首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mucosal mast cells are implicated in visceral hypersensitivity associated with irritable bowel syndrome (IBS). In this study, we investigated the role of mast cells in the development of visceral hypersensitivity by using mast cell deficient (Ws/Ws) rats and their control (W+/W+). In W+/W+ rats, an injection of 2,4,6-trinitrobenzene sulfonic acid (TNBS) into the proximal colon produced a significant decrease in pain threshold of the distal colon. Severe mucosal necrosis and inflammatory cell infiltration with concomitant increase in tissue myeloperoxidase activity were observed in the proximal colon that was directly insulted by TNBS, whereas neither necrosis nor increased myeloperoxidase activity occurred in the distal colon, indicating that TNBS-induced hypersensitivity is not caused by the local tissue damage or inflammation in the region of the gut where distention stimuli were applied. On the other hand, TNBS failed to elicit visceral hypersensitivity in Ws/Ws rats. This finding indicates that mast cells are essential for development of TNBS-induced visceral hypersensitivity in rats. Since the severity of TNBS-induced proximal colon injury and MPO activity was not affected by mast cell deficiency, it is unlikely that abolishment of visceral hypersensitivity in mast cell deficient rats was a result of altered development of the primary injury in the proximal colon. There was no difference between sham-operated Ws/Ws and W+/W+ rats in colonic pain threshold to distention stimuli, indicating that mast cells play no modulatory roles in normal colonic nociception. The present results support the view that mucosal mast cells play key roles in the pathogenesis of IBS.  相似文献   

2.
Chronic psychological stress causes intestinal barrier dysfunction and impairs host defense mechanisms mediated by corticotrophin-releasing factor (CRF) and mast cells; however, the exact pathways involved are unclear. Here we investigated the effect of chronic CRF administration on colonic permeability and ion transport functions in rats and the role of mast cells in maintaining the abnormalities. CRF was delivered over 12 days via osmotic minipumps implanted subcutaneously in wild-type (+/+) and mast cell-deficient (Ws/Ws) rats. Colonic segments were excised for ex vivo functional studies in Ussing chambers [short-circuit current (Isc), conductance (G), and macromolecular permeability (horseradish peroxidase flux)], and analysis of morphological changes (mast cell numbers and bacterial host-interactions) was determined by light and electron microscopy. Chronic CRF treatment resulted in colonic mucosal dysfunction with increased Isc, G, and horseradish peroxidase flux in+/+but not in Ws/Ws rats. Furthermore, CRF administration caused mast cell hyperplasia and abnormal bacterial attachment and/or penetration into the mucosa only in+/+rats. Finally, selective CRF agonist/antagonist studies revealed that stimulation of CRF-R1 and CRF-R2 receptors induced the elevated secretory state and permeability dysfunction, respectively. Chronic CRF causes colonic barrier dysfunction in rats, which is mediated, at least in part, via mast cells. This information may be useful in designing novel treatment strategies for stress-related gastrointestinal disorders.  相似文献   

3.
Key role for mast cells in nonatopic asthma   总被引:7,自引:0,他引:7  
The mechanisms involved in nonatopic asthma are poorly defined. In particular, the importance of mast cells in the development of nonatopic asthma is not clear. In the mouse, pulmonary hypersensitivity reactions induced by skin sensitization with the low-m.w. compound dinitrofluorobenzene (DNFB) followed by an intra-airway application of the hapten have been featured as a model for nonatopic asthma. In present study, we used this model to examine the role of mast cells in the pathogenesis of nonatopic asthma. First, the effect of DNFB sensitization and intra-airway challenge with dinitrobenzene sulfonic acid (DNS) on mast cell activation was monitored during the early phase of the response in BALB/c mice. Second, mast cell-deficient W/W(v) and Sl/Sl(d) mice and their respective normal (+/+) littermate mice and mast cell-reconstituted W/W(v) mice (bone marrow-derived mast cells-->W/W(v)) were used. Early phase mast cell activation was found, which was maximal 30 min after DNS challenge in DNFB-sensitized BALB/c, +/+ mice but not in mast cell-deficient mice. An acute bronchoconstriction and increase in vascular permeability accompanied the early phase mast cell activation. BALB/c, +/+ and bone marrow-derived mast cell-->W/W(v) mice sensitized with DNFB and DNS-challenged exhibited tracheal hyperreactivity 24 and 48 h after the challenge when compared with vehicle-treated mice. Mucosal exudation and infiltration of neutrophils in bronchoalveolar lavage fluid associated the late phase response. Both mast cell-deficient strains failed to show any features of this hypersensitivity response. Our findings show that mast cells play a key role in the regulation of pulmonary hypersensitivity responses in this murine model for nonatopic asthma.  相似文献   

