首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Activities of membrane-associated phospholipases A1 and A2, and membrane-associated as well as soluble lysophospholipases were measured in different subcellular fractions of rat liver, using suspensions of stereospecifically labelled radioactive phospholipids as substrates. Plasma membranes and endoplasmic reticulum were shown to contain phospholipase A1 and lysophospholipase activities, both of which could be stimulated by Ca2+, mitochondria Ca2+-dependent phospholipase A2 and cytosol Ca2+-independent lysophospholipase activities. Each of these lipolytic enzymes could be inhibited by antimalarial drugs (chloroquine, mepacrine, primaquine) at concentrations above 1 x 10(-4) M. Inhibition of the alkaline cytosolic lysophospholipase by these drugs was noncompetitive with respect to the substrate, and the inhibitory potency increased, when the pH was raised.  相似文献   

2.
Here we report that cytosolic phospholipases are involved in the utilization of phosphatidylcholine (PC) as substrate for chloroplast-localized synthesis of monogalactosyldiacylglycerol (MGDG). Isolated chloroplasts were pre-incubated with lysoPC and [14C]18:0-CoA to form [14C]PC. When soluble plant proteins (cytosol) and UDP-galactose were added, [14C] MGDG was formed. An inhibitor of phospholipase D markedly lowered the formation of [14C]MGDG, whereas thermolysin pretreatment of the chloroplasts was without effect. The cytosolic activity resided in the >100-kDa fraction. In a second approach, [14C]PC-containing lipid mixtures were incubated with cytosol. Degradation of [14C]PC to [14C]diacylglycerol was highest when the lipid composition of the mixture mimicked that of the outer chloroplast envelope. We also investigated whether PC of extraplastidic origin could function as substrate for MGDG synthesis. Isolated chloroplasts were incubated with enriched endoplasmic reticulum containing radiolabelled acyl lipids. In the presence of cytosol and UDP-galactose, there was a time-dependent transfer of [14C]PC from this fraction to chloroplasts, where [14C]MGDG was formed. We conclude that chloroplasts recruit cytosolic phospholipase D and phosphatidic acid phosphatase to convert PC to diacylglycerol. Apparently, these lipases do not interact with chloroplast surface proteins, but rather with outer membrane lipids, either for association to the envelope or for substrate presentation.  相似文献   

3.
It was reported that subcellular fractionation of bovine adrenal medulla results in the separation of distinct, non-calcium-dependent phospholipases A2--one associated with chromaffin granule ghosts, another with lysosomes. The basis of this distinction is pH optimum: in routine assays utilizing neat liposomal substrates, the chromaffin granule ghost-associated enzyme is alkaline-active whereas the lysosomal enzyme is acid-active (Husebye, E.S. and Flatmark, T. (1987) Biochim. Biophys. Acta 920, 120-130). We now report that biomembranes after liposomal substrates and/or lysosomal phospholipase A2 such that the enzyme now hydrolyzes them (at low cation concentration) with an alkaline pH optimum. In a lysosomal membrane fraction, phospholipase A2 activity at pH 7.5 relative to activity at pH 5.0 increases as increasing amounts of lysosomal membranes are assayed. The pH optimum of chromaffin granule ghost-associated phospholipase A2 toward liposomal substrates is likewise biomembrane-dependent and, when assayed carefully, is indistinguishable on the basis of optimal pH from the lysosomal enzyme. Although chromaffin granule ghost-associated phospholipase A2 is most likely a lysosomal contaminant, its broad, biomembrane-modulated pH range may still allow it to participate in catecholamine secretion. More importantly, however, sensitivity of adrenal medullary lysosomal phospholipase A2 to biomembranes broadens its potential physiologic pH range and may also play a role in the regulation of this potentially deleterious activity.  相似文献   

