首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The respiratory inductance plethysmograph (RIP) has recently gained popularity in both the research and clinical arenas for measuring tidal volume (VT) and changes in functional residual capacity (delta FRC). It is important however, to define the likelihood that individual RIP measurements of VT and delta FRC would be acceptably accurate (+/- 10%) for clinical and investigational purposes in spontaneously breathing individuals on continuous positive airway pressure (CPAP). Additionally, RIP accuracy has not been compared in these regards after calibration by two commonly employed techniques, the least squares (LSQ) and the quantitative diagnostic calibration (QDC) methods. We compared RIP with pneumotachographic (PTH) measurements of delta FRC and VT during spontaneous mouth breathing on 0-10 cmH2O CPAP. Comparisons were made after RIP calibration with both the LSQ (6 subjects) and QDC (7 subjects) methods. Measurements of delta FRC by RIPLSQ and RIPQDC were highly correlated with PTH measurements (r = 0.94 +/- 0.04 and r = 0.98 +/- 0.01 (SE), respectively). However, only an average of 30% of RIPQDC determinations per subject and 31.4% of RIPLSQ determinations per subject were accurate to +/- 10% of PTH values. An average of 55.2% (QDC) and 68.8% (LSQ) of VT determinations per subject were accurate to +/- 10% of PTH values. We conclude that in normal subjects, over a large number of determinations, RIP values for delta FRC and VT at elevated end-expiratory lung volume correlate well with PTH values. However, regardless of whether QDC or LSQ calibration is used, only about one-third of individual RIP determinations of delta FRC and one-half of two-thirds of VT measurements will be sufficiently accurate for clinical and investigational use.  相似文献   

2.
We present a critical assessment of qualitative diagnostic calibration (QDC), which claims to provide a relative calibration of respiratory inductive plethysmography during natural breathing (Sackner MA, Watson H, Belsito AS, Feinerman D, Suarez M, Gonzalez G, Bizousky F, and Krieger B. J Appl Physiol 66: 410-420, 1989). QDC computes the calibration factor (K) by considering breaths of constant tidal volume (VT) and provides a criterion to select breaths when VT is unknown. We applied QDC on uncalibrated data constructed from simulated sets of thoracic and abdominal volumes, with a predefined K. As expected, QDC yields a correct K when applied to breaths at constant VT. In breathing at quasi-constant VT, the criterion for breath selection is shown to bias the results toward K = 1. For spontaneous breathing, the calculated K deviates from its predefined value and depends heavily on the selection criterion. We conclude that QDC will only provide a correct calibration factor when applied to an entire set of breaths with constant or quasi-constant VT. More generally, physiological conclusions based on QDC should be critically evaluated on a case-by-case basis.  相似文献   

3.
Indirect methods of measuring ventilation, such as the respiratory inductive plethysmograph (RIP), operate on the assumption that the respiratory system possesses two degrees of freedom of motion: the rib cage and abdomen. Accurate measurements have been obtained in many patients with pulmonary disease who possess additional degrees of freedom. Since calibration and validation of the RIP was carried out during quiet breathing in these patients, the amount of asynchronous or paradoxic breathing was presumably similar during the calibration and validation runs. Conversely, accuracy might be lost if following the initial calibration procedure the magnitude of chest wall distortion increased during subsequent validation runs. We calibrated the RIP during quiet breathing and examined its accuracy while subsequently breathing against resistive loads that required the generation of 20-80% of the subject's maximum inspiratory mouth pressure (Pmmax). We compared the relative accuracy of three commonly employed calibration methods: isovolume technique, least-squares technique, and single position loop-area technique. Up to 60% of Pmmax, 89% of the RIP values with the least-squares technique were within +/- 10% of simultaneous spirometric (SP) measurements and 100% were within +/- 20% of SP, compared with 63 and 91%, respectively, for the loop-area technique and 19 and 54%, respectively, for the isovolume technique. At 70 and 80% of Pmmax accuracy deteriorated. Accuracy of respiratory timing was judged in terms of fractional inspiratory time (TI/TT).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
During passive inflation of the respiratory system, the rib cage (RC) expands because the pressure applied to it [approximately equal to abdominal pressure (Pab)] increases. Similar Pab-tidal volume (VT) relationships between passive and spontaneous inspirations would occur only if 1) Pab acts on RC equally in the two situations (no distortion) or 2) the extradiaphragmatic inspiratory muscles expand RC, compensating for distortion. In anesthetized adult rats and in sleeping human infants the passive relationships between VT and Pab or abdomen motion (AB) were constructed by occluding the airways during expiration. For a given Pab (or AB) in active breathing VT averaged 55% (rats) and 49% (infants) of the passive volume change. With phrenic stimulation in rats VT was only slightly less than during spontaneous breathing, indicating that, in the latter case, the respiratory system was essentially driven only by the diaphragm. In both species occasional breaths with large RC expansion occurred, and VT was then equal to or larger than the passive volume at iso-Pab. We conclude that 1) RC distortion decreases VT to approximately half of the passive value and 2) being on the relaxation curve reflects "compensated" distortion and not absence of it.  相似文献   

