首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hydrolysis of endothelins by neutral endopeptidase 24.11 (enkephalinase)   总被引:23,自引:0,他引:23  
Endothelins 1-3 are a family of 21-amino acid peptides whose structure consists of two rings formed by intra-chain disulfide bonds and a linear "COOH-terminal tail." These peptides were originally described on the basis of their potent vasoconstrictor activity. The hydrolytic inactivation of endothelin action has recently been implicated to be attributed, at least in part, to the enzyme neutral endopeptidase 24.11 (Scicli, A. G., Vijayaraghavan, J., Hersh, L., and Carretero, O. (1989) Hypertension 14, 353). The kinetic properties and mode of hydrolysis of the endothelins by this enzyme are reported in this study. The Km for endothelins 1 and 3 hydrolysis is approximately 2 microM while endothelin2 exhibits a 5-fold higher Km. Endothelins 1 and 2 exhibit similar Vmax values while endothelin3 is hydrolyzed considerably more slowly. The initial cleavage site in endothelin1 is at the Ser5-Leu6 bond located within one of the cyclic structures. Thermolysin, a bacterial neutral endopeptidase with a similar substrate specificity to neutral endopeptidase 24.11 initially cleaves endothelin1 between His16-Leu17 which lies within the COOH-terminal linear "tail" portion of the molecule. The cleavage of endothelins 2 and 3 by neutral endopeptidase 24.11 differs from that observed with endothelin1 in that cleavage of these endothelins occurs at Asp18-Ile19 within the linear COOH-terminal tail structure. These results demonstrate that the endothelins are good substrates for neutral endopeptidase 24.11 and suggest that their mode of cleavage is dependent upon both amino acid sequence as well as peptide conformation.  相似文献   

2.
At relatively high concentrations of myosin light chain kinase, a second site on the 20,000-dalton light chain of smooth muscle myosin is phosphorylated (Ikebe, M., and Hartshorne, D. J. (1985) J. Biol. Chem. 260, 10027-10031). In this communication the site is identified and kinetics associated with its phosphorylation and dephosphorylation are described. The doubly phosphorylated 20,000-dalton light chain from turkey gizzard myosin was hydrolyzed with alpha-chymotrypsin and the phosphorylated peptide was isolated by reverse phase chromatography. Following amino acid analyses and partial sequence determinations the second site of phosphorylation is shown to be threonine 18. This site is distinct from the threonine residue phosphorylated by protein kinase C. The time courses of phosphorylation of serine 19 and threonine 18 in isolated light chains follow a single exponential indicating a random process, although the phosphorylation rates differ considerably. The values of kcat/Km for serine 19 and threonine 18 for isolated light chains are 550 and 0.2 min-1 microM-1, respectively. With intact myosin, phosphorylation of serine 19 is biphasic; kcat/Km values are 22.5 and 7.5 min-1 microM-1 for the fast and slow phases, respectively. In contrast, phosphorylation of threonine 18 in intact myosin is a random, but markedly slower process, kcat/Km = 0.44 min-1 microM-1. Dephosphorylation of doubly phosphorylated myosin (approximately 4 mol of phosphate/mol of myosin) and isolated light chains (approximately 2 mol of phosphate/mol of light chain) follows a random process and dephosphorylation of the serine 19 and threonine 18 sites occurs at similar rates.  相似文献   

3.
Although chymases are known to exhibit species differences in regard to angiotensin (Ang) II generation and degradation, their properties have never been compared under the same experimental conditions. We analyzed the processing of Ang I by chymases of a variety of species (human chymase, dog chymase, hamster chymase-1, rat mast cell protease-1 [rMCP-1], mouse mast cell protease-4 [mMCP-4]) at physiological ionic strength and under neutral pH conditions. Human chymase generated Ang II from Ang I without further degradation, whereas the chymases of other species generated Ang II, followed by degradation at the Tyr4-Ile5 site in a time-dependent manner. Kinetic analysis showed that in terms of Ang II generating activity (analyzed by cleavage of the Phe8-His9 bond using the model peptide Ang(5-10), Ile5-His6-Pro7-Phe8-His9-Leu10), the chymases ranked as follows: dog > human > hamster > mouse > rat (kcat/Km: 18, 11, 0.69, 0.059, 0.030 microM-1min-1), and that in terms of Ang II degrading activity (i.e., cleavage of the Tyr4-Ile5 bond of Ang II), the order was hamster > rat > mouse > dog (kcat/Km: 5.4, 4.8, 0.39, 0.29 microM-lmin-1). These results suggest species differences in the contribution of chymases to local Ang II generation and degradation.  相似文献   

