首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wheat germ agglutinin-purified non-diabetic and diabetic human placenta membranes were or were not depleted of EGF receptor with monoclonal anti-EGF receptor antibody B1D8, and subsequently phosphorylated. Phosphorylated insulin receptor beta-subunit was lower and pp180 was higher in diabetic placenta membranes than in non-diabetic membranes. Phosphorylated-beta-subunit was also lower in diabetic (streptozotocin-induced) rat liver whereas the amount of pp180 was dependent on membrane protein concentration. When rat liver tyrosine-phosphorylated proteins were incubated 30 min, 4 degrees C with EDTA-terminated 32P-phosphorylation reaction mixtures of wheat germ agglutinin-purified rat liver proteins, less phosphorylated proteins were immunoprecipitated with antiphosphotyrosine. The decrease in tyrosine-phosphorylated products suggested that pp180 was a protein tyrosine phosphatase. Taken together, the results suggest that diabetic plasma membranes contain more tyrosine phosphatase than non-diabetic membranes.  相似文献   

2.
Insulin receptor mutation studies that the receptor tyrosine kinase activity is necessary for receptor endocytosis, and several insulin receptor-containing tissues have a plasma membrane-associated protein (Mr 180,000, p180) whose tyrosine phosphorylation is receptor catalysed. Since clathrin heavy chain (Mr 180,000 in dodecyl sulphate gel electrophoresis) is a major component of coated vesicles, the latter functioning in receptor endocytosis, we investigated whether insulin receptors can catalyse clathrin phosphorylation and whether p180 is clathrin. Bovine brain triskelion or coated vesicles and 32P-ATP were added to prephosphorylated insulin receptor preparations (wheat ferm agglutinin-purified human placenta membrane proteins). Antiphosphotyrosine immunoprecipitated a phosphorylated 180,000 molecular weight protein. Insulin (10−7M) increased the rate of phosphorylation. Monoclonal anti-clathrin antibody immunoprecipitated the phosphorylated 180,000 molecular weight protein, whereas monoclonal anti-insulin receptor antibodies (-IR1, MA10) immunoprecipitated both insulin receptors and the phosphorylated 180,000 molecular weight protein. In the absence of added clathrin, anticlathrin immunoprecipitated no proteins, and -IR1 imunoprecipitated only the insulin receptor. Density gradient (glycerol 7.5–30%, w/v) centrifugation separated human placenta microsomal membrane proteins into endosomal, plasma membrane, cytoplasmic and coated vesicle fractions. Antiphosphotyrosine immunoprecipitated phosphorylated-microsomal proteins that centrifugated into endosomal and plasma membrane fractions. Addition of glycerol gradient fractions to a prephosphorylated insulin receptor preparation, however, gave a tyrosine-phosphorylated 180,000 molecular weight protein when cytoplasmic and coated vesicle fractions were added. Taken together these results suggest: (1) that, in vitro, human placenta insulin receptors can phosphorylate bovine brain and human placenta clathrin heavy chain; (2) that both assembled and unassembled clathrin can be phosphorylated; and (3) that p180, the plasma membrane-associated insulin receptor substrate, is not clathrin heavy chain.  相似文献   

3.
The microvillous membrane of human placenta is in direct contact with maternal blood and thus plays a vital role in many essential functions of the placenta. As an initial step in understanding the membrane proteins, and their relationship to these functions and to the structure of the membrane, we have investigated an isolated membrane preparation. Ten major peptide bands and an approximately equal number of minor bands were seen with sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. Sialoglycoproteins were labeled with periodate (PA-3H) borohydride and external surface components with lactoperoxidase-[125I] (LP-125I). One principal (69 000 mol. wt) and several minor (100 000, 45 000, and 38–40 000 mol. wt) bands were labeled as Sialoglycoproteins and found to be exposed on the surface of the membrane. Approx. 50% of the membrane protein and all of the sialic acid was tightly bound to membrane lipid and resistant to extraction with dimethyl maleic anhydride (DMMA). Electron microscopy demonstrated extraction by DMMA of microfilaments presumptively identified as actin and other electron dense components from the villous core. The extracted supernate and the residual pellet differed markedly in protein composition. The supernatant contained bands of 180 000, 115 000, 85 000, 70–72 000, 45 000, and 38–40 000 mol. wt whereas the lipid pellet contained components of 200 000, 150 000, 100 000, 69 000, and 64 000 mol. wt. The lipid matrix with which these proteins were associated contained phosphatidyl choline and sphingomyelin and was similar in composition to other plasma membranes. Thus by using a variety of experimental approaches the proteins of the human placental microvillous membrane can be divided into groups based on their sialic acid content, exposure on the external surface, tightness of binding to the membrane lipid, and relation to membrane structure.  相似文献   