4.
We examined the impact of chronic stress on rat growth rate and intestinal epithelial physiology and the role of mast cells in these responses. Mast cell-deficient (Ws/Ws) rats and +/+ littermate controls were submitted to water avoidance stress or sham stress, 1 h/day, for 5 days. Seven hours after the last sham or stress session, jejunal segments were mounted in Ussing chambers, in which secretion and permeability were measured. Body weight (as a growth index) and food intake were determined daily. Stress increased baseline jejunal epithelial ion secretion (indicated by short-circuit current), ionic permeability (conductance), and macromolecular permeability (horseradish peroxidase flux) in +/+ rats, but not in Ws/Ws rats, compared with nonstressed controls. Stress induced weight loss and reduced food intake similarly in the groups. In +/+ rats, these parameters remained altered 24-72 h after the cessation of stress. Modulation of stress-induced mucosal mast cell activation may help in the management of certain intestinal conditions involving epithelial pathophysiology.  相似文献   

5.
Mast cells and other cells such as macrophages have been shown to mediate systemic anaphylaxis. We determined the roles of mast cells and Kupffer cells in hepatic and systemic anaphylaxis of rats. Roles of mast cells were examined by using the mast cell-deficient white spotting (Ws/Ws) rat; the Ws/Ws and wild type (+/+) rats were sensitized with ovalbumin (1 mg). Roles of Kupffer cells were examined by depleting Kupffer cells using gadolinium chloride or liposome-encapsulated dichloromethylene diphosphonate in the Ws/Ws and Sprague-Dawley rats. An intravenous injection of 0.6 mg ovalbumin caused substantial anaphylactic hypotension in both the Ws/Ws and +/+ rats; however, the occurrence was delayed in the Ws/Ws rats. After antigen, portal venous pressure increased by 13.1 cmH2O in the +/+ rats, while it increased only by 5.7 cmH2O in the Ws/Ws rats. In response to antigen, the isolated perfused liver of the Ws/Ws rats also showed weak venoconstriction, the magnitude of which was one tenth as large as that of the +/+ rats, indicating that hepatic anaphylaxis was primarily due to mast cells. In contrast, Kupffer cell depletion did not attenuate anaphylactic hepatic venoconstriction in isolated perfused livers. In conclusion, mast cells are involved mainly in anaphylactic hepatic presinusoidal portal venoconstriction but only in the early stage of anaphylactic systemic hypotension in rats. Macrophages, including Kupffer cells, do not participate in rat hepatic anaphylactic venoconstriction.  相似文献   

6.
The airway epithelium is an important barrier between the environment and subepithelial tissues. The epithelium is also divided into functionally restricted apical and basolateral domains, and this restriction is dependent on the elements of the barrier. The protease-activated receptor-2 (PAR2) receptor is expressed in airway epithelium, and its activation initiates multiple effects including enhanced airway inflammation and reactivity. We hypothesized that activation of PAR2 would interrupt E-cadherin adhesion and compromise the airway epithelial barrier. The PAR2-activating peptide (PAR2-AP, SLIGRL) caused an immediate approximately 50% decrease in the transepithelial resistance of primary human airway epithelium that persisted for 6-10 min. The decrease in resistance was accompanied by an increase in mannitol flux across the epithelium and occurred in cystic fibrosis transmembrane conductance receptor (CFTR) epithelium pretreated with amiloride to block Na and Cl conductances, confirming that the decrease in resistance represented an increase in paracellular conductance. In parallel experiments, activation of PAR2 interrupted the adhesion of E-cadherin-expressing L cells and of primary airway epithelial cells to an immobilized E-cadherin extracellular domain, confirming the hypothesis that activation of PAR2 interrupts E-cadherin adhesion. Selective interruption of E-cadherin adhesion with antibody to E-cadherin decreased the transepithelial resistance of primary airway epithelium by >80%. Pretreatment of airway epithelium or the E-cadherin-expressing L cells with the long-acting beta-agonist salmeterol prevented PAR2 activation from interrupting E-cadherin adhesion and compromising the airway epithelial barrier. Activation of PAR2 interrupts E-cadherin adhesion and compromises the airway epithelial barrier.  相似文献   