4.
The catalytic subunit of the cAMP-dependent protein kinase from bovine cardiac muscle phosphorylates homoserine in the synthetic peptide Leu-Arg-Arg-Ala-Hse-Leu-Gly. Phosphorylation of the primary alcohol of the homoserine residue was established via NMR spectroscopy. Two-dimensional correlated and nuclear Overhauser effect spectroscopies provided the sequence-specific chemical shift assignments of the substrate peptide and its phosphorylated counterpart. Coupled and decoupled 31P NMR experiments established the presence of phosphate on the homoserine residue. The maximal velocity (6.4 mumol/min.mg) obtained for homoserine-peptide phosphorylation at 12.5 mM Mg2+ compares favorably to the velocities observed for the corresponding serine- (21 mumol/min.mg), threonine- (3.2 mumol/min.mg), and hydroxyproline-peptides (1 mumol/min.mg). However, the Km for homoserine kinase activity is modest (1.3 mM) relative to the Km associated with the phosphorylation of the serine-containing substrate (22 microM). The effect of Mg2+ concentration on the kinetic parameters kcat, Km, and kcat/Km was investigated for both serine- and homoserine-peptides. Both substrates display similar kcat/Km versus [Mg2+] profiles, with the most notable difference that the optimal Mg2+ concentration is higher for the homoserine-containing peptide. In addition, the Km for the serine-peptide was found to be independent of [Mg2+], whereas the Km for the homoserine-peptide was observed to be dependent upon [Mg2+]. These results suggest that the long homoserine side chain may induce an unusually large off rate for the peptide and/or may misalign the hydroxyl moiety in the active site.  相似文献   

5.
A membrane-bound metallo-endopeptidase that hydrolyzes human parathyroid hormone (1-84) and reduced hen egg lysozyme between hydrophilic amino acid residues was isolated from rat kidney [Yamaguchi et al. (1991) Eur. J. Biochem. 200, 563-571]. In this study, the hydrolyses of various peptide hormones and neuropeptides by the metallo-endopeptidase were examined using an automated gas-phase protein sequencer. The purified enzyme hydrolyzed the oxidized insulin B chain and substance P most rapidly, followed by big endothelin 1, neurotensin, angiotensin 1, endothelin 1, rat alpha-atrial natriuretic peptide and bradykinin, in this order. The enzyme mainly cleaved these peptides at bonds involving a hydrophilic amino acid residue. However, it cleaved bonds between less hydrophilic amino acid pairs in several short peptides, e.g. at the His5-Leu6 bond in oxidized insulin B chain, the Ile28-Val29 bond in big endothelin-1 and the Ile5-His6 and Phe8-His9 bonds in angiotensin 1. The enzyme cleavage sites of oxidized insulin B chain and angiotensin 1 were different from the reported sites cleaved by meprin and by endopeptidase 2, respectively. Kinetic determination of bradykinin hydrolysis by the purified enzyme yielded values of Km = 18.1 microM and kcat = 0.473 s-1, giving a ratio of kcat/Km = 2.62 x 10(4) s-1.M-1. The Km value was about 20-fold lower than that reported for meprin and endopeptidase 2. These results indicate that the membrane-bound metallo-endopeptidase from rat kidney is distinguished from meprin and endopeptidase 2 in its substrate specificity and is not parathyroid hormone specific, but has potential capacities to inactivate various biologically active peptide hormones and neuropeptides in vivo.  相似文献   

6.
The COOH-terminal residue in peptide analogs of the phosphorylation site sequence in smooth muscle myosin light chains, Lys11-Lys12-Arg13-Ala-Ala-Arg16-Ala-Thr-Ser19 -(P)Asn20-Val21-Phe22-Ala23, were shown to have a strong influence on the kinetics of peptide phosphorylation. The peptides 11-19, 11-20, 11-21, 11-22, and 11-23 were all phosphorylated by the myosin light chain kinase with similar apparent Km values in the range 11-17 microM. The Vmax varied 40-fold, with the peptides 11-19, 11-20, 11-21, 11-22, and 11-23 having Vmax values of 0.035, 0.045, 0.32, 1.74, and 1.43 mumol X min-1 X mg-1 respectively. These results indicated that Ala23 was not essential whereas Phe22 and Val21 had a strong influence on the Vmax of peptide phosphorylation. This series of peptides competitively inhibited myosin light chain phosphorylation with Ki values similar to their respective Km values. Peptide 11-19 had a Ki value of approximately 10 microM and a Vmax less than 0.1% of the value with myosin light chains and is therefore an effective inhibitor of the smooth muscle myosin kinase.  相似文献   