4.
The phosphorylation of plasma membrane proteins from red beet (Beta vulgaris L.) by radioactive inorganic phosphate was studied. Only few proteins were phosphorylated, among them was one polypeptide with an apparent molecular weight of about 100,000. The phosphorylation of this protein was decreased when orthovanadate was present in the reaction mixture, or when the phosphorylated protein was treated with hydroxylamine. These facts suggest that this protein is a transport ATPase which is phosphorylated in a carboxyl group during the catalytic cycle. This protein was identified immunologically as the plasma membrane H+-ATPase. The phosphorylation level of this enzyme was enhanced by dimethyl sulfoxide, whereas potassium ions did not have a significant effect on this level unless ATP was present. ATP stimulated the phosphorylation by inorganic phosphate. This stimulation was more apparent in the presence of potassium ions.  相似文献   

5.
We have separated multiple small Mr GTP-binding proteins (G proteins) from bovine brain membranes by several column chromatographies and purified to near homogeneity four of them, including a novel Mr 24,000 G protein (smg p25A), a novel Mr 22,000 G protein (smg p21), the rho protein (rho p20), and the c-Ki-ras protein (c-Ki-ras p21). Among these small Mr G proteins, only smg p21 is phosphorylated stoichiometrically by cAMP-dependent protein kinase (protein kinase A), and c-Ki-ras p21 is phosphorylated to a small extent by protein kinase A in a cell-free system. None of smg p25A, rho p20, and other partially purified small Mr G proteins is phosphorylated by protein kinase A. Neither smg p21 nor other small Mr G proteins are phosphorylated by protein kinase C. About 1 mol of phosphate is maximally incorporated into 1 mol of smg p21 by protein kinase A. Only serine residue(s) are phosphorylated. The guanosine 5'-3-O-(thio) triphosphate (GTP gamma S)-bound and GDP-bound forms of smg p21 are phosphorylated with the same reaction velocity. The phosphorylation of smg p21 affects neither its GTP gamma S-binding nor GTPase activity. smg p21 is found in human platelets, and this human platelet smg p21 is also phosphorylated by protein kinase A at the same site(s) as bovine brain smg p21 in a cell-free system. When intact human platelets are stimulated by prostaglandin E1 known to elevate the cAMP level, four proteins with apparent Mr values of 240,000, 50,000, 24,000, and 22,000 are phosphorylated. These four proteins are also phosphorylated by the action of dibutyryl cAMP but not by the action of thrombin, Ca2+ ionophore A23187, or 12-O-tetradecanoylphorbol-13-acetate. Among the four proteins, the Mr 22,000 protein is identified as smg p21. The site(s) of phosphorylation of smg p21 by protein kinase A in a cell-free system are identical to that phosphorylated in response to prostaglandin E1 in intact platelets. These results indicate that among many small Mr G proteins, smg p21 is selectively phosphorylated by protein kinase A and that this G protein is also phosphorylated by this protein kinase in response to prostaglandin E1 in intact human platelets.  相似文献   

6.
Phosphoenolpyruvate-dependent protein kinase activity has been demonstrated in the soluble fraction of rat skeletal muscle. The reaction was not due to the formation of ATP in the incubation mixture. Cyclic AMP, calcium, ATP and a number of phosphate acceptor proteins did not stimulate the reaction. One 32P-labelled protein (Mr 25000) was observed on SDS gels. The phosphorylated protein contained acid stable phosphoserine as a major phosphorylated amino acid. The phosphorylation reaction in crude extracts was not directly proportional to the amount of protein, but typical of a two-component system; i.e., kinase and substrate. The chromatography of soluble proteins on Ultrogel AcA44 separated the phosphate acceptor protein(s) from the phosphoenolpyruvate-dependent protein kinase activity.  相似文献   