7.
Tight junctions between epithelial cells are believed to control the paracellular diffusion of substances across epithelia. Epithelia in which tight junctions are poorly developed display a higher paracellular electrical conductance, while those with extensive tight junctions show lower conductance values. We described here a particular epithelium, that of the proximal tubules of the Necturus kidney, in which the development of the tight junctions varies in parallel with a change of paracellular electrical conductance. In control conditions, tight junctions between epithelial cells of the proximal tubules are more developed than in tubules undergoing saline diuresis, a situation which increases the conductance across the paracellular shunt pathway.  相似文献   

8.
Mast cells have been implicated as the central effectors in allergic responses, yet a fatal anaphylactic response can be induced in mast cell-deficient mice. In this study, we examined the immediate hypersensitivity response in wild-type (WT) and mast cell-deficient mice (W/W(v)) in two different tissues (skin and skeletal muscle). Vascular permeability and leukocyte recruitment were studied after immediate challenge or 4 h postchallenge in OVA-sensitized mice. In skin, immediate challenge induced a significant increase in vascular permeability (75%) within 30 min and was accompanied by increased leukocyte adhesion 4 h postchallenge. In the absence of mast cells, no changes in vascular permeability or leukocyte recruitment were observed in skin. In WT skeletal muscle, immediate challenge induced a rapid increase (80%) in vascular permeability within 5 min and significant leukocyte recruitment after 4 h. Surprisingly, in W/W(v), a gradual increase in vascular permeability was observed, reaching a maximum (50%) within 30 min. Despite the absence of mast cells, subsequent leukocyte emigration was similar to that observed in WT mice. Pretreatment with anti-platelet serum in W/W(v) returned Ag-induced vascular permeability and leukocyte recruitment to baseline. Platelets were shown to interact with endothelium in skeletal muscle, but not dermal microvasculature. These data illustrate that mast cells play a prominent role in vascular permeability and leukocyte recruitment in skin in response to Ag, however, in skeletal muscle; these changes can occur in the absence of mast cells, and are mediated, in part, by the presence of platelets.  相似文献   

9.
Although L-selectin mediates lymphocyte attachment to endothelial venules of peripheral lymph nodes, its role in leukocyte recruitment into tissues following Ag challenge is less well established. The objective of this study was to systematically examine the role of L-selectin in leukocyte rolling in the peripheral microvasculature during the first 24 h of an immune response. A type I hypersensitivity response was elicited in wild-type (C57BL/6) and L-selectin-deficient mice by systemic (i.p.) sensitization and intrascrotal challenge with chicken egg OVA. The cremaster microcirculation was observed in untreated and sensitized mice 4, 8, and 24 h post-Ag challenge by intravital microscopy. Leukocyte recruitment in L-selectin-deficient mice and wild-type mice treated with an L-selectin function-blocking mAb was examined at each time point. Ag challenge induced a significant increase in leukocyte rolling (60 cells/min/venule to approximately 300 cells/min/venule) in wild-type mice at 4-24 h. This response was reduced by approximately 60-70% in L-selectin-deficient mice and in wild-type mice treated with an L-selectin-blocking mAb. P-selectin blockade by Ab completely inhibited leukocyte rolling at 4-24 h in wild-type animals and also blocked the residual rolling seen in L-selectin-deficient mice. Blocking E-selectin function had no effect on leukocyte rolling flux at any time point in wild-type or L-selectin-deficient mice. Despite reduced rolling, leukocyte adhesion and emigration were not measurably reduced in the L-selectin-deficient mice in this vascular bed. In conclusion, leukocyte rolling is L-selectin-dependent post-Ag challenge with L-selectin and P-selectin sharing overlapping functions.  相似文献   

