in three of the lethals the sterile reversions represented “escapers” of the lethal effect rather than true revertants.Three fertile reversions of lx4 were found and analyzed. All three were autosomal suppressors, located on the second chromosome, allelic to each other, dominant in males and recessive in females.One fertile reversion of l3DES was found to be an X-linked suppressor. It is suggested that this suppressor is a Y-suppressed lethal, showing a V-type position effect, resulting from an aberration included in the proximal heterochromatin of the X chromosome.Reversions of Kpn were obtained at a similar rate to that found in previous reports22.The absence of true back-mutants in our experiments, in contrast to findings in previous reports, is discussed. From the existing literature on spontaneous and induced back-mutations in Drosophila melanogaster it appears that for several mutations the rates of forward and back-mutation are of the same order of magnitude. It is suggested that reported cases of back-mutations represent mainly inter- and intrachromosomal recombination in duplicated regions rather than mutational events and that the frequency of true back-mutation in Drosophila is usually of an order of magnitude, similar to that known for microorganisms and fungi.  相似文献   

4.
Some chemical aspects of dose-response relationships in alkylation mutagenesis   总被引:18,自引:0,他引:18  
Alkylation of DNA can lead to induction of potentially miscoding groups (promutagenic) or potentially template-inactivating groups (lethal). The proportions of these are found to vary with the chemical nature of the alkylating agent. Agents of low Swain and Scott s factor (or those tending to Ingold's SNi type) react relatively more extensively at O-atom sites in DNA, and yield relatively more of the miscoding O6-alkylguanine residues. Phosphotriester formation is also relatively more extensive with SNi agents.Inactivation of DNA can result from depurinations, strand breakage, and cross-linkage.Both promutagenic and lethal lesions are subject to repair; 3 principal enzymatic systems appear to exist; one for excision and repair of cross-links or aralkyl groups resembles the uvr system; others for repair of single-strand breaks parallel repair of X-ray-induced breaks (exr, rec systems); another, less well defined at present, recognizes certain methylated bases, and depurinated sites (probably Goldthwait's endonuclease II).These factors can be shown to influence dose-response in alkylation mutagenesis. This, broadly, can be classified as linear with the promutagenic group-inducing or directly miscoding agents, and is independent of cytotoxicity; whereas with other agents non-linear response parallels the occurrence of “shouldered” survival curves, and reflects mutation induction by “repairs errors”.Additionally, alkylation of cellular constituents other than DNA, e.g. repair enzymes, may influence dose response, and will again depend on chemical reactivity of the agent.  相似文献   

5.
Exposure of mouse zygotes to ethylene oxide (EtO) or ethyl methanesulfonate (EMS) led to high incidences of fetal death and of certain classes of fetal malformations (Generoso et al., 1987, 1988; Rutledge and Generoso, 1989). These effects were not associated with induced chromosomal aberrations (Katoh et al., 1989) nor are they likely to be caused by gene mutations (Generoso et al., 1990). Nevertheless, the anomalies observed in these studies resemble the large class of stillbirths and sporadic defects in humans that are of unknown etiology, such as cleft palate, omphalocoel, clubfoot, hydrops and stillbirths (Czeizel, 1985; Oakley, 1986). Therefore, we continue to study the possible mechanisms relating to induction of these types of zygote-derived anomalies in mice. Effects of zygote exposure to the compounds methyl methanesulfonate (MMS), dimethyl sulfate (DMS), and diethyl sulfate (DES), which have similar DNA-binding properties as EtO and EMS, were studied. DMS and DES, but not MMS, induced effects that are similar to those induced by EtO and EMS. Thus, no site-specific alkylation product was identifiable as the critical target for these zygote-derived anomalies. We speculate that the developmental anomalies arose as a result of altered programming of gene expression during embryogenesis.  相似文献   