7.
人血浆纤连蛋白(Fibronectin,Fn)与人胎盘纤连蛋白两者在肽链结构上基本相同,但人血浆Fn的N-糖链结构为二天线结构,而人胎盘Fn不仅N-糖链的数量增加,同时还含有多天线结构,分别用~(125)I标记这两种具有不同糖链结构的Fn,观察两者与HT1080细胞的饱和结合的亲和性,结果发现,在4℃,人血浆Fn与HT1080细胞的饱和结合为129ng/10~5细胞,解离常数为2.83×10~(-8)mol/L,人胎盘Fn与HT1080细胞的饱和结合为133ng/10~6细胞,解离常数为2.64×10~(-8)mol/L.因而,人血浆Fn与人胎盘Fn上N-糖链的不同并未影响其与受体的结合.  相似文献   

8.
A full-length cDNA encoding a novel human protein was cloned from placenta cDNA. The corresponding 1542 amino acid protein sequence was termed 'pregnancy-associated plasma protein-E' (PAPP-E) as it shows a 62% homology to the human pregnancy-associated plasma protein-A (PAPP-A) that is a diagnostic marker for trisomies, especially Down syndrome. The conserved domain structure contains five motifs related to the short consensus repeats of complement proteins and selectins, three motifs related to the lin-notch motifs of proteins regulating early tissue differentiation, and a putative zinc-binding motif and active site of the metzincin-superfamily of metalloproteases. The PAPP-E gene was localized to chromosome 1q23-25. Northern blot analysis showed that PAPP-E is predominantly expressed in placenta.  相似文献   

9.
We have used the methods of planar cell and membrane monolayer formation and monolayer splitting to study structural details of the transmembrane signaling process mediated by protein kinase C. We analyzed human red cell membrane proteins phosphorylated by phorbol ester activation of protein kinase C. Planar single membrane preparations, extraction procedures, and gel electrophoresis coupled with silver staining and autoradiography confirmed that two bands in the 100 kDa region, and bands 4.1, and 4.9, were peripheral and phosphorylated by treatment with 12-O-tetradecanoylphorbol 13-acetate (TPA). TPA also stimulated minor incorporation of [32 P]Pi into most integral membrane proteins, including band 3, glycophorin A, the band 4.5 region (glucose transporter) and band 7. Planar cell and membrane-splitting methods revealed that neither integral nor peripheral phosphorylated polypeptides were cleaved by freeze fracture, that all phosphorylated peripheral proteins partitioned intact with the cytoplasmic side of the membrane, and that the percentages of [32P]Pi-labeled peripheral proteins were the same in split membrane cytoplasmic leaflets as in intact membranes. As a unique approach to examining protein topographies membrane splitting provides strong evidence that the major phosphorylated products of the polyphosphatidylinositide pathway are topographically associated with the cytoplasmic leaflet of the human erythrocyte plasma membrane. We further conclude that TPA-induced phosphorylation of red cell peripheral proteins does not significantly alter their transbilayer partitioning patterns after membrane splitting.  相似文献   