4.
Using phosphatidylinositol-glycan (PtdIns-glycan) anchored acetylcholinesterase from bovine erythrocytes as substrate, we found PtdIns-glycan-anchor-degrading activity in rat liver and serum [corrected]. The hepatic enzyme was only soluble in detergents, whereas the serum enzyme occurs as soluble, slightly amphiphilic protein. Using 3-trifluoromethyl-3-(m- [125I]iodophenyl)diazirine-labelled acetylcholinesterase as substrate, we showed that the hepatic anchor-degrading enzyme had a cleavage specificity of a phospholipase C, whereas the serum enzyme was a phospholipase D. Both enzyme exhibited maximal activity in slightly acidic conditions and at low ionic strength. They had a high affinity for the PtdIns-glycan anchor of the substrate (Km = 0.1 microM and 0.16 microM, respectively). Both hepatic PtdIns-glycan-specific phospholipase C and serum PtdIns-glycan-specific phospholipase D gave a large increase in activity between 0.1-10 microM Ca2+, indicating that PtdIns-glycan-specific phospholipases are only marginally active at physiological intracellular Ca2+ concentrations. The enzymes were inhibited by heavy metal chelating agents such as 1,10-phenanthroline and 2,2'-bipyridyl but not by the corresponding Fe2+ complexes or non-chelating analogues, indicating that they both require a heavy metal ion for the expression of catalytic activity in addition to Ca2+. Another interesting property of PtdIns-glycan-specific phospholipases is their inactivation by bicarbonate and cyanate. The inactivation was time- and pH-dependent and could be reversed by dialysis. These observations are in agreement with a covalent modification of the enzymes by carbamoylation.  相似文献   

5.
During myocardial ischemia increased levels of lysoglycerophospholipids have been reported which may be deleterious to myocardial function. Phospholipases are presumed to be important in the regulation of this process. To further quantify and characterize the activity of heart phospholipases, we carried out a systematic analysis of phospholipase A activity in rat heart subcellular fractions isolated by the method of Palmer et al. (J. Biol. Chem. 1972. 262: 8731-8739). Neutral phospholipase A was recovered predominately in the cytosolic (soluble) fraction which represented 46% of recovered activity, while the microsomal and subsarcolemmal mitochondrial fractions represented 15% and 12% of the total recovered activity, respectively. Cytosolic phospholipase A differed from the two principal membrane-bound phospholipases A in its pH dependence and apparent Km for substrate. The cytosolic enzyme had a Km (apparent) for dioleoylphosphatidylcholine of 0.07 mM versus 0.28-0.33 mM for the membrane-associated phospholipases A. Acid phospholipase A activity had a subcellular distribution consistent with a lysosomal localization. Lysophospholipase was found principally in the cytosolic, microsomal, and the subsarcolemmal and interfibrillar mitochondrial fractions where it represented 46, 17, 6.3, and 6.9% of the recovered activity, respectively. The positional specificity of the respective phospholipases was assessed. This analysis was complicated by the fact that in heart, lysophospholipase has an observed Vmax 3.6- to 4.5-fold greater than that of phospholipase A in the various subcellular fractions. Equations were derived to obtain corrected values for the activity of phospholipases A1 and A2. Using this method we found that the cytosolic and lysosomal fractions contained phospholipase A1, while the mitochondrial fractions contained primarily phospholipase A2. In heart microsomes, the positional specificity of phospholipase A could not be determined because lysophospholipase activity was very high and lysophosphatidylcholine did not accumulate.  相似文献   

6.
We have previously shown that soluble fractions obtained from human HL-60 granulocytes contain a phospholipase C which is markedly stimulated by the stable GTP analogue guanosine 5'-[3-O-thio]triphosphate (Camps, M., Hou, C., Jakobs, K. H. and Gierschik, P. (1990) Biochem. J. 271, 743-748]. To investigate whether this stimulation was due to a soluble alpha subunit of a heterotrimeric guanine-nucleotide-binding protein or a soluble low-molecular-mass GTP-binding protein, we have examined the effect of purified guanine-nucleotide-binding protein beta gamma dimers on the phospholipase-C-mediated formation of inositol phosphates by HL-60 cytosol. We found that beta gamma subunits, purified from bovine retinal transducin (beta gamma t), markedly stimulated the hydrolysis of phosphatidylinositol 4,5-bisphosphate by this phospholipase C preparation. The stimulation of phospholipase C by beta gamma t was not secondary to a phospholipase-A2-mediated generation of arachidonic acid, was prevented by the GDP-liganded transducin alpha subunit and was additive to activation of phospholipase C by guanosine 5'-[3-O-thio]triphosphate. Beta gamma t also stimulated soluble phospholipase C from human and bovine peripheral neutrophils, as well as membrane-bound, detergent-solubilized phospholipase C from HL-60 cells. Stimulation of soluble HL-60 phospholipase C was not restricted to beta gamma t, but was also observed with highly purified beta gamma subunits from bovine brain. Fractionation of HL-60 cytosol by anion-exchange chromatography revealed the existence of at least two distinct forms of phospholipase C in HL-60 granulocytes. Only one of these forms was sensitive to stimulation by beta gamma t, demonstrating that stimulation of phospholipase C by beta gamma subunits is isozyme specific. Taken together, our results suggest that guanine-nucleotide-binding protein beta gamma subunits may play an important and active role in mediating the stimulation of phospholipase C by heterotrimeric guanine-nucleotide-binding proteins.  相似文献   