5.
Tidal volume measurements based on the sum of volume displacements of the rib cage (RC) and abdomen (Ab) are limited in accuracy when changes in posture occur. To elucidate the underlying sources of error, five subjects performed spinal flexion-extension isovolume maneuvers and then performed Konno-Mead isovolume maneuvers at different lung volumes while erect, with the spine fully flexed, and at intermediate degrees of spinal flexion. RC and Ab dimensions were measured with respiratory inductance plethysmograph belts, and spinal flexion was assessed by a pair of magnetometers measuring the xiphi-Ab distance (Xi). RC and Ab volume-motion coefficients (alpha and beta, respectively) were calculated from the slope (-beta/alpha) of the Konno-Mead isovolume lines. We found that 1) spinal flexion with constant lung volume mainly increases the RC dimension, thereby displacing the Konno-Mead isovolume lines, and 2) spinal flexion decreases the -beta/alpha by decreasing beta. The error related to displacement averaged 28.4 +/- 15% of vital capacity, whereas the error related to changes in beta averaged 14 +/- 6% (SD). The systematic relationship of these errors with the degree of spinal flexion provides a mechanism whereby the addition of Xi to RC and Ab displacements significantly (P less than 0.001) improves volume estimates.  相似文献   

6.
The shape of the passive chest wall of six anesthetized dogs was determined at total lung capacity (TLC) and functional residual capacity (FRC) in the prone and supine body positions by use of volumetric-computed tomographic images. The transverse cross-sectional areas of the rib cage, mediastinum, and diaphragm were calculated every 1.6 mm along the length of the thorax. The changes in the volume and the axial distribution of transverse area of the three chest wall components with lung volume and body position were evaluated. The decrease of the transverse area within the rib cage between TLC and FRC, as a fraction of the area at TLC, was uniform from the apex of the thorax to the base. The volume of the mediastinum increased slightly between TLC and FRC (14% of its TLC volume supine and 20% prone), squeezing the lung between it and the rib cage. In the transverse plane, the heart was positioned in the midthorax and moved little between TLC and FRC. The shape, position, and displacement of the diaphragm were described by contour plots. In both postures, the diaphragm was flatter at FRC than at TLC, because of larger displacements in the dorsal than in the ventral region of the diaphragm. Rotation from the prone to supine body position produced a lever motion of the diaphragm, displacing the dorsal portion of the diaphragm cephalad and the ventral portion caudad. In five of the six dogs, bilateral isovolume pneumothorax was induced in the supine body position while intrathoracic gas volume was held constant.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Altered breathing pattern is an aspect of dysfunctional breathing but few standardised techniques exist to evaluate it. This study investigates a technique for evaluating and quantifying breathing pattern, called the Manual Assessment of Respiratory Motion (MARM) and compares it to measures performed with Respiratory Induction Plethysmography (RIP). About 12 subjects altered their breathing and posture while 2 examiners assessed their breathing using the MARM. Simultaneous measurements with RIP were taken. Inter-examiner agreement and agreement between MARM and RIP were assessed. The ability of the measurement methods to differentiate between diverse breathing and postural patterns was compared. High levels of agreement between examiners were found with the MARM for measures of the upper rib cage relative to lower rib cage/abdomen motion during breathing but not for measures of volume. The measures of upper rib cage dominance during breathing correlated with similar measures obtained from RIP. Both RIP and MARM measures methods were able to differentiate between abdominal and thoracic breathing patterns, but only MARM was able to differentiate between breathing changes occurring as result of slumped versus erect sitting posture. This study suggests that the MARM is a reliable clinical tool for assessing breathing pattern.  相似文献   