10.
Reversible calcium-dependent association with a particulate fraction from human placenta was used as the first step in the purification of substrates for the epidermal growth factor-stimulated protein kinase. A protein with apparent Mr of 35,000 was purified to homogeneity, and the sequence was determined for approximately one-fourth of the protein. These residues could be aligned exactly with the previously published sequence of lipocortin I derived from the cDNA from a human lymphoma. Two other proteins that appear to be formed by proteolytic removal of 12 or 26 of the amino acids from the NH2 terminus of the protein also were isolated. Placental lipocortin I was phosphorylated in Tyr-21 in an epidermal growth factor-dependent manner by the kinase activity in a particulate fraction from A431 cells; half-maximal phosphorylation occurred at 50 nM lipocortin I. Lipocortin I phosphorylated on Tyr-21 was approximately 10-fold more sensitive to tryptic cleavage at Lys-26 than was the native protein. Placental lipocortin I and its two truncated forms were potent inhibitors of pancreatic phospholipase A2 activity. Another 33-kDa protein that was not related immunologically to lipocortin I or lipocortin II (calpactin I) also was purified from the EGTA extract of placenta. The unidentified protein inhibited phospholipase A2 but was not a substrate for the epidermal growth factor-stimulated kinase. The mechanism by which these proteins inhibit phospholipase A2 activity was investigated. Attempts to detect direct interaction between these proteins and the enzyme were unsuccessful. However, both the unidentified protein, lipocortin I, and 32P-labeled lipocortin I bound in a Ca2+-dependent manner to the [3H]oleic acid-labeled Escherichia coli membranes used as substrate in the phospholipase A2 assay. Heparin, which is known to block lipocortin I inhibition of phospholipase A2, also blocked binding of lipocortin I to E. coli membranes. The results of these and other experiments raise the possibility that placental lipocortin I inhibits phospholipase A2 activity in this assay by coating the phospholipid and thereby blocking interaction of enzyme and substrate.  相似文献   

11.
Isolation and characterization of thrombomodulin from human placenta   总被引:18,自引:0,他引:18  
Protein C, a plasma protein, is activated by thrombin to a protease (protein Ca) that functions as a physiological anticoagulant. We have isolated thrombomodulin, a cofactor required for the rapid activation of protein C, from human placenta. The purification to near homogeneity was achieved using a crude Triton-solubilized protein fraction from a placental particulate fraction as starting material. Chromatography on DEAE-Sepharose removed 95% of the protein and achieved a 3-fold purification. Thrombomodulin was then isolated by affinity chromatography on a column of thrombin-Sepharose wherein the thrombin had been previously inactivated with diisopropyl fluorophosphate. The final preparation was purified 7,900-fold over the membrane extract with a yield of 7%. We obtained 0.88 mg of thrombomodulin from 100 g of membrane extract derived from 5 kg of placenta. The protein was nearly homogeneous as judged by electrophoresis on 10% acrylamide sodium dodecyl sulfate gels in the presence of 2-mercaptoethanol with an apparent Mr = 105,000. Western blot analysis without 2-mercaptoethanol gave an apparent Mr = 75,000. The protein stimulated the rate of protein C activation by thrombin 800-fold to 10 mol of Ca formed/min/mol of thrombin. Thrombin and thrombomodulin appear to form a 1:1 stoichiometric complex as judged from experiments where we measured the effect of varying the concentration of thrombomodulin with respect to thrombin and the converse, on rates of protein C activation. An antibody directed against rabbit lung thrombomodulin inhibited the human placenta protein by 66%, and the amino acid composition of the proteins from the two species was similar indicating that the proteins are closely related. The apparent Michaelis constant of the thrombin-thrombomodulin complex for protein C is 9.8 microM. The protein C activation reaction requires calcium ions and is maximal at 1 mM Ca2+; higher concentrations inhibited the reaction. Coagulation factor Va and factor Va light chain both stimulate the activity of human thrombomodulin 2- to 3-fold.  相似文献   

12.
When the plasma membranes of caput and cauda epididymal spermatozoa of hamster were evaluated for their ability to undergo phosphorylation, a differential phosphorylation of the membrane proteins was observed. In the plasma membranes of the caput epididymal spermatozoa (immature), twelve proteins were phosphorylated (100, 76, 67, 65, 55, 52, 47, 42, 38, 32, 30, and 20 kD), whereas in the plasma membranes of cauda epididymal spermatozoa (mature), a differential phosphorylation pattern was observed with respect to the 94, 67, 52, and 47 kD proteins. The 94 kD protein was found to be phosphorylated and the 67 kD protein was found to be not phosphorylated in cauda spermatozoal plasma membrane (Cd SPM) in contrast to this protein in caput spermatozoal plasma membrane (Cpt SPM). The 52 and 47 kD proteins were also more intensely phosphorylated in Cd SPM than Cpt SPM. The 100 kilodalton protein, although present in both Cpt and Cd sperm plasma membranes, was found to be phosphorylated at the tyrosine residues only in the Cd SPM, as indicated by the Western blot using antiphosphotyrosine antibody. Further, a differential phosphorylation of the substrate proteins present in the Cpt and Cd SPM was seen when Mg2+ in the assay buffer was replaced by other divalent cations. For instance, Zn2+ stimulated the phosphorylation of an 85 kD protein in cauda SPM and not in the caput SPM and Ca2+ stimulated the phosphorylation of a 76 kD protein only in the cauda SPM. The phosphoproteins in both the plasma membranes were found to be phosphorylated predominantly at the tyrosine residue. The differential phosphorylation of a 100 kD protein at tyrosine in the Cd SPM (Western blot), which is absent in the immature Cpt SPM, also indicated that certain proteins in the hamster spermatozoa are phosphorylated in a maturation-specific manner. Mol. Reprod. Dev. 47:341–350, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

