首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To characterize the anti-melanoma reactivity of CD8+ cytotoxic T lymphocytes (CTL) from choroidal melanoma patients, CTL clones were isolated from the peripheral blood of three patients after mixed lymphocyte/tumor cell culture (MLTC). Clones were derived from lymphocytes stimulated by allogeneic (OCM-1, A24, A28) or autologous (OCM-3, Al, A30) melanoma cells. Their reactivity against a panel of HLA-typed melanoma and nonmelanoma cells was assessed, to determine whether a single CTL clone could recognize and lyse a variety of allogeneic melanoma cell lines. While proportionately more clones derived from autologous MLTC were melanoma-specific than allogeneic MLTC (42% versus 14%), melanoma-specific CTL were recovered from both. Notably, a novel melanoma specificity was identified. These CTL clones were termed non-fastidious because they were capable of lysing melanoma cells with which they had no HLA class I alleles in common. Nonetheless, lysis was mediated by the HLA class I molecule. Since lysis was specific for melanoma cells, these CTL appeared to recognize a shared melanoma peptide(s). Because of their prevalence, we propose that non-fastidious CTL are integral to human anti-melanoma T cell immunity. This reinforces clinical findings that allogeneic melanomas can substitute for autologous tumors in active specific immunotherapy. By circumventing the need for autologous melanoma, it is possible to treat patients after removal of the primary choroidal melanoma in an attempt to prevent metastasis.Supported by USPHS grants EY-09031 and EY-09427, and the Lucy Adams Choroidal Melanoma Research Fund to J. K.-M.  相似文献   

2.
CD8+ cytotoxic T lymphocytes (CTLs) are preferred immune cells for targeting cancer. During cancer progression, CTLs encounter dysfunction and exhaustion due to immunerelated tolerance and immunosuppression within the tumor microenvironment (TME), with all favor adaptive immune-resistance. Cancer-associated fibroblasts (CAFs), macrophage type 2 (M2) cells, and regulatory T cells (Tregs) could make immunologic barriers against CD8 + T cell-mediated antitumor immune responses. Thus, CD8 + T cells are needed to be primed and activated toward effector CTLs in a process called tumor immunity cycle for making durable and efficient antitumor immune responses. The CD8 + T cell priming is directed essentially as a corroboration work between cells of innate immunity including dendritic cells (DCs) and natural killer (NK) cells with CD4 + T cells in adoptive immunity. Upon activation, effector CTLs infiltrate to the core or invading site of the tumor (so-called infiltrated–inflamed [I–I] TME) and take essential roles for killing cancer cells. Exogenous reactivation and/or priming of CD8 + T cells can be possible using rational immunotherapy strategies. The increase of the ratio for costimulatory to coinhibitory mediators using immune checkpoint blockade (ICB) approach. Programmed death-1 receptor (PD-1)–ligand (PD-L1) and CTL-associated antigen 4 (CTLA-4) are checkpoint receptors that can be targeted for relieving exhaustion of CD8 + T cells and renewing their priming, respectively, and thereby eliminating antigen-expressing cancer cells. Due to a diverse relation between CTLs with Tregs, the Treg activity could be dampened for increasing the number and rescuing the functional potential of CTLs to induce immunosensitivity of cancer cells.  相似文献   

3.
4.
A limiting-dilution assay was developed and used to determine the frequency of autologous tumor-reactive cytotoxic T lymphocytes (CTL) in peripheral blood of a melanoma patient MZ2, who has been free of detectable disease since several years. In this patient, the frequencies of tumor-reactive CTL spontaneously varied only by a factor of 1.5. After vaccinations with autologous mutagenized and lethally irradiated tumor cells a two- to tenfold increase in frequencies of tumor-reactive CTL was found within the first 2 weeks. Thereafter, CTL frequencies returned to values measured prior to vaccinations. We conclude, that the limiting-dilution assay applied in this study can detect changes in the T cell response to autologous tumor cells. The frequency of tumor-reactive CTL determined with this approach can serve as an immunological parameter for monitoring the T cell response to autologous tumor cells in individual cancer patients receiving tumor cell vaccinations.  相似文献   