8.
We compared simultaneous measurements of ventilatory movements obtained by a bellows pneumograph (BP) and a respiratory inductive plethysmograph (RIP) vs. integrated volume from a pneumotachograph in seven healthy volunteers during different respiratory patterns. The purpose of this study was to assess if a computer-aided calibration procedure could improve the accuracy of BP, a simple semiquantitative method for noninvasive ventilatory monitoring in supine subjects. Both devices were repeatedly calibrated against a pneumotachograph in the same posture with a computer-aided least-squares method. One calibration maneuver was sufficient to achieve a minimal relative difference in volume measurements between the RIP as well as the BP and the pneumotachograph of less than 1.2 +/- 4.5 (SD) %. The accuracy remained in this range during the subsequent calibrations with time (1 h) and after body movements. However, this difference increased significantly with both devices when the subjects were studied in the lateral decubitus position. The present study indicates that despite theoretical advantages of the RIP, the BP, when properly calibrated, has similar performances in supine subjects for monitoring ventilation; it is simpler and less expensive than the RIP and is devoid of electrical drift and artifacts.  相似文献   

9.
The pneumotachometer is currently the most accepted device to measure tidal breathing, however, it requires the use of a mouthpiece and thus alteration of spontaneous ventilation is implied. Respiratory inductive plethysmography (RIP), which includes two belts, one thoracic and one abdominal, is able to determine spontaneous tidal breathing without the use of a facemask or mouthpiece, however, there are a number of as yet unresolved issues. In this study we aimed to describe and validate a new RIP method, relying on a combination of thoracic RIP and nasal pressure signals taking into account that exercise-induced body movements can easily contaminate RIP thoracic signals by generating tissue motion artifacts. A custom-made time domain algorithm that relies on the elimination of low amplitude artifacts was applied to the raw thoracic RIP signal. Determining this tidal ventilation allowed comparisons between the RIP signal and simultaneously-recorded airflow signals from a calibrated pneumotachometer (PT). We assessed 206 comparisons from 30 volunteers who were asked to breathe spontaneously at rest and during walking on the spot. Comparisons between RIP signals processed by our algorithm and PT showed highly significant correlations for tidal volume (Vt), inspiratory (Ti) and expiratory times (Te). Moreover, bias calculated using the Bland and Altman method were reasonably low for Vt and Ti (0.04 L and 0.02 s, respectively), and acceptable for Te (<0.1 s) and the intercept from regression relationships (0.01 L, 0.06 s, 0.17 s respectively). The Ti/Ttot and Vt/Ti ratios obtained with the two methods were also statistically correlated. We conclude that our methodology (filtering by our algorithm and calibrating with our calibration procedure) for thoracic RIP renders this technique sufficiently accurate to evaluate tidal ventilation variation at rest and during mild to moderate physical activity.  相似文献   

10.
The pattern of rib cage (RC) and abdomen (AB) motion and the electromyograms of the triangularis sterni (TS) and abdominal external oblique (EO) muscles were studied during speech and reading in six normal uninformed subjects in the sitting posture. Most phrases were started from within the tidal breathing range and extended below RC and AB spontaneous end-expiratory volumes. On the average, 75% of the change in chest wall volume occurred below the resting end-expiratory level. The expired volume resulted from a large predominance of RC displacement, and this was accompanied by marked recruitment of the TS. The EO was also generally activated, but the pattern of activation was less consistent. We conclude that 1) speech occurs primarily below the spontaneous end-expiratory level; 2) most of the volume change is caused by active emptying of the RC produced, at least in part, by contraction of the TS; 3) concomitant activation of the abdominal muscles serves to optimize the inspiratory function of the diaphragm, which has to contract rapidly between phrases to refill the respiratory system.  相似文献   