13.
Isolated human placental syncytiotrophoblast microvillous plasma membrane vesicles were extracted with Triton X-100 to yield a detergent-insoluble residue. The residue contained approx. 50% of the total membrane protein and was qualitatively different from untreated trophoblast on SDS-polyacrylamide gel electrophoresis, Western blots and dot-immunobinding assay. Three major proteins, with molecular weights of 68, 36 and 34 kDa, dissociated from this non-ionic detergent-insoluble submembranous cytoskeletal fraction in the presence of calcium chelators. They were immunologically related to human lymphocyte cytoskeletal calcium-binding proteins, and the 36 kDa component reacted with antisera to the phospholipase A2 inhibitor, lipocortin II. Anti-lipocortin I sera did not recognise the 34 kDa protein, but did react with a series of trophoblast cytoskeletal proteins in the 34-37 kDa region. Incubation of epidermal growth factor with isolated trophoblast membrane vesicles stimulated the phosphorylation of a 36 kDa protein on tyrosine residues. Immunoprecipitation studies further showed there was no phosphorylation of the 34 kDa protein, but the 68 kDa protein was a major phosphorylated component of isolated syncytiotrophoblast membranes. p68 was principally phosphorylated on serine with slight tyrosine phosphorylation which showed an apparent increase after epidermal growth factor treatment. These results indicate a family of calcium-dependant binding proteins, some of which are phosphorylated, associated with the submembranous cytoskeleton of syncytiotrophoblast microvilli.  相似文献   

14.
The maturation of various aspects of sperm function have been demonstrated in monkey and human epididymal sperm, including the ability to undergo the acrosome reaction. The present study aimed to investigate the maturational changes in non‐human primate sperm in the signal transduction mechanisms leading to the acrosome reaction involving cyclic AMP, Ca2+ influx, protein kinase C, and protein tyrosine phosphorylation. Sperm from the caput, corpus, and cauda epididymidis of cynomolgus monkeys were incubated in a complete medium for 2.5 hr, followed by 30 min stimulation with 1 mM dibutyryl cAMP and 1 mM caffeine, 50 μM 1,2‐dioctanoyl‐sn‐glycerol (DOG), and 50 μM Ca2+‐ionophore A23187. Quantitative Western blotting revealed little difference in tyrosine phosphorylated proteins among the caput, corpus, and cauda sperm without stimulation. Incubation with cAMP increased the amount of tyrosine phosphorylated proteins up to 10‐fold in the corpus and cauda sperm, but to a lower extent in the caput sperm. Ca2+‐ionophore attenuated the cAMP stimulation but had no effect on its own. Such responses in tyrosine phosphorylated proteins were in great contrast to the responses in the acrosome reaction, where A23187 was the strongest stimulant, resulting in induction of the reaction in 50 ± 5%, 11 ± 5%, and 8 ± 4% cauda, corpus and caput sperm, respectively (mean ± sem, n = 6). DOG and cAMP in combination induced acrosome reactions in about 10% of viable cells in the cauda and corpus but not caput sperm. Caput sperm responded to cAMP with increases in percentage motility without forward progression whereas cauda sperm displayed marked kinematic changes expected of hyperactivation. Comparisons of responses suggest that the major tyrosine phosphorylated proteins detected are unlikely to be involved immediately in the precipitation of the acrosome reaction, but more related to flagellar motion. Development of signal transduction pathways is part of the epididymal maturational process. Mol. Reprod. Dev. 54:194–202, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