10.
Radiation-induced heart disease is a severe side effect of thoracic radiotherapy. Studies suggest that mast cells play a protective role in radiation-induced heart disease and that the endothelin (ET) system mediates protective effects of mast cells in other disorders. This study examined whether mast cells modulate the cardiac ET system and examined the effects of ET receptor inhibition in a rat model of radiation-induced heart disease. Mast cell-deficient (Ws/Ws), mast cell-competent (+/+) and Sprague-Dawley rats received 18 Gy irradiation to the heart. Left ventricular mRNA of ET1 and its receptors (ETA and ETB) was measured in Ws/Ws and +/+ rats at 1 week and 3 months. Sprague-Dawley rats were treated with the ETA/ETB antagonist bosentan, and at 6 months cardiac changes were assessed using the Langendorff perfused rat heart preparation, immunohistochemistry and real-time PCR. Ws/Ws and +/+ rat hearts did not differ in baseline mRNA. In contrast, +/+ rats hearts exhibited up-regulation of ET1 after irradiation, whereas Ws/Ws rats hearts did not, suggesting the possibility of interactions between mast cells and the cardiac ET system. Bosentan induced reductions in left ventricular systolic pressure, developed pressure and +dP/dtmax but did not affect fibrosis. Because of the known opposing effects of ETA and ETB, studies with selective antagonists may clarify the role of each receptor.  相似文献   

11.
Recent reports including those from our laboratories indicate that hyperhomocysteinemia (Hhe) is an independent risk factor for cardiac dysfunction and clinical heart failure. Mast cell accumulation is a prominent feature in our model of Hhe-induced cardiac dysfunction. Because mast cell-derived mediators can potentially attenuate cardiac remodeling, we investigated the possible protective role of mast cells in Hhe-induced cardiac remodeling using a mast cell-deficient rat model that in our recent report did not demonstrate any adverse cardiac function at younger age (6 mo) than mast cell-competent control animals. Mast cell-deficient (Ws/Ws) rats and mast cell-competent (+/+) littermate control animals (3 mo of age) were treated with a Hhe-inducing diet for 10 wk. Cardiac remodeling was assessed structurally utilizing histomorphometric methods and functionally using an isolated Langendorff-perfused heart preparation. The Hhe-inducing diet caused similar elevations of homocysteine levels in the two groups. Compared with Hhe +/+ rats, the Hhe Ws/Ws rats demonstrated strikingly exacerbated adverse cardiac remodeling and myocardial fibrosis. Cardiac function measurement showed worsened diastolic function in Hhe Ws/Ws rats compared with Hhe +/+ rats. The absence of mast cells strikingly exacerbates Hhe-induced adverse cardiac remodeling and diastolic dysfunction. These findings indicate a potential dual rather than sole deleterious role for mast cells in cardiac injury.  相似文献   

12.
Transforming growth factor beta 1 (TGF-beta 1) is a member of a gene superfamily that regulates growth, differentiation, and function of cells including several in vitro immune functions. Our study examined the systemic effect of TGF-beta 1 on murine delayed-type hypersensitivity (DTH), a model of T cell-mediated immunity that may depend on mast cells. Mice were immunized by i.v. injection of SRBC or by topical application of picryl chloride, and the responses were elicited by cutaneous challenge with the appropriate Ag. Systemic administration of TGF-beta 1 at the time of Ag challenge significantly reduced both the early and late phases of DTH. The effect of TGF-beta 1 on the release of serotonin from mouse peritoneal mast cells was examined. Results indicated that in vivo treatment with TGF-beta 1 24 h before mast cell harvest inhibited the in vitro release of serotonin in response to challenge with compound 48/80, or anti-IgE antibody. In contrast, treatment with TGF-beta 1 24 h before Ag challenge did not inhibit DTH indicating that mast cells may not be the direct target for TGF-beta 1 in the DTH models. In vivo treatment with TGF-beta 1 inhibited the IgE-mediated, mast cell-dependent, immediate hypersensitivity skin swelling response when injected at the time of, or 24 h before challenge. This suggests an effect on mast cells and a regulatory role for TGF-beta 1 in IgE-mediated responses.  相似文献   