7.
Soluble, cation-dependent, lysosomal phospholipase A2 in bovine adrenal medulla has been biochemically characterized and partially purified, and its unique pH-dependent modulation by cations has been investigated. Chromatographically distinct activities with somewhat broad pI ranges centered at 7.8, 8.1, and 8.4 have been purified 83-, 1900- and 4400-fold, respectively, from the soluble fraction of tissue homogenates. With a specific activity of 4.2 mumol phospholipid hydrolyzed per mg protein per min, the fraction of pI 8.4 is the most highly purified lysosomal phospholipase A2 reported to date; yet silver staining of isoelectric focusing gels indicates that all three species are still only minor components of the protein mixtures with which they co-purify. Lysosomal phospholipase(s) A2 has an apparent molecular weight of 30,600, as determined by gel permeation chromatography; and is probably an oligomannose-containing glycoprotein as indicated by binding to concanavalin A-Sepharose and elution by methyl alpha-D-mannopyranoside. Cation concentrations modulate hydrolysis of biomembranous phospholipid, but not neat liposomal phospholipids, in a complex manner over a broad pH range (pH 4.0-8.0). Triton X-100 stabilizes the enzyme(s) but is inhibitory when present during assay; consequently, detergent-phospholipid mixed micelles are poor substrates. Thus, experimental results are dramatically dependent on the physicochemical nature of the substrate. The role of this phospholipase(s) A2 in the membrane fusion and lysis events of catecholamine secretion, as well as its regulation by cellular proteins, can now be investigated utilizing this partially purified enzyme(s).  相似文献   

8.
The formation of nitric oxide (NO) by an L-arginine:NO synthase and its stimulation of the soluble guanylate cyclase was studied in rat whole adrenal and bovine cortex and medulla cytosol. In the presence of L-arginine, the stimulation of soluble guanylate cyclase was accompanied by the formation of citrulline and NO2-, formed from NO. The NO synthase was NADPH- and Ca(2+)-dependent and was inhibited by several L-arginine analogues. These results indicate that rat and bovine adrenal cytosol contains an L-arginine:NO synthase.  相似文献   

9.
Wang X  Zhao HF  Zhang GJ 《Biochimie》2006,88(7):913-922
Lysosomal disintegration may cause apoptosis, necrosis and some diseases. However, mechanisms for these events are still unclear. In this study, we measured lysosomal beta-hexosaminidase free activity, membrane potential and intralysosomal pH. The results revealed that the cytosolic extracts of rat hepatocytes could increase the lysosomal permeability to both potassium ions and protons, and osmotically destabilize lysosomes via K(+)/H(+) exchange. The effects of cytosol on lysosomes could be completely abolished by D609, which inhibited both phospholipase C and sphingomyelinase, and partly prevented by sphingomyelinase inhibitor Ara-AMP, but not by the inhibitors of PLA(2). Moreover, purified phospholipase C could destabilize the lysosomes while phospholipase A(2) and phospholipase D did not produce such effects. The cytosolic phospholipases hydrolyzed lysosomal membrane phospholipids by 50%, which could be prevented by D609. Disintegration of the cytosol-treated lysosomes biphasically depended on the cytosolic [Ca(2+)]. The cytosol did not disintegrate lysosomes below 100 nM or above 10 muM cytosolic [Ca(2+)], but markedly destabilized lysosomes at about 340 nM [Ca(2+)]. The results suggest that cytosolic phospholipase C and sphingomyelinase may be responsible for the alterations in lysosomal stability by increasing the ion permeability.  相似文献   