15.
A protein-tyrosine kinase (PTK, EC 2.7.1.112) from human platelets was purified with high yield. Purification of the enzyme involved sequential chromatography on casein-agarose, tyrosine-agarose, heparin-Sepharose and hydroxylapatite. The procedure resulted in substantially enriched 54/52 kDa polypeptides on SDS-polyacrylamide gel electrophoresis and a yield of about 25% in PTK activity. About 250 micrograms of purified protein could be obtained from 1 g of cell protein. The purification factor varied between 1000 and 1500. Determination of the molecular mass of the purified PTK under nondenaturating conditions by molecular sieve chromatography revealed that the enzyme is a monomer of about 50 kDa. Among various protein substrates tested, casein was most prominently phosphorylated. All substrates were exclusively phosphorylated at tyrosine residues. Autophosphorylation at tyrosine residues of the 54/52 kDa proteins was observed in the presence of Mg2+ or Mn2+. At each purification step, the 54/52 kDa proteins were precipitated by sera from tumor-bearing rabbits immunoprecipitating pp60src, but not by control sera. The amount of the immunoprecipitated purified 54/52 kDa phosphoproteins was directly proportional to the amount of antiserum used. Partial peptide mapping by V8 proteinase showed a 26 kDa tyrosine-phosphorylated fragment for the 54 and the 52 kDa proteins as well as for the pp60c-src molecules of intact platelets. All these data indicated that purified PTK is closely related to pp60c-src of human platelets. Using casein as a substrate for the purified enzyme, the Km for ATP was 4 microM and the Vmax for the reaction was 2.0 nmol/min per mg.  相似文献   

16.
Endonexin II is a member of the family of Ca2+-dependent phospholipid binding proteins known as annexins. We cloned human endonexin II cDNA and expressed it in Escherichia coli. The apparent size and Ca2+-dependent phospholipid binding properties of purified recombinant endonexin II were indistinguishable from those of the placental protein. A single mRNA of approximately 1.6 kilobase pairs was found to be expressed in human cell lines and placenta and was in close agreement with the length of the cDNA clone (1.59 kilobase pairs). The cDNA predicted a 320-amino acid protein with a sequence that was in agreement with the previously determined partial amino acid sequence of endonexin II isolated from placenta. Endonexin II contained 58, 46, and 43% sequence identity to protein II, calpactin I (p36, protein I), and lipocortin I (p35), respectively. The partial sequence of bovine endonexin I was aligned with the sequence of endonexin II to give 63% sequence identity. Like these other proteins, endonexin II had a 4-fold internal repeat of approximately 70 residues preceded by an amino-terminal domain lacking similarity to the repeated region. It also had significant sequence identity with 67-kDa calelectrin (p68), a protein with an 8-fold internal repeat. Comparing the amino-terminal domains of these four proteins of known sequence revealed that, in general, only endonexin II and protein II had significant sequence identity (29%). Endonexin II was not phosphorylated by Ca2+/phospholipid-dependent enzyme (protein kinase C) even though it contained a threonine at a position analogous to the protein kinase C phosphorylation sites of lipocortin I, calpactin I, and protein II.  相似文献   

17.
Synaptosomal plasma membranes from mammalian brain contain protein kinase activity which phosphorylates endogenous membrane proteins and is stimulated by cyclic AMP. Using polyacrylamide gel electrophoresis it was shown that at least ten proteins in the synaptosomal plasma membrane fraction could be phosphorylated by endogenous cyclic AMP-stimulated protein kinase activity. The number of proteins whose phosphorylation was stimulated by cyclic AMP was strongly influenced by the pH and Mg2+ concentration used in the phosphorylation reaction. A complex pattern of cyclic AMP-stimulated protein phosphorylation was obtained only with synaptosomal plasma membranes and a crude microsomal fraction. Mitochondrial and myelin fractions exhibited no cyclic AMP-stimulated protein kinase activity. Investigation of the distribution of substrates for cyclic AMP-stimulated phosphorylation among various brain regions failed to reveal any regional differences.  相似文献   