7.
Kinetics of coagulation factor X activation by platelet-bound factor IXa   总被引:5,自引:0,他引:5  
Thrombin-activated human platelets, in the presence of factors VIIIa and X, have specific, high-affinity (Kd approximately 0.5 nM), saturable binding sites for factor IXa that are involved in factor X activation [Ahmad, S.S., Rawala-Sheikh, R., & Walsh, P.N. (1989) J. Biol. Chem. 264, 3244-3251]. To determine the functional consequences of factor IXa binding to platelets, a detailed kinetic analysis of the effects of platelets, phospholipids, and factor VIII on factor IXa catalyzed factor X activation was done. In the absence of platelets, phospholipids, or factor VIII, the Michaelis constant (Km = 81 microM) was greater than 500-fold higher than the factor X concentration in human plasma. Unactivated platelets and thrombin-activated factor VIII, alone or in combination, had no effect on the kinetic parameters, whereas thrombin-activated platelets caused a major decrease in Km (0.39 microM) with no significant effect on kcat (0.052 min-1) and allowed factor VIIIa to decrease the Km further to a concentration (0.16 microM) near that of factor X in plasma and to increase the kcat 24,000-fold to 1240 min-1. Sonicated mixed phosphatidylserine/phosphatidylcholine vesicles (25/75, mol/mol) had kinetic effects similar to those of activated platelets. When factor IXa binding to thrombin-activated platelets and rates of factor X activation were measured simultaneously at saturating concentrations of factor X and factor VIIIa, the kcat was independent of factor IXa concentration, and the mean kcat value was 2391 min-1. The increase in catalytic efficiency (kcat/Km) in the presence of thrombin-activated platelets and factor VIIIa was (17.4 x 10(6))-fold.  相似文献   

8.
Substrate specificity of a multifunctional calmodulin-dependent protein kinase   总被引:31,自引:0,他引:31  
The substrate specificity of the multifunctional calmodulin-dependent protein kinase from skeletal muscle has been studied using a series of synthetic peptide analogs. The enzyme phosphorylated a synthetic peptide corresponding to the NH2-terminal 10 residues of glycogen synthase, Pro-Leu-Ser-Arg-Thr-Leu-Ser-Val-Ser-Ser-NH2, stoichiometrically at Ser-7, the same residue phosphorylated in the parent protein. The synthetic peptide was phosphorylated with a Vmax of 12.5 mumol X min-1 X mg-1 and an apparent Km of 7.5 microM compared to values of 1.2 mumol X min-1 X mg-1 and 3.1 microM, respectively, for glycogen synthase. Similarly, a synthetic peptide corresponding to the NH2-terminal 23 residues of smooth muscle myosin light chain was readily phosphorylated on Ser-19 with a Km of 4 microM and a Vmax of 5.4 mumol X min-1 X mg-1. The importance of the arginine 3 residues NH2-terminal to the phosphorylated serine in each of these peptides was evident from experiments in which this arginine was substituted by either leucine or alanine, as well as from experiments in which its position in the myosin light chain sequence was varied. Positioning arginine 16 at residues 14 or 17 abolished phosphorylation, while location at residue 15 not only decreased Vmax 14-fold but switched the major site of phosphorylation from Ser-19 to Thr-18. It is concluded that the sequence Arg-X-Y-Ser(Thr) represents the minimum specificity determinant for the multifunctional calmodulin-dependent protein kinases. Studies with various synthetic peptide substrates and their analogs revealed that the specificity determinants of the multifunctional calmodulin-dependent protein kinase were distinct from several other "arginine-requiring" protein kinases.  相似文献   