10.
In recent years an increasing number of proteins has been shown to be membrane-anchored by a covalently attached PtdIns-glycan residue. In mammalian cells little is known about PtdIns-glycan-specific phospholipases which might play a role in the metabolism of PtdIns-glycan-anchored proteins. In order to identify PtdIns-glycan-specific phospholipases, a rapid and sensitive assay for such enzymes was developed using the PtdIns-glycan-anchored amphiphilic membrane form of acetylcholinesterase as substrate. The rate of product formation was monitored by the increase in soluble hydrophilic acetylcholinesterase in the aqueous phase after separation in Triton X-114. With this assay we established the presence of a PtdIns-glycan-specific phospholipase in bovine brain. This enzyme was soluble and could be partially purified by a heat step followed by chromatography on DEAE-cellulose and by gel filtration on Sepharose CL-6B. PtdIns-glycan-specific phospholipase had a high affinity for the PtdIns-glycan anchor of the substrate (Km = 52 nM) and did not degrade either PtdCho or PtdIns. Hydrophobic labeling of the anchor of the substrate with 3-trifluoromethyl-3-(m-[125I]iodophenyl)diazirine [( 125I]TID) caused a marked decrease in the cleavage rate and methylation of the amino group of the glucosamine residue of the anchor decreased the cleavage rate to zero. Using [125I]TID-labeled substrate, diradylglycerol phosphate was identified as the second product showing that the cleavage specificity of PtdIns-glycan-specific phospholipase was that of a phospholipase D. PtdIns-glycan-specific phospholipase D was inhibited by mercurials, omicron-phenanthroline and EGTA. It was stimulated by Ca2+ in micromolar concentrations indicating that PtdIns-glycan-phospholipase D is a Ca2(+)-regulated enzyme.  相似文献   

11.
Certain phospholipase A2 enzymes (E.C.3.1.1.4) selectively inhibit neurotransmitter release from cholinergic nerve terminals. Both specific acceptor proteins and the physical state of nerve terminal phospholipids have been implicated in studies of the mechanism of phospholipase neurotoxin action. Here we have examined the effects of charge on a micellar phospholipid substrate by comparing the enzyme activity and binding of two neurotoxic phospholipases (beta-bungarotoxin and crotoxin) with other non-neurotoxic phospholipases. This has been achieved by altering either the phospholipid or the ionic charge of the detergent in the mixed phospholipid micelle. The neurotoxic phospholipases were only active on negatively charged micelles, whereas the non-neurotoxic enzymes were equally active in hydrolyzing neutral micelles. This distinction was also reflected in binding studies; the non-neurotoxic phospholipases bound to both types of substrate, whereas beta-bungarotoxin and crotoxin selectively bound to negatively charged micellar structures. These experiments suggest that, in addition to the existence of any specific acceptor proteins, neurotoxin binding is also governed by the charge on the lipid phase of the nerve terminal membrane.  相似文献   

12.
LA-N-1 neuroblastoma cell cultures contain Ca2+-independent phospholipases A2 hydrolyzing phosphatidylethanolamine and ethanolamine plasmalogens. These enzymes differ from each other in their molecular mass, substrate specificity, and kinetic properties. Subcellular distribution studies have indicated that the activity of these phospholipases is not only localized in the cytosol but also in non-nuclear membranes and in nuclei. The treatment of LA-N-1 neuroblastoma cell cultures with retinoic acid results in a marked stimulation of Ca2+-independent phospholipases A2 hydrolyzing phosphatidylethanolamine and plasmenylethanolamine. The increase of the activities of both enzymes was first observed in nuclei followed by those present in the cytosol. No effect of retinoic acid on either phospholipase activity could be observed in non-nuclear membranes. The stimulation of these enzymes may be involved in the generation and regulation of arachidonic acid and its metabolites during differentiation.  相似文献   