18.
Rat liver glycogen synthase bound to the glycogen particle was partially purified by repeated high-speed centrifugation. This synthase preparation was labeled with 32P by incubations with cAMP-dependent protein kinase and cAMP-independent synthase (casein) kinase-1 in the presence of [γ-32P]ATP. The phosphorylated synthase was separated from other proteins in the glycogen pellet by immunoprecipitation with rabbit anti-rat liver glycogen synthase serum. Analysis of the immunoprecipitates by sodium dodecyl sulfate-gel electrophoresis showed that synthase subunits of Mr 85,000 and 80,000 were present in varying proportions. The 32P-labeled synthase in the immunoprecipitate was digested with trypsin, and the resulting peptides were analyzed by isoelectric focusing. Synthase bound to the glycogen particle was phosphorylated by cAMP-dependent protein kinase at more sites and by cAMP-independent synthase (casein) kinase-1 at less sites than when the homogeneous synthase was incubated with these kinases. Phosphorylation of synthase in the glycogen pellet by either cAMP-dependent protein kinase or cAMP-independent synthase (casein) kinase-1 did not cause a significant inactivation as has been observed when the homogeneous synthase was incubated with these kinases. Inactivation of synthase in the glycogen pellet, however, can be achieved by the combination of both kinases. This inactivation appears to result from the phosphorylation of a new site by cAMP-independent synthase (casein) kinase-1 neighboring a site previously phosphorylated by cAMP-dependent protein kinase.  相似文献   

19.
Synaptosomal plasma membranes from mammalian brain contain protein kinase activity which phosphorylates endogenous membrane proteins and is stimulated by cyclic AMP. Using polyacrylamide gel electrophoresis it was shown that at least ten proteins in the synaptosomal plasma membrane fraction could be phosphorylated by endogenous cyclic AMP-stimulated protein kinase activity. The number of proteins whose phosphorylation was stimulated by cyclic AMP was strongly influenced by the pH and Mg2+ concentration used in the phosphorylation reaction. A complex pattern of cyclic AMP-stimulated protein phosphorylation was obtained only with synaptosomal plasma membranes and a crude microsomal fraction. Mitochondrial and myelin fractions exhibited no cyclic AMP-stimulated protein kinase activity. Investigation of the distribution of substrates for cyclic AMP-stimulated phosphorylation among various brain regions failed to reveal any regional differences.  相似文献   

20.
The species of proteins associated with chromatin and ribosomes of simian virus 40 (SV40)-transformed and untransformed monkey, mouse, and rat cells have been compared by sodium dodecyl sulfate-polyacrylamide gel electrophoresis after phosphorylation of these proteins either in vivo or in vitro. In vitro phosphorylation was carried out by protein kinase associated with these organelles and [gamma-(32) P]ATP as the phosphoryl donor. The reaction products contained both phosphoserine and phosphothreonine in approximately equal amounts. The electrophoretic analysis of the phosphorylated proteins revealed that the highly phosphorylated protein with a molecular weight of approximately 90,000 (90K protein) was associated with chromatin and ribosomes from transformed cells but not from untransformed cells. The 90K protein could be extracted from chromatin and ribosomes with 0.5 to 1.0 M NaCl or KCl. The 90K protein was still associated with the runoff ribosomes prepared by the puromycin reaction of the post-mitochondrial supernatant in the protein-synthesizing system. In vitro phosphorylation of chromatin and ribosomes from SV40 tsA-transformed mouse and rat cells indicated that the amounts of 90K protein associated with these organelles decreased greatly when the cells were cultivated at the restrictive temperature. A similar temperature-dependent decrease in the amount of (32)P-labeled 90K protein was observed in nonhistone chromosomal and ribosome-associated protein fractions prepared from SV40 tsA-transformed cells labeled with [(3)H]leucine and [(32)P]orthophosphate in vivo. In vitro phosphorylated 90K protein in nonhistone chromosomal and ribosome-associated proteins extracted with high salt was not immunoprecipitated with anti-SV40 T sera.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号