9.
Intrinsic versus extrinsic coagulation. Kinetic considerations.   总被引:3,自引:1,他引:2       下载免费PDF全文
A study to compare the kinetics of activation of factor IX by Factor XIa/Ca2+ and by Factor VIIa/tissue factor/Ca2+ has been undertaken. When purified human proteins, detergent-extracted brain tissue factor and tritiated-activation-peptide-release assays were utilized, the kinetic constants obtained were: Km = 310 nM, kcat. = 25 min-1 for Factor XIa and Km = 210 nM, kcat. = 15 min-1 for Factor VIIa. The kinetic constants for the activation of Factor X by Factor VIIa/brain tissue factor were: Km = 205 nM, kcat. = 70 min-1. Predicted rates for the generation of Factor IXa and Factor Xa were obtained when human monocytic tumour U937 cells (source of tissue factor) and Factor VIIa were used to form the activator. In other experiments, inclusion of high-Mr kininogen did not increase the activation rates of Factor IX by Factor XIa in the presence or absence of platelets and/or denuded rabbit aorta. These kinetic data strongly indicate that both Factor XIa and Factor VIIa play physiologically significant roles in the activation of Factor IX.  相似文献   

10.
Porcine muscle prolyl endopeptidase and its endogenous substrates   总被引:2,自引:0,他引:2  
Prolyl endopeptidase [EC 3.4.21.26] was purified 4,675-fold with a yield of 26.3% from porcine muscle. The purified enzyme was shown to be very similar to the liver enzyme with respect to its molecular weight (72,000-74,000), antigenicity, substrate specificity, and susceptibility to protease inhibitors. Among several bioactive peptides, angiotensins I, II, and III had the lowest Km of 0.6 to 3 microM with the lowest kcat of 0.19 to 0.85 s-1, while thyrotropin-releasing hormone had the highest Km of 98 microM with the highest kcat of 14.4 s-1. Interestingly, mastoparan was hydrolyzed at alanyl bonds, but insulin was only slightly hydrolyzed and glucagon was not hydrolyzed although the latter two peptides contain prolyl and/or alanyl bonds. Muscle prolyl endopeptidase failed to hydrolyze proteins with high molecular weight such as albumin, immunoglobulin G, elastin, collagen, and muscle soluble and insoluble proteins. However, 8 of 14 peptides with molecular weights lower than 3,000, which were isolated from muscle extract, were digested by this enzyme, and they were proved to contain prolyl and/or alanyl residues in their molecules. The data suggest that they are probable endogenous substrates for prolyl endopeptidase.  相似文献   

11.
Substrate determinants for rabbit and chicken skeletal muscle myosin light chain kinases were examined with synthetic peptides. Both skeletal muscle myosin light chain kinases had similar phosphorylation kinetics with synthetic peptide substrates. Average kinetic constants for skeletal muscle myosin light chain heptadecapeptide, (formula; see text) where S(P) is phosphoserine, were Km, 2.3 microM and Vmax, 0.9 mumol/min/mg of enzyme. Km values were 122 and 162 microM for skeletal muscle peptides containing A-A for basic residues at positions 2-3 and 6-7, respectively. Average kinetic constants for smooth muscle myosin light chain peptide, (formula; see text), were Km, 1.4 microM and Vmax 27 mumol/min/mg of enzyme. Average Km values for the smooth muscle peptide, residues 11-23, were 10 microM which increased 6- and 11-fold with substitutions of alanine at residues 12 and 13, respectively. Vmax values decreased and Km values increased markedly by substitution of residue 16 with glutamate in the 11-23 smooth muscle tridecapeptide. Basic residues located 3 and 6-7 residues toward the NH2 terminus from phosphoserine in smooth muscle myosin light chain and 6-8 and 10-11 residues toward the NH2 terminus from phosphoserine in skeletal muscle myosin light chain appear to be important substrate determinants for skeletal muscle myosin light chain kinases. These properties are different from myosin light chain kinase from smooth muscle.  相似文献   