13.
Abstract: The mast cell-deficient [ Ws/Ws ( W hite spotting in the skin)] rat was investigated with regard to the origin of histamine in the brain. No mast cells were detected in the pia mater and the perivascular region of the thalamus of Ws/Ws rats by Alcian Blue staining. The histamine contents and histidine decarboxylase (HDC) activities of various brain regions of Ws/Ws rats were similar to those of +/+ rats except the histamine contents of the cerebral cortex and cerebellum. As the cerebral cortex and cerebellum have meninges that are difficult to remove completely, the histamine contents of these two regions may be different between Ws/Ws and +/+ rats. We assume that the histamine content of whole brain with meninges in Ws/Ws rats is <60% of that in +/+ rats. So we conclude that approximately half of the histamine content of rat brain is derived from mast cells. Next, the effects of ( S )α-fluoromethylhistidine (FMH), a specific inhibitor of HDC, on the histamine contents and HDC activities of various regions of the brain were examined in Ws/Ws rats. In the whole brain of Ws/Ws rats, 51 and 37% of the histamine content of the control group remained 2 and 6 h, respectively, after FMH administration (100 mg/kg of body weight). Therefore, we suggest that there might be other histamine pools including histaminergic neurons in rat brain.  相似文献   

14.
Branchial epithelia of freshwater rainbow trout were cultured on permeable supports, polyethylene terephthalate membranes ("filter inserts"), starting from dispersed gill epithelial cells in primary culture. Leibowitz L-15 media plus foetal bovine serum and glutamine, with an ionic composition similar to trout extracellular fluid, was used. After 6 days of growth on the filter insert with L-15 present on both apical and basolateral surfaces, the cultured preparations exhibited stable transepithelial resistances (generally 1000-5000 ohms cm2) typical of an electrically tight epithelium. Under these symmetrical conditions, transepithelial potential was zero, and unidirectional fluxes of Na+ and Cl- across the epithelium and permeability to the paracellular marker polyethylene glycol-4000 (PEG) were equal in both directions. Na+ and Cl- fluxes were similar to one another and linearly related to conductance (inversely related to resistance) in a manner indicative of fully conductive passive transport. Upon exposure to apical fresh water, transepithelial resistance increased greatly and a basolateral-negative transepithelial potential developed. At the same time, however, PEG permeability and unidirectional effluxes of Na+ and Cl- increased. Thus, total conductance fell, and ionic fluxes and paracellular permeability per unit conductance all increased greatly, consistent with a scenario whereby transcellular conductance decreases but paracellular permeability increases upon dilution of the apical medium. In apical fresh water, there was a net loss of ions from the basolateral to apical surfaces as effluxes greatly exceeded influxes. However, application of the Ussing flux ratio criterion, in two separate series involving different methods for measuring unidirectional fluxes, revealed active influx of Cl- against the electrochemical gradient but passive movement of Na+. The finding is surprising because the cultured epithelium appears to consist entirely of pavement-type cells.  相似文献   

15.
The transepithelial route for mucosa-to-serosa transport of the tracer macromolecule horseradish peroxidase (HRP; MW 40 kDa) and modulation of this transport by forskolin and carbachol have been studied in vi-tro in stripped goldfish intestinal epithelium mounted in Ussing-type chambers. Uptake and transport have been investigated by measuring the HRP flux from the muco-sal to serosal sides by an enzymatic method and by visualising HRP reaction products in the mucosa with electron-microscopical techniques. Both the cholinergic agonist carbachol (which is thought to increase intracellular Ca2+ and activate protein kinase C activity) and forskolin (a direct activator of adenylylcyclase) affect the amount of enzymatically active HRP in the tissue. In control tissue, HRP product is found only within the epithelial cells, the transepithelial flux reaching a constant value of about 1.5 pmoles/cm2 per h. Carbachol increases the amount of HRP product in the cells, but has no significant effect on the HRP flux compared with control values. Forskolin decreases the amount of HRP product in the cells; however, in the presence of forskolin, the lateral intercellular spaces become filled with HRP product. HRP is found in the lamina propria and the transepithelial protein flux increases more than 2.5-fold. In the presence of forskolin plus carbachol, the results are no different from the control. It is concluded that carbachol increases the endocytotic uptake of HRP, whereas forskolin inhibits the uptake but increases the paracellular permeability for HRP in goldfish intestine. Received: 10 July 1995 / Accepted: 4 February 1996  相似文献   