6.
The introduction of single-strand breaks into the DNA of a murine lymphoma (L5178Y) cell treated in vivo with methyl methanesulphonate (MMS) and the behaviour of these breaks on post-treatment incubation were studied. A large proportion of single-strand breaks present after MMS treatment could be repaired as shown by sedimentation in alkaline sucrose. Two inhibitors of DNA synthesis, hydroxyurea and cytosine arabinoside affected the repair process differently-hydroxyurea had only a small effect while cytosine arabinoside blocked repair and at some doses allowed further degradation of the DNA. It was also found that the level of ‘repair replication’ in the presence of cytosine arabinoside was lower than that found in the presence of hydroxyurea.  相似文献   

7.
The effect of caffeine on V-79 Chinese hamster cells after ultraviolet irradiation or treated with ethyl methanesulphonate was investigated. Caffeine strongly potentiated the killing of both agents, but it had no effect on the induction of mutations at the hypoxanthine-guanine phosphoribosyl transferase locus. The results are consistent with the notion that caffeine slows down an error-prone post-replicative repair mechanism without changing the mutation frequency.  相似文献   

8.
Dose-response curves for “mutation” to resistance to 5-iodo-2-deoxyuridine (IUdR) and excess thymidine (TdR) in P388 mouse lymphoma cells have been established after exposure of these cells to six chemical mutagens, UV |and| ionising radiations. The dose-response curves for all mutagens in both selective system show considerable similarities when induced mutation frequencies are plotted against survival. Expression time for both types of variants, IUdRr and TdRr, are similar, i.e. maximum frequencies are reached by 48 h and there is no fall in variant frequency at late expression times up to 144 h. Over the range of survival levels studied there appears to be little or no dependence of expression time on dose of mutagen. Some loss of mutants after high doses (i.e. at low survival levels) was observed due to the fact that a significant proportion of both TdRr and IUdRr clones were more sensitive to the mutagens than the wild-type population. The similarities in induced dose-response curves for different mutagens suggest that the mutants have a common origin, probably an error in repair, but it seems unlikely that errors in “cut and patch” repair are responsible. A comparison of spontaneous frequencies of IUdRr and TdRr variants suggests that IUdR is mutagenic in P388 cells.  相似文献   

9.
Various E. coli mutants, deficient in DNA repair, differed in their response to increasing concentrations of N-nitroso-N-methylurea (NMU).Loss of viability due to exposure to NMU was greatest in those strains with a reduced capacity for repair of single-strand breaks. Viability of wild-type and uvrA? strains was not affected by NMU concentrations up to 3.0 mM. Some loss of viability occurred, at the higher NMU concentrations, in both strains carrying exrA? while strains carrying uvrA?polA? or recA? were the most sensitive. The results support the hypothesis that the lethal effect of NMU on repair-deficient E. coli was due to its ability to induce single-strand breaks.Induction of mutations by NMU was observed in all the strains used and the results suggested that NMU damage per se was the major mutational event. The dose response curve for induction of revertants by NMU was, however, influenced by the repair system(s) present. The number of revertants scored at the higher NMU concentrations was greater in those strains lacking the recA and polA dependent repair functions than in the wild-type strain. However, at NMU concentrations below 2.0 mM the numbers of revertants induced in exrA? carrying strains, prossessing accurate rec-dependent repair, were lower than the comparable wild-type values. The evidence suggests that the uvrA gene product also acts on some, possibly non-mutagenic, types of NMU damage and that error-prone repair of these lesions increases the number of potential revertants.  相似文献   

10.
10 out of 24 Pseudomonas aeruginosa FP sex factors tested were found to protect bacteria against the lethal effects of UV-irradiation. Two of these FP factors (FP50 and FP58) and an R factor R 931, which is also UV-protecting, were studied in detail in an attempt to determine the mechanisms involved. It appeared that a plasmid gene-product contributes to dark repair of both UV and chemical damage (induced by agents such as methyl methanesulphonate (MMS) and nitrosoguanidine (NG) which are thought to induce single-strand gap formation in DNA). Although these plasmids failed to contribute to host cell reactivation of UV-irradiated phage in an Hcr mutant, they nevertheless substantially protected the mutant itself against UV-irradiation. This result suggested that the excision step per se of excision repair is not involved, but does not exclude the possibility that the plasmids might contribute to the repair resynthesis step of the excision repair process in wild type bacteria. An alternative possibility is that the plasmids contribute to some step or steps in a minor optional repair system analogous to the E. coli exrA recA-dependent repair system. This idea gains support from the observation that UV mutagenesis is enhanced in the presence of these plasmids.  相似文献   