12.
A membrane-bound neutral carboxypeptidase B-like enzyme was solubilized from human placental microvilli with 3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulfonate (CHAPS) and purified to homogeneity by ion-exchange chromatography and affinity chromatography on arginine-Sepharose. It gave a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis with an apparent Mr of 62,000 with or without reduction. The enzyme is a glycoprotein as shown by its high affinity for concanavalin A-Sepharose and reduction in mass to 47,600 daltons after chemical deglycosylation. It has a neutral pH optimum, is activated by CoCl2, and inhibited by o-phenanthroline, 2-mercaptomethyl-3-guanidinoethylthiopropanoic acid, or cadmium acetate, indicating it is a metallopeptidase. The enzyme cleaves arginine or lysine from the COOH terminus of synthetic peptides (e.g. Bz-Gly-Arg, Bz-Gly-Lys, Bz-Ala-Lys, dansyl-Ala-Arg, where Bz is benzoyl and dansyl is 5-dimethylaminonaphthalene-1-sulfonyl) as well as from several biologically active substrates: dynorphin A(1-13), Met5-Arg6-enkephalin (Km = 46 microM, kcat = 934 min-1), bradykinin (Km = 16 microM, kcat = 147 min-1), Met5-Lys6-enkephalin (Km = 375 microM, kcat = 663 min-1), and Leu5-Arg6-enkephalin (Km = 63 microM, kcat = 106 min-1). Although the enzyme shares some properties with other carboxypeptidase B-like enzymes, it is structurally, catalytically, and immunologically distinct from pancreatic carboxypeptidase A or B, human plasma carboxypeptidase N, and carboxypeptidase H ("enkephalin convertase"). To denote that the enzyme is membrane-bound, and to distinguish it from other known carboxypeptidases, we propose the name "carboxypeptidase M." Because of its localization on the plasma membrane and optimal activity at neutral pH, carboxypeptidase M could inactivate or modulate the activity of peptide hormones either before or after their interaction with plasma membrane receptors.  相似文献   

13.
Homogeneous class II alcohol dehydrogenase (pi-ADH) has been isolated from human liver homogenates by chromatography on DE-52 cellulose, 4-[3-[N-(6-amino-caproyl)amino]propyl]pyrazole-Sepharose, SP-Sephadex C-50, and agarose-hexane-AMP, yielding an enzyme that has a significantly higher specific activity and is markedly more stable than that isolated by an earlier procedure. pi-ADH is composed of two identical 40 000-dalton subunits, contains 4 mol of zinc/dimer, and is readily inhibited by metal-chelating agents. The purified enzyme binds two molecules of coenzyme per dimer, exhibits an absorption maximum at 280 nm, epsilon 280 = 57 000, and exhibits an isoelectric point of 8.6. The class II isozyme catalyzes the oxidation of a variety of alcohols with Km values ranging from 7 microM to 560 mM and with kcat values from 32 min-1 to 600 min-1 and demonstrates a preference for hydrophobic substrates. The kcat/Km ratio for ethanol oxidation exhibits a pH maximum at 10.4.  相似文献   

14.
A carboxypeptidase which cleaves the C-terminal arginine or lysine from peptides was purified by a two-step procedure; gel filtration on Sephacryl S-300 and affinity chromatography on arginine-Sepharose. The activity increased 280% after the first step, indicating the removal of an inhibitor from the crude starting material. The activity in the crude seminal plasma eluted from the Sephacryl S-300 column with an apparent Mr 98,000 and after purification with an Mr 67,000, indicating that it binds to another protein in the crude seminal plasma. When analyzed by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate, a single band at Mr 53,000 was seen which was converted to two smaller bands (Mr 32,000 and/or 26,000) after reduction. The seminal plasma carboxypeptidase has a neutral pH optimum, is inhibited by o-phenanthroline and by the inhibitor of carboxypeptidase B-type enzymes, 2-mercaptomethyl-3-guanidinoethylthiopropanoic acid, and can be activated by cobalt. The purified enzyme has a high specific activity (67.8 mumol/min/mg) with the ester substrate benzoyl (Bz)-Gly-argininic acid and readily cleaves Bz-Ala-Lys, Bz-Gly-Arg, and Bz-Gly-Lys. It also hydrolyzes biologically active peptides such as bradykinin (Km = 6 microM, kcat = 43 min-1), Arg6-Met5-enkephalin (Km = 103 microM, kcat = 438 min-1), and Lys6-Met5-enkephalin (Km = 848 microM, kcat = 449 min-1). The seminal plasma carboxypeptidase did not cross-react with antiserum to human plasma carboxypeptidase N; other properties distinguish it from the blood plasma enzyme as well as from pancreatic carboxypeptidase B and granular, acid carboxypeptidase H (enkephalin convertase). The carboxypeptidase could be involved in the control of fertility by activating or inactivating peptide hormones in the seminal plasma. In addition it could contribute to the degradation of basic proteins during semen liquefaction.  相似文献   