5.
The roles of ultraviolet-B (UV) radiation in the immunogenicity of human cancer cells have not been fully studied. We have investigated the effects of UV radiation on metastatic melanoma and renal cell carcinoma cells with regard to MHC antigen expression and the ability to induce cytotoxic T lymphocyte (CTL) activity in peripheral blood mononuclear cells (PBMC) or tumor-infiltrating lymphocytes (TIL) against untreated autologous tumor cells. UV radiation respectively decreased or increased MHC class I expression of freshly isolated tumor cells or cultured tumor cells, and also decreased MHC class I expression of starved cultured tumor cells. It increased the ability of both freshly isolated and cultured tumor cells to induce CTL activity from PBMC against untreated autologous tumor cells. UV-irradiated subclones that were more susceptible to CTL lysis were more potent for CTL induction from TIL than either an untreated parental clone or a UV-irradiated subclone that was resistant to CTL lysis. In summary, UV radiation increased the ability of tumor cells to induce CTL activity without a corresponding effect on MHC antigen expression.This work was supported in part by a grant CA47891 from the National Cancer Institute, USA, a grant-in-aid of the comprehensive 10-years strategy for cancer control from ministry of a Health and Welfare, Japan, and the Ishibashi Research Fund, Japan  相似文献   

6.
When CD4+ T cell-rich population appears in theinitial trial in induction cultures of humanautologous cytotoxic T lymphocytes (CTL), the cultureresults frequently in no or weak killing activity andtherefore usually be discarded as an `unsuccessful'CTL induction culture. However, addition of theinitial CD4+ T cell-rich population enabledefficient induction of the autologous CTL in theensuing trials. The CTL thus generated exhibitedstronger killing activities against autologous braintumor cells and ovarian tumor cells than previouslyobserved. This simple recycling of the primed butinert CD4+ T cell-rich population for CTLinduction will promote clinical practice of adoptiveimmunotherapy of human tumors with autologous CTL.  相似文献   

7.
The immune response to HIV in infected humans leads to the production of HIV specific cytotoxic T lymphocytes (CTL) which circulate in high frequencies. The presence of these CTL and their eventual protective activities have been studied by various laboratories, and correlations have been made with certain immunopathological manifestations of HIV infections. It seems probable that HIV-immune CTL participate in the induction of certain disorders by initiating inflammatory reactions in the lungs, central nervous system, and lymph nodes. Various virus antigens recognized by HIV-immune CTL on the surface of the infected cell have been identified, and the molecular definition of the epitopes recognized is well under way. Likewise, numerous HLA transplantation antigens that regulate HIV antigen recognition by CTL have been identified. These data are discussed in view of the development of an eventual vaccine and of functional immunotherapies. They are compared with results obtained in animal experimental systems.Deceased  相似文献   

8.
One of the current difficulties limiting the use of adoptive cell therapy (ACT) for cancer treatment is the lack of methods for rapidly expanding T cells. As described in the present report, we developed a centrifugal bioreactor (CBR) that may resolve this manufacturing bottleneck. The CBR operates in perfusion by balancing centrifugal forces with a continuous feed of fresh medium, preventing cells from leaving the expansion culture chamber while maintaining nutrients for growth. A bovine CD8 cytotoxic T lymphocyte (CTL) cell line specific for an autologous target cell infected with a protozoan parasite, Theileria parva, was used to determine the efficacy of the CBR for ACT purposes. Batch culture experiments were conducted to predict how CTLs respond to environmental changes associated with consumption of nutrients and production of toxic metabolites, such as ammonium and lactate. Data from these studies were used to develop a kinetic growth model, allowing us to predict CTL growth in the CBR and determine the optimal operating parameters. The model predicts the maximum cell density the CBR can sustain is 5.5 × 107 cells/mL in a single 11-mL conical chamber with oxygen being the limiting factor. Experimental results expanding CTLs in the CBR are in 95% agreement with the kinetic model. The prototype CBR described in this report can be used to develop a CBR for use in cancer immunotherapy.  相似文献   

9.
A solid scientific basis now supports the concept that cytotoxic T lymphocytes can specifically recognize and destroy melanoma cells. Over the last decades, clinicians and basic scientists have joined forces to advance our concepts of melanoma immunobiology. This has catalyzed the rational development of therapeutic approaches to enforce melanoma‐specific T cell responses. Preclinical studies in experimental mouse models paved the way for their successful translation into clinical benefit for patients with metastatic melanoma. A more thorough understanding of how melanomas develop resistance to T cell immunotherapy is necessary to extend this success. This requires a continued interdisciplinary effort of melanoma biologists and immunologists that closely connects clinical observations with in vitro investigations and appropriate in vivo mouse models: From bedside to bench to barn and back.  相似文献   