16.
Selective adhesion of mast cells to tracheal epithelial cells in vitro   总被引:1,自引:0,他引:1  
In allergic and nonallergic lung diseases, if intraluminal mast cells adhere to airway epithelium, inflammatory mediators released from activated mast cells may reach high local concentrations and thus greatly affect airway function. To determine whether mast cells adhere to airway epithelial cells, radiolabeled or unlabeled dog mastocytoma cells were incubated with cultured dog tracheal epithelial cells, with extracellular matrix substrates, and with cryostat-cut sections of dog trachea. Mast cells adhered well to cultured epithelial cells (35 +/- 13% adhesion, mean +/- 1 SD, n = 23) but adhered poorly to types I and IV collagen or to fibronectin (less than 7.5% mean adhesion in all cases). Similarly, in tracheal tissue sections, mast cells adhered preferentially to epithelial cells in surface epithelium or in submucosal glands but not to basal membrane or connective tissue. Adhesion to cultured epithelial cells was a characteristics of a subpopulation of mast cells, could persist for more than 48 h, did not require energy or the presence of divalent cations, and was not mediated by a known family of leukocyte-associated adhesion glycoproteins. Adhesion was completely abolished by pretreatment of mast cells with pronase E or proteinase K but not with trypsin (up to 10 micrograms/ml at 37 degrees C for 20 min each). In contrast, pretreatment of cultured epithelial cells with any of these proteinases had no effect on adhesion. It is concluded that dog mastocytoma mast cells adhere to dog tracheal epithelial cells and do so selectively. It is suggested that mast cell adhesion to airway epithelium may play a role in the effectiveness of mast cell-epithelial cell interactions, and thus, in certain lung diseases, airway function may be affected by intraluminal mast cells more than is currently appreciated.  相似文献   

17.
Summary Protein uptake from cerebral ventricles into the epithelium of the choroid plexus, and transport across the epithelium were studied ultrastructurally in rats. Horseradish peroxidase (HRP, MW 40,000) was used as protein tracer. Steady-state ventriculo-cisternal perfusion with subatmospheric pressure (-10cm of water) in the ventricular system was applied. HRP dissolved in artificial CSF was perfused from the lateral ventricles to cisterna magna for various times, and ventriculo-cisternal perfusion, vascular perfusion or immersion fixation with a formaldehyde-glutaraldehyde solution was performed.Coated micropinocytic vesicles containing HRP were seen both connected with the apical, lateral and basal epithelial surface and within the cells. Heavily HRP-labeled vesicles were often fused with the lining membrane of slightly labeled or unlabeled intercellular spaces. Since the apical tight junctions of the epithelium never appeared open or never contained HRP in the spaces between the fusion points, and since the intercellular spaces between adjacent epithelial cells below the junctions only infrequently contained tracer after 5 min, by increasing amounts after 15–60 min of HRP perfusion, a vesicular transport of HRP from the apical epithelial surface to the intercellular spaces, bypassing the tight junctions, is suggested.In addition to the transepithelial transport, micropinocytic vesicles also transported HRP to the lysosomal apparatus of the epithelial cells. With increasing length of exposure to HRP, a sequence of HRP-labeled structures could be evaluated, from slightly labeled apical vacuoles and multivesicular bodies to very heavily labeled dense bodies.  相似文献   