15.
Endopeptidase-24.11 (EC 3.4.24.11), purified to homogeneity from pig kidney, was shown to hydrolyse a wide range of neuropeptides, including enkephalins, tachykinins, bradykinin, neurotensin, luliberin and cholecystokinin. The sites of hydrolysis of peptides were identified, indicating that the primary specificity is consistent with hydrolysis occurring at bonds involving the amino group of hydrophobic amino acid residues. Of the substrates tested, the amidated peptide substance P is hydrolysed the most efficiently (Km = 31.9 microM; kcat. = 5062 min-1). A free alpha-carboxy group at the C-terminus of a peptide substrate is therefore not essential for efficient hydrolysis by the endopeptidase. A large variation in kcat./Km values was observed among the peptide substrates studied, a finding that reflects a significant influence of amino acid residues, remote from the scissile bond, on the efficiency of hydrolysis. These subsite interactions between peptide substrate and enzyme thus confer some degree of functional specificity on the endopeptidase. The inhibition of endopeptidase-24.11 by several compounds was compared with that of pig kidney peptidyldipeptidase A (EC 3.4.15.1). Of the inhibitors examined, only N-[1(R,S)-carboxy-2-phenylethyl]-Phe-p-aminobenzoate inhibited endopeptidase-24.11 but not peptidyldipeptidase. Captopril (D-3-mercapto-2-methylpropanoyl-L-proline), Teprotide (pGlu-Trp-Pro-Arg-Pro-Gln-Ile-Pro-Pro) and MK422 [N-[(S)-1-carboxy-3-phenylpropyl]-L-Ala-L-Pro] were highly selective as inhibitors of peptidyldipeptidase. Although not wholly specific, phosphoramidon was a more potent inhibitor of endopeptidase-24.11 than were any of the synthetic compounds tested.  相似文献   

16.
G M?rdh  B L Vallee 《Biochemistry》1986,25(23):7279-7282
The class I human liver alcohol dehydrogenases (ADHs) catalyze the interconversion of the intermediary alcohols and aldehydes of dopamine metabolism in vitro, whereas those of the class II and class III do not. The individual, homogeneous class I isozymes oxidize (3,4-dihydroxyphenyl)ethanol and (4-hydroxy-3-methoxyphenyl)ethanol (HMPE) and ethanol with kcat/Km values in the range from 16 to 240 mM-1 min-1 and from 16 to 66 mM-1 min-1, respectively. They reduce the corresponding dopamine aldehydes (3,4-dihydroxyphenyl)acetaldehyde and (4-hydroxy-3-methoxyphenyl)acetaldehyde (HMPAL) with kcat/Km values varying from 7800 to 190,000 mM-1 min-1, considerably more efficient than the reduction of acetaldehyde with kcat/Km values from 780 to 4900 mM-1 min-1. For beta 1 gamma 2 ADH, ethanol competes with HMPE oxidation with a Ki of 23 microM. In addition, 1,10-phenanthroline inhibits HMPE oxidation and HMPAL reduction with Ki values of 20 microM and 12 microM, respectively, both quite similar to that for ethanol, Ki = 22 microM. Thus, both ethanol/acetaldehyde and the dopamine intermediates compete for the same site of ADH, a basis for the ethanol-induced in vivo alterations of dopamine metabolism.  相似文献   

17.
Inorganic pyrophosphatase from bovine retinal rod outer segments.   总被引:1,自引:0,他引:1  
Rod outer segments from bovine retina contain a higher level of intracellular inorganic pyrophosphatase (EC 3.6.1.1) activity than has been found in any other mammalian tissue; the specific activity in extracts of soluble outer segment proteins is more than 6-fold higher than in extracts from bovine liver and more than 24-fold higher than in skeletal muscle extracts. This high activity may be necessary to keep inorganic pyrophosphate concentrations low in the face of the high rates of pyrophosphate production that accompany the cGMP flux driving phototransduction. We have begun to explore the role of inorganic pyrophosphatase in photoreceptor cGMP metabolism by 1) studying the kinetic properties of this enzyme and its interactions with divalent metal ions and anionic inhibitors, 2) purifying it and studying its size and subunit composition, and 3) examining the effects of pyrophosphate on rod outer segment guanylyl cyclase. Km for magnesium pyrophosphate was 0.9-1.5 microM, and the purified enzyme hydrolyzed > 885 mumol of PPi min-1 mg-1. The enzyme appears to be a homodimer of 36-kilodalton subunits when analyzed by gel electrophoresis and density gradient centrifugation, implying that kcat = 10(3) s-1, and kcat/Km = 0.7-1 x 10(9) M-1 s-1. The enzyme was inhibited by Ca2+ at submicromolar levels: 28% inhibition was observed at 138 nM [Ca2+], and 53% inhibition at 700 nM [Ca2+]. Imidodiphosphate acted as a competitive inhibitor, with Ki = 1.2 microM, and fluoride inhibited half-maximally approximately 20 microM. Inhibition studies on rod outer segment guanylyl cyclase confirmed previous reports that pyrophosphate inhibits guanylyl cyclase, suggesting an essential role for inorganic pyrophosphatase in maintaining cGMP metabolism.  相似文献   