11.
During physiological spontaneous breathing maneuvers, the diaphragm displaces volume while maintaining curvature. However, with maximal diaphragm activation, curvature decreases sharply. We tested the hypotheses that the relationship between diaphragm muscle shortening and volume displacement (VD) is nonlinear and that curvature is a determinant of such a relationship. Radiopaque markers were surgically placed on three neighboring muscle fibers in the midcostal region of the diaphragm in six dogs. The three-dimensional locations were determined using biplanar fluoroscopy and diaphragm VD, curvature, and muscle shortening were computed in the prone and supine postures during spontaneous breathing (SB), spontaneous inspiration efforts after airway occlusion at lung volumes ranging from functional residual capacity (FRC) to total lung capacity, and during bilateral maximal phrenic nerve stimulation at those same lung volumes. In supine dogs, diaphragm VD was approximately two- to three-fold greater during maximal phrenic nerve stimulation than during SB. The contribution of muscle shortening to VD nonlinearly increases with level of diaphragm activation independent of posture. During submaximal diaphragm activation, the contribution is essentially linear due to constancy of diaphragm curvature in both the prone and supine posture. However, the sudden loss of curvature during maximal bilateral phrenic nerve stimulation at muscle shortening values greater than 40% (ΔL/L(FRC)) causes a nonlinear increase in the contribution of muscle shortening to diaphragm VD, which is concomitant with a nonlinear change in diaphragm curvature. We conclude that the nonlinear relationship between diaphragm muscle shortening and its VD is, in part, due to a loss of its curvature at extreme muscle shortening.  相似文献   

12.
A change from the supine to the head-up posture in anesthetized dogs elicits increased phasic expiratory activation of the rib cage and abdominal expiratory muscles. However, when this postural change is produced over a 4- to 5-s period, there is an initial apnea during which all the muscles are silent. In the present studies, we have taken advantage of this initial silence to determine functional residual capacity (FRC) and measure the subsequent change in end-expiratory lung volume. Eight animals were studied, and in all of them end-expiratory lung volume in the head-up posture decreased relative to FRC [329 +/- 70 (SE) ml]. Because this decrease also represents the increase in lung volume as a result of expiratory muscle relaxation at the end of the expiratory pause, it can be used to determine the expiratory muscle contribution to tidal volume (VT). The average contribution was 62 +/- 6% VT. After denervation of the rib cage expiratory muscles, the reduction in end-expiratory lung volume still amounted to 273 +/- 84 ml (49 +/- 10% VT). Thus, in head-up dogs, about two-thirds of VT result from the action of the expiratory muscles, and most of it (83%) is due to the action of the abdominal rather than the rib cage expiratory muscles.  相似文献   

13.
Active and passive shortening of muscle bundles in the canine diaphragm were measured with the objective of testing a consequence of the minimal-work hypothesis: namely, that the ratio of active to passive shortening is the same for all active muscles. Lengths of six muscle bundles in the costal diaphragm and two muscle bundles in the crural diaphragm of each of four bred-for-research beagle dogs were measured by the radiopaque marker technique during the following maneuvers: a passive deflation maneuver from total lung capacity to functional residual capacity, quiet breathing, and forceful inspiratory efforts against an occluded airway at different lung volumes. Shortening per liter increase in lung volume was, on average, 70% greater during quiet breathing than during passive inflation in the prone posture and 40% greater in the supine posture. For the prone posture, the ratio of active to passive shortening was larger in the ventral and midcostal diaphragm than at the dorsal end of the costal diaphragm. For both postures, active shortening during quiet breathing was poorly correlated with passive shortening. However, shortening during forceful inspiratory efforts was highly correlated with passive shortening. The average ratios of active to passive shortening were 1.23 +/- 0.02 and 1.32 +/- 0.03 for the prone and supine postures, respectively. These data, taken together with the data reported in the companion paper (T. A. Wilson, M. Angelillo, A. Legrand, and A. De Troyer, J. Appl. Physiol. 87: 554-560, 1999), support the hypothesis that, during forceful inspiratory efforts, the inspiratory muscles drive the chest wall along the minimal-work trajectory.  相似文献   

14.
The purpose of the present study was to assess the mechanical role of the expiratory muscles during spontaneous breathing in prone animals. The electromyographic (EMG) activity of the triangularis sterni, the rectus abdominis, the external oblique, and the transversus abdominis was studied in 10 dogs light anesthetized with pentobarbital sodium. EMGs were recorded during spontaneous steady-state breathing in supine and prone suspended animals both before and after cervical vagotomy. We also measured the end-expiratory lung volume [functional residual capacity (FRC)] in supine and prone positions to assess the mechanical role of expiratory muscle activation in prone dogs. Spontaneous breathing in the prone posture elicited a significant recruitment of the triangularis sterni, the external oblique, and the transversus abdominis (P less than 0.05). Bilateral cervical vagotomy eliminated the postural activation of the external oblique and the transversus abdominis but not the triangularis sterni. Changes in posture during control and after cervical vagotomy were associated with an increase in FRC. However, changes in FRC, on average, were 132.3 +/- 33.8 (SE) ml larger (P less than 0.01) postvagotomy. We conclude that spontaneous breathing in prone anesthetized dogs is associated with a marked phasic expiratory recruitment of rib cage and abdominal muscles. The present data also indicate that by relaxing at end expiration the expiratory muscles of the abdominal region are directly responsible for generating roughly 40% of the tidal volume.  相似文献   