11.
T M Koval 《Radiation research》1988,115(3):413-420
TN-368 lepidopteran insect cells display a pronounced resistance to the lethal effects of ionizing radiation and exhibit superior DNA repair capabilities. When a TN-368 cell population entering stationary growth phase is irradiated with 137Cs gamma rays and then incubated for several hours before cell dilution and plating for colony formation, the surviving fraction is increased several-fold over cells diluted and plated immediately after irradiation. Similarly, the survival of cells plated immediately following the second of two equivalent doses separated by several hours is greater than the survival of cells plated immediately following a single dose equal to the sum of the split doses. Both processes exhibit similar biphasic repair kinetics and reach maximal levels by 6 h. The phenomena appear initially to be analogous to confluent-holding and split-dose recovery as described for mammalian cells. However, the survival levels obtained for doses of 61-306 Gy after allowing for these recovery processes to occur are quite high and greatly exceed survival levels for all but relatively low doses less than 50 Gy. For example, while the survival of cells irradiated with 150 Gy is near 0.15, the survival of cells receiving 306 Gy in two equivalent split doses is approximately 0.77. Even if damage induced by the first of the split doses was completely repaired, it might be expected that the survival would be near the level of the second dose alone, or near 0.15. Instead the survival is approximately five times greater, suggesting that the first split dose stimulated a repair system not present in unirradiated cells. The situation for confluent-holding recovery is similar to that for split-dose recovery.  相似文献   

12.
Staphylococcus aureus S6 sublethally heated at 52 degrees C for 15 min to 0-1 M-potassium phosphate buffer pH 7-2, lost neither the ribitol teichoic acid of the wall nor the glycerol teichoic acid of the membrane. Hurst et al. (1974) showed that this heating caused 40% loss of the cellular Mg, and we now report the loss of 65% of the ester-bound D-alanine of teichoic acid. Repair from sublethal heat injury, measured by the return of salt tolerance, occurs in a simple no-growth medium provided that the cell concentration is less than 5 x 10(8)/ml. During repair, D-alanine is rapidly synthesized. Fully-repaired cells contain four times more D-alanine than do freshly-injured cells. Magnesium is present in the medium at only 3 x 10(-6) M, yet the cellular Mg concentration returns to normal within 1 h of incubation, even in the presence of EDTA. The results suggest that repair occurs in two stages. Soon after injury, in the absence of the competitive effect of D-alanine, Mg is strongly bound to teichoic acid. In repaired or uninjured cells Mg is less strongly bound. The implications of these findings are discussed in relation to the cation-binding function of teichoic acid.  相似文献   

13.
R Knoechel  E M Quinn 《Cytometry》1989,10(5):612-621
Track autoradiographic analysis of photosynthetic radiocarbon incorporation at the cellular level indicated that the carbon uptake rate and carbon pool size of exponentially growing (log phase) Scenedesmus cells was threefold that of stationary phase cells, while carbon turnover rates were similar. Carbon fixation was uncoupled from growth and cell division in the stationary phase cells, which were larger and contained less chlorophyll per unit volume than log phase cells. Changes in the temporal pattern of isotope incorporation were evident at the cell level prior to the cessation of division and transition to stationary phase, while bulk carbon fixation responded only the second day after cell division ceased. The carbon uptake patterns of a marine nanoplankter from a nutrient-enriched natural sample resembled that of log phase cells while the control population pattern resembled that of stationary cells. The physical, biochemical, and metabolic differences between log and stationary phase cells are potentially measurable by flow cytometry procedures currently in use and under development. The use of flow cytometry to sort cell types for analysis by track autoradiography and subsequent correlation of metabolic characteristics with flow cytometry signatures is a feasible means of investigating the heterogeneity of phytoplankton metabolic state in the marine environment.  相似文献   