13.
A free N-terminal alpha-NH3+ group is absolutely required for full catalytic activity of phospholipase A2 on aggregated substrates. To elucidate how this alpha-NH3+ group triggers catalytic activity, we specifically transaminated this group in various pancreatic phospholipases A2. Porcine, porcine iso-, equine, human, ovine, and bovine phospholipases A2 all loose catalytic activity on micellar substrates due to the inability of the transaminated proteins to bind to neutral micellar substrate analogues, as was found for the zymogens. Loss of activity is pseudo first order, the rate constants being different for the enzymes studied. The transaminated phospholipases A2 have an intact active site, as catalytic activities on monomeric substrates are comparable to those of the respective zymogens. The X-ray structure of transaminated bovine phospholipase A2 at 2.1-A resolution shows that the N-terminal region and the sequence 63-72 in this protein are more flexible than in the native enzyme. Also, in this respect, the transaminated enzyme very much resembles the zymogen structure. In good agreement with this, it was found by photochemically induced dynamic nuclear polarization 1H NMR that aromatic resonances of Trp-3 and Tyr-69 are affected by transamination. In addition, fluorescence spectroscopy of the unique Trp-3 in transaminated bovine phospholipase A2 revealed a red shift of the emission maximum indicative of a more polar environment of Trp-3 in the transaminated phospholipase A2 as compared to the enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Eighty-three percent of polyphosphoinositide-specific phospholipase C activity was recovered in a cytosolic fraction after nitrogen cavitation of turkey erythrocytes. This activity has been purified approximately 50,000-fold when compared to the starting cytosol with a yield of 1.7-5.0%. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the phospholipase C preparation revealed a major polypeptide of 150 kDa. The specific activity of the purified enzyme was 6.7-14.0 mumol/min/mg of protein with phosphatidylinositol 4,5-bisphosphate or phosphatidylinositol 4-phosphate as substrate. Phospholipase C activity was markedly dependent on the presence of Ca2+. The phospholipase C showed an acidic pH optimum (pH 4.0). At neutral pH, noncyclic inositol phosphates were the major products formed by the phospholipase C, while at pH 4.0, substantial formation of inositol 1:2-cyclic phosphate derivatives occurred. Properties of the purified 150-kDa turkey erythrocyte phospholipase C were compared with the approximately 150-kDa phospholipase C-beta and -gamma isoenzymes previously purified from bovine brain (Ryu, S. H., Cho, K. S., Lee, K. Y., Suh, P. G., and Rhee, S. G. (1987) J. Biol. Chem. 262, 12511-12518). The turkey erythrocyte phospholipase C differed from the two mammalian phospholipases with respect to the effect of sodium cholate on the rate of polyphosphoinositide hydrolysis observed. Moreover, when presented with dispersions of pure inositol lipids, phospholipases C-beta and -gamma displayed comparable maximal rates of polyphosphoinositide and phosphatidylinositol hydrolysis. By contrast, the turkey erythrocyte phospholipase C displays a marked preference for polyphosphoinositide substrates.  相似文献   

15.
Phospholipase A has been solubilized from the sarcoplasmic reticulum of rat heart by treatment with Tris buffer, potassium chloride, taurodeoxycholate or octyl glucoside. On HPLC gel permeation, two phospholipases were identified at the void volume of a TSK 3000 column and at an apparent molecular mass of 60 kDa. The two activity peaks exhibited a predominance of phospholipase A1 activity (83-91%) and a lesser phospholipase C activity (4-9%) using sonicated 1-palmitoyl-2[1-14C]oleoylphosphatidylcholine liposomes as substrate. The voiding phospholipase A peak, which represented the bulk of the recovered activity, exhibited a requirement for calcium ions in the 0.3-3 microM range. The heat stability and response to mercuric ions was studied and some similarities were noted between the solubilized sarcoplasmic reticulum phospholipases A and the cytosolic phospholipases A of rat heart. It is speculated that the cytosolic phospholipase A which we reported earlier may represent in part phospholipase A released from sarcoplasmic reticulum during isolation of the subcellular membrane fractions.  相似文献   