18.
TNF-alpha is a cytokine associated with inflammatory diseases, including asthma. Increased levels of TNF-alpha were found in the bronchoalveolar lavage fluid of mice undergoing a dinitrofluorobenzene (DNFB)-induced non-IgE-mediated pulmonary hypersensitivity reaction. We report in this work that TNF-alpha increases the susceptibility of sensory neurons to dinitrobenzene sulfonic acid (DNS) and capsaicin, leading to a tracheal vascular hyperpermeability response in DNFB-sensitized and DNS-challenged mice. mAb against TNF-alpha or the TNFR1 inhibited this hyperpermeability response in DNFB-sensitized and DNS-challenged mice. Furthermore, the hyperpermeability response after DNS challenge was abolished in DNFB-sensitized mast cell-deficient WBB6F(1)-W/W(V) mice. These animals showed a remarked decrease of TNF-alpha bronchoalveolar lavage fluid levels after a single DNS challenge. The hyperpermeability response after DNS challenge was regained in mast cell-deficient mice after mast cell reconstitution. These findings indicate a prominent role for TNF-alpha and its TNFR1 in the DNFB-induced tracheal hyperpermeability response. We propose that a priming effect of mast cell-derived TNF-alpha on the sensory neurons could be the mechanism of action of TNF-alpha in the vascular hyperpermeability response in tracheas of mice undergoing a pulmonary hypersensitivity reaction.  相似文献   

19.
Recent studies have suggested a pivotal role for secondary lymphoid chemokine (SLC) in directing dendritic cell trafficking from peripheral to lymphoid tissues. As an extension of these studies, we examined the consequences of anti-SLC Ab treatment during Ag priming on T cell function in an inflammatory response. We used a model of T cell-mediated inflammation, contact hypersensitivity (CHS), where priming of the effector T cells is dependent upon epidermal dendritic cell, Langerhans cells, and migration from the hapten sensitization site in the skin to draining lymph nodes. A single injection of anti-SLC Ab given at the time of sensitization with FITC inhibited Langerhans cell migration into draining lymph nodes for at least 3 days. The CHS response to hapten challenge was inhibited by anti-SLC Ab treatment in a dose-dependent manner. Despite the inhibition of CHS, T cells producing IFN-gamma following in vitro stimulation with anti-CD3 mAb or with hapten-labeled cells were present in the skin-draining lymph nodes of mice treated with anti-SLC Ab during hapten sensitization. These T cells were unable, however, to passively transfer CHS to naive recipients. Animals treated with anti-SLC Ab during hapten sensitization were not tolerant to subsequent sensitization and challenge with the hapten. In addition, anti-SLC Ab did not inhibit CHS responses when given at the time of hapten challenge. These results indicate an important role for SLC during sensitization for CHS and suggest a strategy to circumvent functional T cell priming for inflammatory responses through administration of an Ab inhibiting dendritic cell trafficking.  相似文献   

20.
A mathematical model of an absorbing leaky epithelium is developed for analysis of solute coupled water transport. The non-charged driving solute diffuses into cells and is pumped from cells into the lateral intercellular space (lis). All membranes contain water channels with the solute passing those of tight junction and interspace basement membrane by convection-diffusion. With solute permeability of paracellular pathway large relative to paracellular water flow, the paracellular flux ratio of the solute (influx/outflux) is small (2-4) in agreement with experiments. The virtual solute concentration of fluid emerging from lis is then significantly larger than the concentration in lis. Thus, in absence of external driving forces the model generates isotonic transport provided a component of the solute flux emerging downstream lis is taken up by cells through the serosal membrane and pumped back into lis, i.e., the solute would have to be recirculated. With input variables from toad intestine (Nedergaard, S., E.H. Larsen, and H.H. Ussing, J. Membr. Biol. 168:241-251), computations predict that 60-80% of the pumped flux stems from serosal bath in agreement with the experimental estimate of the recirculation flux. Robust solutions are obtained with realistic concentrations and pressures of lis, and with the following features. Rate of fluid absorption is governed by the solute permeability of mucosal membrane. Maximum fluid flow is governed by density of pumps on lis-membranes. Energetic efficiency increases with hydraulic conductance of the pathway carrying water from mucosal solution into lis. Uphill water transport is accomplished, but with high hydraulic conductance of cell membranes strength of transport is obscured by water flow through cells. Anomalous solvent drag occurs when back flux of water through cells exceeds inward water flux between cells. Molecules moving along the paracellular pathway are driven by a translateral flow of water, i.e., the model generates pseudo-solvent drag. The associated flux-ratio equation is derived.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号