14.
The mutagenic and lethal action of methyl methanesulphonate (MMS) and dichlorvos (DDVP) has been studied on Escherichia coli WP2 and some derivatives deficient in DNA repair genes. The exrA+ and recA+ alleles were necessary for significant mutagenesis by either compound, and the uvrA gene affected neither the lethal nor mutagenic responses. Increased sensitivity to both compounds was shown by the exrA and uvrAexrA strains and in a more pronounced way by the uvrApolA, recA, and uvrAexrApolA strains.Bacteria deficient at the polA locus were 2 and 3 times more mutable by DDVP and MMS respectively, consistent with the hypothesis that the absence of the polA system for the repair of single-strand gaps results in a greater proportion of the total repair being channelled through the error-prone exrA+/recA+-dependent system. Single-strand breaks were detectable by alkaline sucrose gradient centrifugation after both MMS and DDVP treatment of polA bacteria. Thus in all the tests carried out, both compounds showed similar patterns of activity, and the results are consistent with their known ability to alkylate DNA. The chief differences were quantitative; sensitivity increases were far more pronounced with MMS which was also a far more potent mutagen than DDVP.  相似文献   

15.
Pseudomonas paucimobilis S37, a strain able to degrade 2,4,6-trichlorophenol (246-TCP), was isolated from an aquatic environment polluted with this compound. The effect of two natural organic compounds on the degradation of 246-TCP by this strain, in a no-growth state, was studied. Bacterial cultures were exposed to 0.1 mM and 0.5 mM of 246-TCP, alone, or in the presence of similar concentrations of glucose, a growth supporting substrate, or phenylalanine, a no-growth supporting compound. The effects on viable counts and 246-TCP degradation were measured. The bacterial culture died with 0.5 mM 246-TCP. This effect was overcome by the presence of glucose or phenylalanine, although no degradation of 246-TCP was detected. At 0.1 mM 246-TCP, the viability was not altered, and cells were able to degrade this compound. Glucose at 0.1 mM increased the degradative activity, but higher levels were inhibitory. Phenylalanine at 0.67 mM or higher concentration was also inhibitory of the 246-TCP degradation.  相似文献   

16.
A single dose (0.8 mmole/kg) of N-methyl-N-nitrosourea (MNUA) causes significantly more chromosome damage in the bone marrow of mice than a dose of equal toxicity to the animals, (1.1 mmole/kg) of methyl methanesulphonate (MMS) 6, 24 and 48 h after treatment. At these doses both agents alkylate bone-marrow DNA to similar extents, but only MNUA induces thymic lymphomata. The greater chromosome-damaging effects of MNUA are ascribed to the known differences in the pattern of DNA alkylation by each agent, in particular the much higher levels of O-6 methylguanine and phosphotriesters produced by MNUA. The greater chromosome-damaging effect of MNUA may account for its higher toxicity to the bone marrow which in turn may be a significant factor in the induction of thymomata. The enhancement by caffeine of chromosome damage seen particularly 48 h after MMS-treatment suggests that post-replication repair protects cells from the effects of DNA-methylation in vivo.  相似文献   

17.
Various cell types in spermatogenesis exhibit differential sensitivity to radiation-induced DNA damage. The investigation of DNA radiosensitivity in vitro is complicated by the heterogeneous population of male germ cells (MGC) present in isolated single-cell suspensions. In the present investigation, the neutral elution technique was used to assess gamma-irradiation-induced DNA double-strand damage (DSD) in spermatogonia and preleptotene spermatocytes (SG/PL), pachytene spermatocytes and spermatid spermatocytes, as well as in MGC. In addition, the capability of these cell types to repair DNA double-strand damage was investigated. Based on the well established timing of the rat spermatogenic cycle, the DNA of specific cell populations was labeled using tritiated thymidine. DNA from labeled cells was determined isotopically, whereas total DNA was quantitated using a fluorometric method. DSD was induced in a dose-dependent manner in the heterogeneous population as well as in the labeled cell populations. SG/PL were more sensitive to gamma-irradiation-induced DSD than either the heterogeneous MGC population, pachytene or spermatid spermatocytes. Each cell type exhibited a similar capability to repair DSD following exposure to 3000 rad; repair was rapid (maximal within 45 min) and incomplete (less than 40%). Only pachytene spermatocytes exhibited significant repair following exposure to 6000 rad. Since a difference in sensitivity to radiation-induced DSD was demonstrated, the capability of each cell type to repair a similar initial frequency of strand damage was investigated. SG/PL, pachytene and spermatid spermatocytes differed in their capability to repair similar levels of strand damage. However, the difference in dose required to achieve equal damage may have contributed to other cellular effects, thus altering repair. In summary, a model is described that permits the evaluation of genotoxic responses in specific populations of spermatogenic cells within a heterogeneous cell suspension. The ability of specific cell types to repair gamma-irradiation-induced DNA double-strand damage is demonstrated.  相似文献   