10.
Here we imaged the exocytosis of lytic granules from human CD8+ cytotoxic T lymphocytes using rapid total internal reflection microscopy, Lamp-1 tagged with mGFP to follow the fate of the lytic granule membrane, and granzyme A, granzyme B or serglycin tagged with mRFP to follow the fate of lytic granule cargo. Lytic granules were released by full fusion with the plasma membrane, such that the entire granule content for all three cargos visualized was released on a subsecond time scale. The behavior of GFP-Lamp-1 was, however, more complex. While it entered the plasma membrane in all cases, the extent to which it then diffused away from the site of exocytosis varied from nearly complete to highly restricted. Finally, the diffusion properties upon release of the three cargos examined put an upper limit on the size of the macromolecular complex of granzyme and serglycin that is presented to the target cell.  相似文献   

11.
We investigated the circulating cytotoxic CD160+ CD8(high) subset in correlation to antiviral immunity and response to highly active antiretroviral therapy (HAART) in HIV+ subjects. The study included 45 treatment-naive patients receiving HAART for 18 months, retrospectively defined as good (n=29) and transient (n=16) responders. HIV-specific CD8 T lymphocyte levels were measured by IFNgamma production in response to p17 Gag, in the presence of immobilized anti-CD160 mAb. We report a significantly increased baseline level of CD160+ CD8(high) subset in good therapy responders. CD160+ CD8(high) subset correlates with CD4+ T cell count, immune activation, and viral load. CD160+ CD8(high) lymphocytes contain a high amount of Granzyme B and include virus-specific T lymphocytes in HIV-1+ subjects. Co-stimulation through CD160 molecules enhances IFNgamma production in response to p17 Gag. Therefore, the CD160+ CD8(high) subset may be useful for monitoring of virus-specific cellular immunity and predicting response to antiretroviral therapy in chronic HIV-1 infection.  相似文献   

12.
The aim of this study was to investigate the expression and the functional role of N-methyl-D-aspartate (NMDA) receptors in human T cells. RT-PCR analysis showed that human resting peripheral blood lymphocytes (PBL) and Jurkat T cells express genes encoding for both NR1 and NR2B subunits: phytohemagglutinin (PHA)-activated PBL also expresses both these genes and the NR2A and NR2D genes. Cytofluorimetric analysis showed that NR1 expression increases as a consequence of PHA (10 microg/ml) treatment. D-(-)-2-Amino-5-phosphonopentanoic acid (D-AP5), and (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine [(+)-MK 801], competitive and non-competitive NMDA receptor antagonists, respectively, inhibited PHA-induced T cell proliferation, whereas they did not affect IL-2 (10 U/ml)-induced proliferation of PHA blasts. These effects were due to the prevention of T cell activation (inhibition of cell aggregate formation and CD25 expression), but not to cell cycle arrest or death. These results demonstrate that human T lymphocytes express NMDA receptors, which are functionally active in controlling cell activation.  相似文献   

13.
CD8+T淋巴细胞与高血压心肌纤维化的研究进展   总被引:2,自引:0,他引:2  
血管生长因子增多,血管平滑肌细胞增殖和炎症在血管重塑方面起到了关键的作用。这种低级的炎症反应导致粘附分子表达,白细胞的侵入,细胞因子的产生,氧化应激的增加,从而激活免疫细胞和血管炎症信号通路,使T淋巴细胞及巨噬细胞等细胞活化,产生和释放多种活性因子,激活心肌的细胞外基质生成细胞,引起胶原形成及代谢异常,并可导致心肌实质细胞的变性、坏死或亚细胞结构变化等,从而引起心肌纤维化一系列病理生理变化。本文主要就CD8+T淋巴细胞在高血压心肌纤维化炎症反应中的细胞毒性作用、诱导细胞凋亡作用、分泌大量的炎症因子、增加MMPs的活性从而影响心肌纤维化的形成等方面做一综述!  相似文献   