15.
A new device that utilizes the voltages induced in separate coils encircling the rib cage and abdomen by a magnetic field is described for measurement of cross-sectional areas of the human chest wall (rib cage and abdomen) and their variation during breathing. A uniform magnetic field (1.4 X 10(-7) Tesla at 100 kHz) is produced by generating an alternating current at 100 kHz in two square coils, 1.98 m on each side, parallel to the planes of the areas to be measured and placed symmetrically cephalad and caudad to these planes at a mean distance of 0.53 m. We demonstrated that the accuracy of the device on well-defined surfaces (squares, circles, rectangles, ellipses) was within 1% in all cases. Observed errors are due primarily to small inhomogeneities of the magnetic field and variation of the orientation of the coil relative to the field. Using a second magnetic field (80 kHz) perpendicular to the first, we measured the errors due to nonparallel orientation during quiet breathing and inspiratory capacity maneuvers. In 10 normal subjects, orientation effects were less than 2% for the rib cage and less than 0.7% for the abdomen. In five of these subjects, orientation effects at functional residual capacity in lateral and seated postures were generally less than or equal to 5%, but estimated tidal volume during spontaneous breathing was comparable to measurements in the supine posture. In five curarized patients, we assessed the linearity of volume-motion relationships of the rib cage and abdomen, comparing cross-sectional area and circumference measurements. Departures from linearity using cross-sectional areas were only one-third of those using circumferences. In seven normal subjects we compared cross-sectional area measurements with respiratory inductive plethysmography (RIP) and found comparable estimates of lung volume change over a wide range of relative rib cage contributions to tidal volume (-5 to 105%), with slightly higher standard deviations for the RIP (SD = 10% for RIP; SD = 4% for cross-sectional area).  相似文献   

16.
Using a respiratory inductive plethysmograph (Respitrace) we studied thoracoabdominal movements in eight normal subjects during inspiratory resistive (Res) and elastic (El) loading. The magnitude of loads was chosen so as to produce a fall in inspiratory mouth pressure of 20 cmH2O. The contribution of rib cage (RC) to tidal volume (VT) increased significantly from 68% during quiet breathing (QB) to 74% during El and 78% during Res. VT and breathing frequency did not change significantly. During loading a phase lag was present on inspiration so that the abdomen led the rib cage. However, outward movement of the abdomen ceased in the latter part of inspiration, and the RC became the sole contributor to VT. These observations suggest greater recruitment of the inspiratory musculature of the RC than the diaphragm during loading, although changes in the mechanical properties of the chest wall may also have contributed. Indeed, an increase in abdominal end-expiratory and end-inspiratory pressures was observed in five out of six subjects, indicating abdominal muscle recruitment which may account for part of the reduction in abdominal excursion. Both Res and El increased the rate of emptying of the respiratory system during the ensuing unloaded expiration as a result of a reduction in rib cage expiratory-braking mechanisms. The time course of abdominal displacements during expiration was unaffected by loading.  相似文献   

17.
We have tested the possibility that the electromyographic (EMG) activity present in the parasternal intercostal muscles during quiet inspiration was reflexive, rather than agonistic, in nature. Using concentric needle electrodes we measured parasternal EMG activity in four normal subjects during various inspiratory maneuvers. We found that 1) phasic inspiratory activity was invariably present in the parasternal intercostals during quiet breathing, 2) the parasternal EMG activity was generally increased during attempts to perform the tidal breathing maneuver with the diaphragm alone, 3) parasternal EMG activity was markedly decreased or suppressed in the presence of rib cage distortion during diaphragmatic isovolume maneuvers, and 4) that EMG activity could not be voluntarily suppressed during breathing unless the inspired volume was trivial. We conclude that the parasternal EMG activity detected during quiet inspiration in the normal subjects depends on a central involuntary mechanism and is not related to activation of intercostal mechanoreceptors.  相似文献   