18.
In Escherichia coli and related enteric bacteria, repair of base-base mismatches is performed by two overlapping biochemical processes, methyl-directed mismatch repair (MMR) and very short-patch (VSP) repair. While MMR repairs replication errors, VSP repair corrects to C*G mispairs created by 5-methylcytosine deamination to T. The efficiency of the two pathways changes during the bacterial life cycle; MMR is more efficient during exponential growth and VSP repair is more efficient during the stationary phase. VSP repair and MMR share two proteins, MutS and MutL, and although the two repair pathways are not equally dependent on these proteins, their dual use creates a competition within the cells between the repair processes. The structural and biochemical data on the endonuclease that initiates VSP repair, Vsr, suggest that this protein plays a role similar to MutH (also an endonuclease) in MMR. Biochemical and genetic studies of the two repair pathways have helped eliminate certain models for MMR and put restrictions on models that can be developed regarding either repair process. We review here recent information about the biochemistry of both repair processes and describe the balancing act performed by cells to optimize the competing processes during different phases of the bacterial life cycle.  相似文献   

19.
The repair of X-ray-induced strand breaks was studied in permeabilized Escherichia coli recBC cells deficient for the adenosine 5'-triphosphate (ATP)-dependent exonuclease V and in recBC sbcA cells that possess the ATP-independent exonuclease VIII. It is shown that repair induced by additon of ATP does not take place in recBC and recBC sbcB cells and is limited in recBC sbcA cells. ATP-dependent repair is nevertheless observable if together with ATP a mixture of deoxynucleotide monophosphates is supplied to the cells. These data fit with the assumption that in wild-type cells ATP-dependent repair involves exonuclease V-induced deoxyribonucleic acid degradation and rephosphorylation of the degradation products which are reused for deoxyribonucleic acid polymerase I-dependent break closure. Repair in the presence of deoxynucleotide triphosphates rejoins a similar fraction of breaks in all strains tested irrespective of the amount of postirradiation degradation resulting from exonuclease V and exonuclease VIII activities. Thus, exonuclease V is dispensable for deoxynucleotide triphosphate-dependent repair, i.e., does not "clean" the ends of breaks produced by X-irradiation. ATP- and deoxynucleotide triphosphate-dependent repair are not additive and seem to repair the same population of deoxyribonucleic acid molecules damaged by X-irradiation.  相似文献   

20.
Inhibition of DNA repair by caffeine is manifested in Schizosaccharomyces pombe wild-type cells as an enhancement of UV- or gamma-irradiation-induced lethality. The progress of DNA repair processes involving one or more caffeine-sensitive steps may be conveniently followed by measuring the concomitant decrease of this lethal enhancement effect. By measuring, during post-irradiation incubation, the ability of cells to overcome susceptibility to repair inhibition by caffeine, we have determined the time course and requirements for repair in S. pombe. Recovery began immediately and took 150-200 min after gamma-irradiation and more than 500 min after UV-irradiation, for exposures which gave about 10% survival in the absence of caffeine. An incubation medium capable of supporting growth was required for caffeine-sensitive repair; no recovery occurred under liquid holding conditions. Survival curves after various recovery times indicated that a logarithmic phase cell population was homogeneous with respect to caffeine-sensitive repair of both UV- and gamma-ray-induced damage. Recovery from caffeine inhibition was compared for cells of different physiological states (logarithmic and stationary phase); although the importance of the physiological state was not the same for the two types of radiation, recovery was found to occur more rapidly in the more radiation-resistant state, in each case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号