14.
 In this study, we examined the therapeutic antitumor effect of cytotoxic T lymphocytes (CTL) generated against CD86-transfected mouse neuroblastoma C1300. We first generated the transfectant, CD86+C1300, expressing a high level of mouse CD86 on the cell surface. While CD86+C1300 cells were rejected in syngeneic A/J mice when inoculated subcutaneously, neither vaccination nor any therapeutic antitumor effect was obtained, implying that C1300 may be a poorly immunogenic tumor. However, in vitro stimulation of splenocytes from either C1300-bearing or CD86+C1300-rejecting mice with CD86+C1300 cells resulted in remarkable CTL activity against C1300 cells. The CTL activity induced by CD86+C1300 was mediated by T cell receptor/CD3 and CD8 and was further enhanced by the addition of interleukin-2. Intravenous inoculation of C1300 cells led to multiple organ metastases including the liver, lung, kidney, ovary, lymph node and bone marrow. To examine the therapeutic effect of CTL in this metastasis model, CTL induced by parental or CD86+C1300 cells were administrated into C1300-bearing mice. Adoptive transfer of CD86+C1300-induced CTL resulted in marked elimination of multi-organ metastases and prolonged survival in almost all mice, 70% of which survived indefinitely. These results indicate that adoptive transfer of CTL induced by CD86-transfected tumor cells in vitro would be effective and useful for tumor immunotherapy against poorly immunogenic tumors. Received: 18 November 1996 / Accepted: 3 March 1997  相似文献   

15.
This paper reviews the use of low-dose cyclophosphamide (CY) with active specific immunotherapy in patients with advanced melanoma and other metastatic cancers, and outlines the basic scientific research that supports this use. In various animal models, CY augments delayed-type hypersensitivity responses, increases antibody production, abrogates tolerance, and potentiates antitumor immunity. The mechanism of CY immunopotentiation involves inhibition of a suppressor function, as indicated by extensive work in the MOPC-315 plasmacytoma murine model. Human studies of the immunopotentiating effect of CY have yielded both positive and negative results. Toxicity associated with low-dose CY has been mild in these studies. Results of efficacy have been variable for reasons such as small sample sizes, short follow-up periods, and the weaker immunogenicity of human tumor-associated antigens. Although beneficial clinical outcomes have been observed in historically controlled trials, there are few randomized, controlled trials that evaluate outcome in relation to CY immunopotentiation of active specific immunotherapy. Additional randomized, controlled trials should be done to examine the clinical efficacy of CY immunopotentiation of therapeutic cancer vaccines. Received: 3 April 1998 / Accepted: 6 May 1998  相似文献   

16.
17.
Summary To study antitumor immunity in patients with choroidal melanoma, T cells were generated from the peripheral blood of choroidal melanoma patients by mixed lymphocyte/tumor cell culture (MLTC). Because autologous tumors are generally unavailable, an allogeneic choroidal melanoma cell line, OCM-1, was used as the specific stimulus. Lymphocyte cultures from 27 patients were characterized by cell-surface phenotypes, patterns of reactivity towards cells of the melanocytic origin and T-cell-receptor gene usage. Antimelanoma reactivity was found in cell-sorter-purified CD4+ and CD8+ T cell subsets. To analyze this reactivity, sorter-purified CD4+ and CD8+ cells from a MLTC were cloned by limiting dilution in the presence of exogenous interleukin-2 and interleukin-4 as well as irradiated OCM-1. Under these conditions, CD4+ T cells did not proliferate, perhaps because of the absence of antigen-presenting cells. However, CD8+ grew vigorously and 29 cytolytic CD8+ T cell clones were isolated. On the basis of their pattern of lysis of OCM-1, a skin melanoma cell line M-7 and its autologous lymphoblastoid cell line LCL-7, the clones were categorized into three groups. Group 1, representing 52% of the clones, lysed all three target cells, and are alloreactive. However, since OCM-1 and M-7 did not share class I antigens, these clones recognized cross-reactive epitope(s) of the histocompatibility locus antigen (HLA) molecule. Group 2, constituting 28% of the clones, lysed both the ocular and skin melanoma cell lines but not LCL-7, and were apparently melanoma-specific. Unlike classical HLA-restricted cytolytic T lymphocytes, these T cells might mediate the lysis of melanoma cells via other ligands or a more degenerate type of HLA restriction. For the latter, the HLA-A2 and -A28 alleles would have to act interchangeably as the restriction element for shared melanoma-associated antigen(s). Group 3, representing only 10% of the T cell clones, was cytotoxic only to OCM-1, but not to M-7 or LCL-7. These clones may recognize antigens unique to ocular melanoma cells. Our data suggest that choroidal melanoma patients can recognize melanoma-associated antigens common to both ocular and cutaneous melanoma cells, and presumbly their autologous tumor. Thus, choroidal melanoma, like its skin counterpart, may be responsive to immunotherapeutic regimens such as active specific or adoptive cellular immunotherapy.This work is supported by National Institutes of Health research grants CA 36 233 and EY 9031, the Lucy Adams Memorial Fund and support from the Concern Foundation  相似文献   