18.
Mixing for two gases of markedly different gaseous diffusivity, helium (He) (mol wt = 4) and sulfur hexafluoride (SF6) (mol wt = 146) has been studied by a rebreathing method in different postures. In nine normal subjects duplicate measurements were made in the erect (seated), supine, and lateral decubitus posture, at a constant tidal volume (700 ml) and frequency (1 Hz) starting from functional residual capacity (FRC). Additional measurements were made on four of the subjects, rebreathing seated erect at a volume similar to the relaxed FRC supine and supine at a volume similar to the relaxed FRC seated. In the supine posture the mean breath number to reach 99% equilibrium (n99), was not significantly different for the two gases, 8.9 for He and 9.8 for SF6. There was a difference (P less than 0.01) when erect; n99 (He) = 8.2 and n99 (SF6) = 10.9. The greatest He-SF6 difference (P less than 0.001) was in the lateral decubitus position n99 (He) = 10.1 and n99 (SF6) = 15.9. The mean relaxed FRC as percent of seated was 71% supine and 75% in lateral decubitus posture. Rebreathing seated at a lower volume did not abolish the He-SF6 mixing difference nor did rebreathing at a higher volume when supine induce a He-SF6 mixing difference. Thus the effect of posture on gas mixing cannot be due solely to lung volume and must represent a convective and diffusive dependent change in the distribution of ventilation per unit lung volume.  相似文献   

19.
To examine the mechanical effects of the abdominal and triangularis sterni expiratory recruitment that occurs when anesthetized dogs are tilted head up, we measured both before and after cervical vagotomy the end-expiratory length of the costal and crural diaphragmatic segments and the end-expiratory lung volume (FRC) in eight spontaneously breathing animals during postural changes from supine (0 degree) to 80 degrees head up. Tilting the animals from 0 degree to 80 degrees head up in both conditions was associated with a gradual decrease in end-expiratory costal and crural diaphragmatic length and with a progressive increase in FRC. All these changes, however, were considerably larger (P less than 0.005 or less) postvagotomy when the expiratory muscles were no longer recruited with tilting. Alterations in the elastic properties of the lung could not account for the effects of vagotomy on the postural changes. We conclude therefore that 1) by contracting during expiration, the canine expiratory muscles minimize the shortening of the diaphragm and the increase in FRC that the action of gravity would otherwise introduce, and 2) the end-expiratory diaphragmatic length and FRC in upright dogs are thus actively determined. The present data also indicate that by relaxing at end expiration, the expiratory muscles make a substantial contribution to tidal volume in upright dogs; in the 80 degrees head-up posture, this contribution would amount to approximately 60% of tidal volume.  相似文献   

20.
Reduced functional residual capacity (FRC) is consistently found in obese subjects. In 10 obese subjects (mean +/- SE age 49.0 +/- 6 yr, weight 128.4 +/- 8 kg, body mass index 44 +/- 3 kg/m2) without respiratory disease, we examined 1) supine changes in total lung capacity (TLC) and subdivisions, 2) whether values of total respiratory resistance (Rrs) are appropriate for mid-tidal lung volume (MTLV), and 3) estimated resistance of the nasopharyngeal airway (Rnp) in both sitting and supine postures. The results were compared with those of 13 control subjects with body mass indexes of <27 kg/m2. Rrs at 6 Hz was measured by applying forced oscillation at the mouth (Rrs,mo) or the nose (Rrs,na); Rnp was estimated from the difference between sequential measurements of Rrs,mo and Rrs,na. All measurements were made when subjects were seated and when supine. Obese subjects when seated had a restrictive defect with low TLC and FRC-to-TLC ratio; when supine, TLC fell 80 ml and FRC fell only 70 ml compared with a mean supine fall of FRC of 730 ml in control subjects. Values of Rrs,mo and Rrs,na at resting MTLV in obese subjects were about twice those in control subjects in both postures. Relating total respiratory conductance (1/Rrs) to MTLV, the increase in Rrs,mo in obese subjects was only partly explained by their reduced MTLV. Rnp was increased in some obese subjects in both postures. Despite the increased extrapulmonary mass load in obese subjects, further falls in TLC and FRC when supine were negligible. Rrs,mo at isovolume was increased. Further studies are needed to examine the causes of reduced TLC and increases in Rrs,mo and sometimes in Rnp in obese subjects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号