18.
This report describes the purification of a rat brain thyrotropin-releasing hormone (TRH) deamidating enzyme to apparent homogeneity. Criteria for purity include sodium dodecyl sulfate and disc gel electrophoresis, as well as isoelectric focusing (pI = 4.5). Enzyme purification was facilitated by development of a rapid and sensitive continuous assay using the substrate L-pyroglutamyl-Nim-benzylhistidyl-L-prolyl-beta-naphthylamide, which, upon hydrolysis of the naphthylamide, results in the appearance of the fluorescent product, beta-naphthylamine (beta NA). With this substrate the homogeneous enzyme had a specific activity of 14.5 mumol of beta NA min-1 mg-1. The only peptide product formed was shown to be L-pyroglutamyl-Nim-benzylhistidyl-L-proline. Hydrolysis of [L-prolyl-2,3-3H]TRH was shown to yield L-pyro-glutamyl-L-histidyl-L-proline as the only radiolabeled product. Characterization of the brain deamidase by gel filtration chromatography and sodium dodecyl sulfate gel electrophoresis indicated that the enzyme consists of a single polypeptide chain having molecular weights of 70,000 and 73,500, respectively. Rat brain TRH deamidase has an apparent Km of 34 micron, and a pH optimum between 7 and 8 using L-pyroglutamyl-Nim-benzylhistidyl-L-prolyl-beta-naphthylamide as a substrate. With this substrate, TRH was shown to be a competitive inhibitor with an apparent Ki of 120 +/- 20 micron.  相似文献   

19.
FK506-binding protein (FKBP) catalyzes the cis-trans isomerization of the peptidyl-prolyl amide bond (the PPIase reaction) and is the major intracellular receptor for the immunosuppressive drugs FK506 and rapamycin. One mechanism proposed for catalysis of the PPIase reaction requires attack of an enzyme nucleophile on the carbonyl carbon of the isomerized peptide bond. An alternative mechanism requires conformational distortion of the peptide bond with or without assistance by an enzyme hydrogen bond donor. We have determined the kinetic parameters of the human FKBP-catalyzed PPIase reaction. At 5 degrees C, the isomerization of Suc-Ala-Leu-Pro-Phe-pNA proceeds in 2.5% trifluorethanol with kcat = 600 s-1, Km = 0.5 mM and kcat/Km = 1.2 x 10(6) M-1s-1. The kcat/Km shows little pH dependence between 5 and 10. A normal secondary deuterium isotope effect is observed on both kcat and kcat/Km. To investigate dependence on enzyme nucleophiles and proton donors, we have replaced eight potential catalytic residues with alanine by site-directed mutagenesis. Each FKBP variant efficiently catalyzes the PPIase reaction. Taken together, these data support an unassisted conformational twist mechanism with rate enhancement due in part to desolvation of the peptide bond at the active site. Fluorescence quenching of the buried tryptophan 59 residue by peptide substrate suggests that isomerization occurs in a hydrophobic environment.  相似文献   

20.
The kinetic parameter kcat/Km has been determined for the hydrolysis of peptide 4-nitroanilides, catalysed by complement component C1s. Substrates based on the C-terminal sequence of human C4a (Leu-Gln-Arg) were synthesised. Replacement of the glutamine residue by glycine or serine increased kcat/Km. Substitution of valine for the leucine residue increased kcat/Km, while substitution of glycine or lysine for the leucine residue decreased kcat/Km slightly. D-Val-Ser-Arg 4-nitroanilide is the most reactive 4-nitroanilide substrate towards C1s, so far. These results are discussed in relation to the amino acid sequences near the bonds cleaved by C1s in C4, C2 and C1 inhibitor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号