16.
Oligomers of prostaglandin B1 inhibited phospholipase A2 extracted from human neutrophils in a dose-dependent manner (IC50 = 5 microM), while the monomer was not inhibitory at concentrations of 10 microM or less. The inhibitory activity of PGB1 oligomers increased with increasing polymer size; PGB dimer had approximately one-half the maximal inhibitory activity of PGBx, while a trimer was almost as inhibitory as a tetramer and PGBx (n = 6). PGBx as an oil or as a water-soluble sodium-salt-inhibited Ca2(+)-dependent phospholipase A2 from snake venom, bovine pancreas, human neutrophil and platelet, human synovial fluid, and human sperm with IC50 values ranging from 0.5-7.5 microM. Inhibition was independent of added Ca2+ and was independent of substrate phospholipid concentration. Interaction of purified snake venom phospholipase A2 (Naja mocambique) with PGBx resulted in dose-dependent quenching of the enzyme's tryptophan fluorescence; 50% quench was noted with a molar ratio of PGBx/enzyme of 1.5. Inhibition of phospholipase A2 activity by PGBx was relieved in a dose-dependent manner by either defatted or untreated bovine serum albumin. PGBx is a potent in vitro inhibitor of a wide spectrum of phospholipases A2, and as illustrated in the accompanying paper, has profound inhibitory effects on arachidonic acid mobilization in human neutrophils and vascular endothelial cells. Modulation of cellular and extracellular phospholipases A2, and the bioactive transmitters generated by this catalytic event, may be a basic mechanism by which oligomers of prostaglandin B1 exert their reported membrane-protective effects.  相似文献   

17.
Phospholipase activities of the P388D1 macrophage-like cell line   总被引:3,自引:0,他引:3  
The murine macrophage (M phi) cell line, P388D1, was employed as a source of M phi phospholipases in order to characterize the enzymatic properties and subcellular localization of these enzymes because of their importance for prostaglandin biosynthesis. Phospholipase activity was assessed with dipalmitoylphosphatidylcholine (DPPC) as substrate. Phospholipases were characterized with respect to divalent cation dependence, pH optima, and localization in subcellular compartments using linear sucrose gradients. By these criteria a number of different phospholipases were identified. Most importantly, a single Ca2+-dependent activity with a pH optimum of 8.8 was identified in membrane-rich fractions (plasma membrane, mitochondria, and endoplasmic reticulum) and could be clearly separated from the remaining activities, which are Ca2+ independent and exhibit pH optima of 7.5, 5.1, and 4.2. The phospholipases with acidic pH optima may be associated with subcellular components containing lysosomal enzymes and both phospholipase A1 and phospholipase A2 activities are observed. In contrast, the phospholipase activity with a pH optimum of 7.5 sediments with the cytosolic proteins and is inhibited by 5 mM Ca2+. No significant phospholipase C activity was detected in assays performed with or without added Ca2+ at pH's 4.2, 5.1, 7.5, or 8.8 using DPPC as substrate. However, the P388D1 cells do contain a lysophospholipase that is at least 20 times more active than the phospholipase A activities identified. Its presence must be taken into account in evaluating the positional specificities and properties of the macrophage phospholipases.  相似文献   

18.
The majority of phospholipase A2 activity in myocardium is calcium-independent and selective for hydrolysis of plasmalogen substrate (Wolf, R. A., and Gross, R. W. (1985) J. Biol. Chem. 260, 7295-7303; Hazen, S. L., Stuppy, R. J., and Gross, R. W. (1990) J. Biol. Chem. 265, 10622-10630). Accordingly, identification of an inhibitor which selectively targets calcium-independent phospholipases A2 would facilitate elucidation of the biologic significance of this class of intracellular phospholipases. We now report that the haloenol lactone, (E)-6-(bromomethylene)tetrahydro-3-(1-naphthalenyl)-2H-pyran-2-one (Compound 1), is a potent, irreversible, mechanism-based inhibitor of myocardial calcium-independent phospholipase A2 which is greater than 1000-fold specific for inhibition of myocardial calcium-independent phospholipase A2 in comparisons with multiple calcium-dependent phospholipases A2. Mechanism-based inhibition of myocardial cytosolic calcium-independent phospholipase A2 by Compound 1 was established by demonstrating: 1) time-dependent irreversible inactivation; 2) covalent binding of [3H]Compound 1 to the purified phospholipase A2; 3) ablation of covalent binding of [3H]Compound 1 after chemical inactivation of phospholipase A2 enzymic activity; 4) identical inhibition of myocardial phospholipase A2 by Compound 1 in the absence or presence of nucleophilic scavengers; 5) Compound 1 is a substrate for myocardial calcium-independent phospholipase A2 resulting in the generation of the electrophilic alpha-bromomethyl ketone; 6) phospholipase A2 inhibition requires the in situ generation of the reactive electrophile (i.e. neither the alpha-bromomethyl ketone nor the diproteoenol lactone analog are inhibitory); and 7) concomitant attenuation of the inhibitory potency and the extent of covalent adduct formation in the presence of saturating substrate. Collectively, these results demonstrate that the haloenol lactone, Compound 1, is a substrate for, covalently binds to, and irreversibly inhibits canine myocardial cytosolic calcium-independent phospholipase A2.  相似文献   