18.
The response of guinea pig T lymphocytes to different stimuli was analysed with focus on the functions of CD8-positive T cells, which so far had been poorly defined in this animal model. For identification and purification of guinea pig cytotoxic T lymphocytes, three monoclonal antibodies, directed against the CD8 differentiation antigen were characterized and compared with respect to expression pattern and biochemical characteristics of the corresponding cell surface antigen. The antibodies were used for the identification of the cytotoxic T lymphocyte subpopulation within alloreactive T cell lines, and for the depletion of CD8-positive cells in in vitro assays. Purified CD4- and CD8-positive cells were tested for their ability to proliferate in response to antigen, mitogen or anti-guinea pig Thy-1 monoclonal antibodies. Both, CD4- and CD8-positive cells showed IL-2 release and subsequent proliferation after polyclonal stimulation. Cytotoxic activity in CD8-positive alloreactive T cells was expressed in vitro only after repeated stimulation.  相似文献   

19.
Multiple sclerosis (MS) is an inflammatory disease of the central nervous system (CNS) characterized by multi-focal demyelination, axonal loss, and immune cell infiltration. Numerous immune mediators are detected within MS lesions, including CD4+ and CD8+ T lymphocytes suggesting that they participate in the related pathogenesis. Although CD4+ T lymphocytes are traditionally considered the main actors in MS immunopathology, multiple lines of evidence suggest that CD8+ T lymphocytes are also implicated in the pathogenesis. In this review, we outline the recent literature pertaining to the potential roles of CD8+ T lymphocytes both in MS and its animal models. The CD8+ T lymphocytes detected in MS lesions demonstrate characteristics of activated and clonally expanded cells supporting the notion that these cells actively contribute to the observed injury. Moreover, several experimental in vivo models mediated by CD8+ T lymphocytes recapitulate important features of the human disease. Whether the CD8+ T cells can induce or aggravate tissue destruction in the CNS needs to be fully explored. Strengthening our understanding of the pathogenic potential of CD8+ T cells in MS should provide promising new avenues for the treatment of this disabling inflammatory disease.  相似文献   

20.
CD4+CD25+ regulatory T cells (Tr) are important in maintaining immune tolerance to self-antigen (Ag) and preventing autoimmunity. Reduced number and inadequate function of Tr are observed in chronic autoimmune diseases. Adoptively transferred Tr effectively suppress ongoing autoimmune disease in multiple animal models. Therefore, strategies to modulate Tr have become an attractive approach to control autoimmunity. Activation of Tr is necessary for their optimal immune regulatory function. However, due to the low ratio of Tr to any given antigen (Ag) and the unknown nature of Ag in many autoimmune diseases, specific activation is not practical for potential therapeutic intervention. It has been shown in animal models that once activated, Tr can exhibit immune suppression in a bystander Ag-non-specific fashion, suggesting the effector phase of Tr is Ag independent. To investigate whether the immune suppression by activated bystander Tr is as potent as that of the Ag specific Tr, Tr cells were isolated from BALB/c or ovalbumin (OVA) specific T cell receptor (TCR) transgenic mice (DO11.10) and their immune suppression of an OVA specific T cell response was compared. We found that once activated ex vivo, Tr from BALB/c and DO11.10 mice exhibited comparable inhibition on OVA specific T cell responses as determined by T cell proliferation and cytokine production. Furthermore, their immune suppression function was compared in a delayed type hypersensitivity (DTH) model induced by OVA specific T cells. Again, OVA specific and non-specific Tr exhibited similar inhibition of the DTH response. Taken together, the results indicate that ex vivo activated Ag-non-specific Tr are as efficient as Ag specific Tr in immune suppression, therefore our study provides additional evidence suggesting the possibility of applying ex vivo activated Tr therapy for the control of autoimmunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号