19.
Intact secretory granules isolated from bovine adrenal medulla express tyrosine hydroxylase (TH) activity. Granule-associated TH sediments on continuous sucrose gradients with dopamine beta-hydroxylase, a marker for granule membranes, indicating that TH is associated with chromaffin granules. Membranes prepared from lysed granules retain TH, whereas granule contents are free of the enzyme. TH immunoreactivity was detected in granule membranes by immunoblot analysis using a polyclonal antiserum against TH. TH immunoreactivity cannot be removed from membranes by washes in high ionic strength buffers and is only partially removed from membranes by treatment with either urea or Na2CO3. TH can be removed from granule membranes by the detergents Nonidet P-40, Triton X-100, and 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate. Treatment of membranes with a phosphatidylinositol-specific phospholipase C did not remove TH, ruling out the possibility of a glycosyl phosphatidyl anchor. Fractionation of granule membranes by temperature-induced phase separation in Triton X-114 revealed that TH is recovered in phases in which integral (detergent phase) and hydrophobic (phospholipid phase) membrane proteins are typically found. By contrast, TH from adrenal cytosol fractionated exclusively into the aqueous phase along with other soluble proteins. Digestion of granules with various protease enzymes revealed that TH is resistant to degradation, suggesting that the enzyme is embedded within membranes. TH becomes phosphorylated when intact granules are exposed to the catalytic subunit of the cAMP-dependent protein kinase, indicating that at least the N-terminal region of TH is exposed on the cytoplasmic surface of granules. These results establish that a fraction of TH is an integral component of bovine granule membranes. The association of TH with granule membranes may play a role in coordinating TH activity and catecholamine release.  相似文献   

20.
Arachidonoyl-hydrolyzing phospholipase A2 plays a central role in providing substrate for the synthesis of the potent lipid mediators of inflammation, the eicosanoids, and platelet-activating factor. Although Ca2+ is required for arachidonic acid release in vivo and most phospholipase A2 enzymes require Ca2+ for activity in vitro, the role of Ca2+ in phospholipase A2 activation is not understood. We have found that an arachidonoyl-hydrolyzing phospholipase A2 from the macrophage-like cell line, RAW 264.7, exhibits Ca2(+)-dependent association with membrane. The intracellular distribution of the enzyme was studied as a function of the Ca2+ concentration present in homogenization buffer. The enzyme was found almost completely in the 100,000 x g soluble fraction when cells were homogenized in the presence of Ca2+ chelators and there was a slight decrease in soluble fraction activity when cells were homogenized at the level of Ca2+ in an unstimulated cell (80 nM). When cells were homogenized at Ca2+ concentrations expected in stimulated cells (230-450 nM), 60-70% of the phospholipase A2 activity was lost from the soluble fraction and became associated with the particulate fraction in a manner that was partly reversible with EGTA. Membrane-associated phospholipase A2 activity was demonstrated by [3H]arachidonic acid release both from exogenous liposomes and from radiolabeled membranes. With radiolabeled particulate fraction as substrate, this enzyme hydrolyzed arachidonic acid but not oleic acid from membrane phospholipid, and [3H]arachidonic acid was derived from phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol/phosphatidylserine. We suggest a mechanism in which the activity of phospholipase A2 is regulated by Ca2+: in an unstimulated cell phospholipase A2 is found in the cytosol; upon receptor ligation the cytosolic Ca2+ concentration increases, and the enzyme becomes membrane-associated which facilitates arachidonic acid hydrolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号